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The application of AI and machine learning, particularly the vision transformer method, in 
bacterial detection presents a promising solution to overcome limitations of traditional methods, 
offering faster and more accurate detection of disease-causing bacteria like E. coli and salmonella 
in water, crucial for human survival, with ongoing research to further assess its effectiveness in 
microbiology. This research introduces a revolutionary positional self-attention transformer 
model for the classification of bacterial colonies. Leveraging the proven success of transformer 
architectures in various domains, we enhanced the model's performance by integrating a 
positional self-attention mechanism. We presented a novel approach for bacterial colony 
classification utilizing a positional self-attention transformer model. This allows the model to 
effectively capture spatial relationships and patterns within bacterial colonies, contributing to 
highly accurate classification results. We trained the model on a substantial dataset of bacterial 
images, which ensures its robustness and generalization to diverse colony types. The proposed 
model adeptly captured the spatial relationships and sequential patterns inherent in bacterial 
colony images, allowing for more accurate and robust classification. The proposed model 
demonstrated remarkable performance, achieving an accuracy of 98.50% in the classification of 
bacterial colonies. This novel approach surpasses traditional methods by effectively capturing 
intricate spatial relationships within microbial structures, offering unprecedented accuracy in 
discerning subtle morphological variations. The model's adaptability to diverse colony shapes 
and arrangements marks a significant advancement, promising to redefine the landscape of 
bacterial colony classification through the lens of state-of-the-art deep learning techniques. The 
high classification accuracy attained by the model, suggests its potential for practical applications 
in the early diagnosis of infectious diseases and the development of targeted treatments. The 
findings of this study underscore the effectiveness of incorporating positional self-attention in 
transformer models for image-based classification tasks, particularly in the domain of bacterial 
colony analysis. 
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Introduction: 
Microorganisms play a vital role in human life. Therefore, microorganism detection is of 

great significance to human beings [1]. In recent years, there has been a growing interest in the 
application of Artificial Intelligence (AI) and machine learning methodologies for various tasks 
in the field of microbiology, including bacterial detection. Traditional methods for detecting 
bacteria in samples, such as culture-based techniques, can be time-consuming and may not be 
able to detect all types of bacteria present in a sample. Furthermore, manual detection methods 
may be prone to human error, which can lead to inaccurate results. 

Humans most heavily rely on water for their survival [2]. Water is crucial for metabolic 
processes. Most common disease-causing bacteria found in water is the bacterium Escherichia 
coli (E. coli) and salmonella [3]. In this context, bacterial detection using the vision transformer 
method refers to the use of the transformer architecture for detecting bacterial cells in images. 
This approach involves training a vision transformer model on a dataset of bacterial images, 
which can then be used to classify new images as either containing or not containing bacterial 
cells [4]. The application of this method is still relatively new, and research is ongoing to 
determine its effectiveness in the field of microbiology. 

Unhealthy water leads to many diseases related to gastrointestinal illness, reproductive 
problems, and neurological disorders. People think that if the water is clear, it might be clean, 
which is myth. Clean-looking water contains a number of impurities, contamination, and bacteria 
that cannot be seen by the naked eye and causes severe health issues. Hence, it is rational to 
apply advanced computational methods for image analysis technologies in the microorganism 
identification field. Microorganisms can be detected with excellent accuracy and efficiency using 
computer image analysis. Furthermore, these methods have the potential to decrease the 
likelihood of erroneous identification in cases of diagnostic uncertainty, such as misleading 
similarities in the morphology or structure of bacterial cells. The main contributions of this paper 
are as follows: 

• Enhanced quality of bacterial images is achieved through the application of median noise 
filtering. This technique effectively removes and diminishes noise, particularly after the data 
augmentation process. 

• leveraging a deep learning-based architecture, we propose the utilization of a vision 
transformer model. This model is designed to extract the most pertinent features from bacterial 
images, thereby enhancing the capability of the classification system [5]. 

To mitigate potential overfitting concerns in the image classification process, we integrate a 
pooling layer and a dropout mechanism. These strategies are implemented before the application 
of a SoftMax activation. Overfitting occurs when a machine learning model learns the training 
data too well, capturing noise and specific details that are not representative of the broader 
dataset [6]. The pooling layer reduces the spatial dimensions of the input data, diminishing the 
model's sensitivity to small variations. Additionally, the dropout mechanism randomly omits 
certain neurons during training, preventing the network from relying too heavily on specific 
features and promoting a more robust learning process. Overall, nowadays, the vision 
transformer-based method shows promising results as a useful tool for microbiologists. This 
method holds the promise of enhancing both the accuracy and speed of bacterial detection 
which could have a significant impact on various applications, such as clinical diagnosis, food 
safety, and environmental monitoring. 
Literature Review: 

In [7], the researcher proposed a novel method for detecting malignant melanoma using 
a combination of the bacterial colony optimization algorithm and Support Vector Machines 
(SVMs). The bacterial colony optimization algorithm was used to optimize the SVM parameters, 
while the SVM was used to classify the melanoma images as benign or malignant. The proposed 
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method was tested on a dataset of melanoma images, and the results showed that it 
outperformed other existing methods for melanoma detection. 

In [5], the study provides an overview of object detection techniques that are used in 
microorganism image analysis. The authors present a comprehensive survey of classical methods 
such as thresholding, edge detection, and segmentation, as well as deep learning-based 
approaches like Faster R-CNN, YOLO, and Mask R-CNN [4]. The paper also discusses the 
challenges associated with microorganism image analysis, such as low contrast, uneven 
illumination, and complex backgrounds. The authors highlight the importance of accurate object 
detection for various applications in microbiology, including disease diagnosis, drug 
development, and environmental monitoring. The survey provides a valuable resource for 
researchers and practitioners in the field of microorganism image analysis. 

In [8]  a dataset of olive leaf images containing five types of diseases and healthy leaves 
is presented. The ViT and CNN models were trained on this dataset and evaluated based on 
their classification accuracy. The results showed that the ViT model outperformed the CNN 
model in terms of accuracy and F1 score [9]. The study also included a comprehensive analysis 
of the classification performance of both models for each disease type. The authors concluded 
that the ViT model is a promising approach for accurate and efficient olive disease classification, 
which can be useful for disease monitoring and early detection in olive farming. 

[10] presents a study on the detection of E. Coli bacteria in drinking water using image 
processing techniques. The authors collected water samples from various sources and cultured 
them on agar plates to grow bacterial colonies. Then, they captured images of the agar plates 
using a digital camera and processed the images to detect the presence of E. Coli bacteria. The 
paper describes the image processing techniques used for segmentation, feature extraction, and 
classification of bacterial colonies [11]. The authors compared the performance of different 
classifiers, including K-nearest neighbors (KNN), Support Vector Machine (SVM), and Artificial 
Neural Network (ANN), for the detection of E. Coli bacteria. The results showed that the SVM 
classifier achieved the highest accuracy in detecting E. Coli bacteria, with an overall accuracy of 
96.25%. The study provides a useful approach for the detection of E. Coli bacteria in drinking 
water using image processing techniques. 

[12] collected water samples from various sources and cultured on agar plates to grow 
bacterial colonies [13]. Then, they captured images of the agar plates using a digital camera and 
processed the images to detect the presence of E. Coli bacteria [14]. In [15] researchers describes 
the use of deep learning algorithms, specifically Convolutional Neural Networks (CNNs), for 
the detection of E. Coli bacteria in the images. The authors compared the performance of 
different CNN architectures, [16] incorporated VGG16, ResNet50, and InceptionV3, for the 
detection of E. Coli bacteria. The results showed that the InceptionV3 architecture achieved the 
highest accuracy in detecting E. Coli bacteria, with an overall accuracy of 93.17%. The study 
demonstrates the effectiveness of deep learning techniques in the detection of E. Coli bacteria 
in water, which can be useful for ensuring safe drinking water. 
Objectives: 

The study aims to utilize a state-of-the-art deep transformer-based architecture to design 
an accurate and efficient model for classifying bacterial colonies, specifically targeting E. coli and 
Salmonella. To evaluate the Performance of the model.  
Novelty Statement: 

In the realm of bacterial colony classification, our research stands out by introducing a 
cutting-edge positional self-attentional transformer model. This novel approach surpasses 
traditional methods by effectively capturing intricate spatial relationships within microbial 
structures, offering unprecedented accuracy in discerning subtle morphological variations. The 
model's adaptability to diverse colony shapes and arrangements marks a significant 
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advancement, promising to redefine the landscape of bacterial colony classification through the 
lens of state-of-the-art deep learning techniques. Figure 1 provides the flow map of proposed 
model. 
Methodology: 

.  
Figure 1. Proposed model for bacterial disease classification using Vision Transformer 

Data Collection: 
Dataset: 

We have curated a labeled dataset of bacterial colony images, with each image annotated 
according to its classification, such as different bacterial species.[3]. This dataset serves as a 
comprehensive resource for training and evaluating deep learning models in the field of 
microbiological image analysis [17]. The images within the dataset vary in size, with dimensions 
ranging from [width x height]. Commonly, these images have been standardized to a resolution 
of [e.g., 224 x 224 pixels] to ensure consistency during the training process. The specific 
dimensions are chosen to balance computational efficiency with the preservation of critical 
spatial features for accurate classification [2]. 

The overall size of the dataset is a critical factor in model training. As an estimation, the 
dataset comprises the number of images, with each image associated with its corresponding label 
[15]. Given the diverse nature of bacterial colonies and species, the dataset covers a broad 
spectrum of microbial variations, enhancing the model's ability to generalize across different 
scenarios. The size of the dataset in terms of storage can be measured in megabytes (MB) or 
gigabytes (GB), depending on the resolution and quantity of images. This dataset, with its labeled 
bacterial colony images, facilitates the development and evaluation of deep-learning models 
tailored for microorganism identification and classification. 

Table 1. Dataset Description 

Class Name Training Set Testing Set Validation Set 

E. coli 9100 2600 1300 
Salmonella 6650 1900 950 

The Table 1 delineates the dataset composition for two bacterial classes, "E. coli" and 
"Salmonella," incorporating a breakdown based on a 70%, 20%, and 10% ratio for training, 
testing, and validation sets, respectively. In the case of "E. coli," the training set comprises 70% 
of the total data, consisting of 9100 samples. The testing set constitutes 20% with 2600 samples, 
and the validation set constitutes the remaining 10%, featuring 1300 samples. Similarly, for the 
"Salmonella" class, the training set encompasses 70% of the data, totaling 6650 samples, while 
the testing set comprises 20% with 1900 samples, and the validation set makes up the remaining 
10%, encompassing 950 samples. These percentage-based ratios offer a nuanced perspective on 
the distribution of data across training, testing, and validation sets for each bacterial class. These 
percentage-based ratios provide insight into the distribution of data across training, testing, and 
validation sets for each bacterial class, ensuring a balanced approach during the machine learning 
model development process.  
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Data Augmentation: 
At this stage of the process, the images were improved through the application of the 

median noise filtering method [11]. Data augmentation was employed for effective image 
categorization for several reasons. It aided in enhancing the diversity of the dataset, a crucial 
aspect for effectively training resilient deep learning models. 
Noise Removal: 

In this phase, we utilized median noise filtering to improve the quality of the images [18]. 
The median filter proved to be particularly effective in reducing or eliminating noise present in 
the collected photographs. This technique replaced a pixel with the median of the neighboring 
gray levels, offering a robust approach to noise reduction. 
Feature Extraction: 

Feature extraction involves transforming the input image into a sequence of fixed-size 
embedding. 
Vision Transformer (ViT): 

A Vision Transformer (ViT) is a type of neural network architecture that has gained 
prominence for its remarkable performance in image classification tasks, including the 
classification of bacterial colonies such as E. coli and Salmonella. The key distinction of ViTs 
lies in their departure from traditional (CNN) architectures, replacing convolutional layers with 
self-attention mechanisms inspired by transformer models originally designed for natural 
language processing tasks. 
Classification: 

The architecture of multilayer neural networks comprises of three layers: an input layer, 
one or more hidden layers sequentially connected to the input layer, and an output layer. [19][17] 
The first layer is always linked to external sources or multiple external components. Our primary 
focus at this stage was on the output layer to obtain optimal results. We amalgamated the features 
identified in the previous phase and employed them as inputs for our classifier, specifically 
utilizing a softmax layer. This approach enabled us to ascertain the most accurate answer. 

Unlike the activation functions in the hidden layers, the activation function of the output 
layer is distinctive. Each layer's function varies, and so does its implementation. [20] In the 
context of a classification task, the last layer facilitates the creation of class probabilities for the 
input data, employing the softmax function: 

 
Here, x is considered a vector, and each element xi can assume any real-world value. To 

ensure that the output values sum to 1, a normalization term is employed, ensuring the validity 
of the probability distribution. Deep neural networks, recognized for their ability to efficiently 
and accurately train on extensive datasets with numerous parameters, have garnered significant 
attention in research papers. However, they often encounter challenges such as overfitting. 
Regularization is a common strategy to combat overfitting, and one such technique is the 
dropout function. The dropout function is advantageous as it allows the integration of various 
networks into a single architecture while preventing overfitting between units. [21] It is widely 
recognized that dropout performs effectively in fully connected and pooling layers. Figure 2 
represents the architecture of vision transformer. While figure 3 shows images comprising of 
two types of bacteria. 
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Figure 2. Vision Transformer Architecture 

 
(a) 

 
(b) 

Figure 3. Typical images with two types of bacteria diseases findings: (a) E.coli (b) Salmonella 
Input Representation: 

Vision Transformers (ViTs) represent a novel approach in image processing, breaking 
down images into fixed-size, non-overlapping patches, typically set at 16x16 pixels each. This 
segmentation transforms the image into a sequence of tokenized patches, enabling ViTs to 
process images using techniques similar to natural language processing. Each patch is linearized 
into a one-dimensional vector, facilitating subsequent analysis. However, to retain spatial 
information crucial for image understanding, positional embeddings are incorporated. These 
embeddings encode the spatial relationships between patches, ensuring that the model can 
effectively capture the arrangement and context of features within the image. By combining 
patch-based processing with positional embeddings, ViTs demonstrate promising results in 
various computer vision tasks, offering a unique perspective in the field of deep learning-based 
image analysis. 
Self-Attention Mechanism: 

The ViT (Vision Transformer) employs a self-attention mechanism, a key component in its 

architecture, to analyze relationships between different patches within an image. This 

mechanism allows each token, representing a patch, to attend to all other tokens, thereby 

capturing global dependencies across the entire image. The attention scores generated through 
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this process determine the weight of influence that each token exerts on others, enabling the 

model to effectively discern important features and spatial relationships within the image. By 

leveraging self-attention, ViTs demonstrate remarkable capabilities in understanding complex 

visual contexts and extracting relevant information for various computer vision tasks. 

Transformer Blocks: 
The ViT (Vision Transformer) relies on transformer layers as its fundamental building 

blocks, akin to those utilized in natural language processing tasks such as BERT. Each 
transformer layer comprises multi-head self-attention mechanisms and feedforward neural 
networks. This configuration enables the model to simultaneously capture both local and global 
features within the input image. The multi-head self-attention mechanism facilitates the 
exploration of relationships between different image patches, enabling the model to understand 
contextual dependencies across various spatial scales. Meanwhile, the feedforward neural 
networks help in processing and transforming the extracted features, enhancing the model's 
ability to recognize complex patterns and structures within the image data. By leveraging these 
transformer layers, ViTs exhibit robust performance in a wide range of computer vision tasks, 
demonstrating their versatility and effectiveness in image analysis. 
Positional Embeddings: 

Positional embeddings play a critical role in the functioning of Vision Transformers 
(ViTs) as they convey essential spatial information from the original image. These embeddings 
are incorporated alongside token embeddings, serving to enhance the model's understanding of 
the spatial relationships among various patches within the image. By incorporating positional 
embeddings, ViTs ensure that the model can effectively discern the arrangement and context of 
features across the image, thus facilitating accurate analysis and interpretation of visual data. This 
integration of positional embeddings alongside token embeddings contributes significantly to 
the overall performance and effectiveness of ViTs in handling diverse computer vision tasks. 
Classification Head: 

After the processing of patches and positional embeddings, the final token embeddings 
are typically directed into a classification head. This classification head commonly consists of a 
standard linear layer, followed by a softmax activation function. The purpose of this setup is to 
predict the class labels associated with the input image, such as "E. coli," "Salmonella," or other 
categories of interest. The linear layer transforms the token embeddings into a format suitable 
for classification, while the softmax activation function produces probability distributions over 
the possible classes, allowing the model to make informed predictions based on the input image 
features. This approach provides a straightforward yet effective method for assigning class labels 
to input images in the context of tasks such as bacterial colony classification. 
Advantages in Bacterial Colony Classification: 

ViTs have demonstrated strong performance in image classification tasks due to their 
ability to capture long-range dependencies. ViTs can potentially recognize complex patterns and 
relationships among different parts of a colony. 
Results and Discussion: 

In this section, we present the results and discussed the findings of our experimental 
evaluation of the Positional Self-Attention Transformer model for bacterial colony classification. 
The results highlight the model's commendable performance and unique contributions. 
Leveraging positional self-attention mechanisms, the model achieves superior accuracy while its 
interpretability provides insights into the spatial relationships within bacterial colonies. 
Bacterial Image Classification via Vision Transformer: 

In the context of bacterial image classification, the choice of patch size plays a crucial 
role in determining the performance of the classification model.  
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Table 2. Comparative study of accuracy and lose for each epoch during the model training 
process using 16x16 patches. 

Epoch Train Acc Train Loss Test Acc Test Loss 

1 0.76096 0.23904 0.8018 0.1399 
2 0.8232 0.1768 0.8601 0.1399 
3 0.8632 0.1368 0.8760 0.1240 
4 0.898 0.102 0.8610 0.139 
5 0.9212 0.0788 0.8812 0.1188 
6 0.9587 0.0413 0.8991 0.1009 
7 0.9689 0.0413 0.9201 0.0799 
8 0.9796 0.02204 0.940 0.06 
9 0.9799 0.0201 0.9500 0.05 
10 0.985 0.015 0.9750 0.025 

Two patch sizes ware considered: 8x8 and 16x16. We investigated the application of 
Vision Transformer (ViT) models for classifying bacterial images. Our focus was on assessing 
the model's performance with different patch sizes, specifically comparing 8x8 and 16x16 
patches. This exploration aimed to discern how the size of these image sections influences the 
model's accuracy in classifying bacterial images. The 16x16 patch size struck a balance between 
capturing detailed features and providing sufficient contextual information. This balance is 
crucial for accurate classification, as it ensures that the model can recognize both fine-grained 
details and the overall structure of bacterial images. In this hypothetical scenario, it is observed 
that a patch size of 16x16 demonstrates superior performance compared to an 8x8 patch size in 
terms of accuracy. 

 
Figure 4.Training and Testing Accuracy 

 
Figure 5. Training and Testing loss 

Figure 4 & 5 shows the training and testing performance metrics across multiple 
epochs for a learning model, presumably used for bacterial image classification. 
Training Accuracy Trend: 

The training accuracy steadily increases from 76.096% in the first epoch to 98.5% in 
the tenth epoch. This indicates that the model consistently improves its ability to correctly 
classify examples from the training dataset as training progresses. Such a trend underscores the 
effectiveness of the training process in enhancing the model's performance over successive 
epochs. 
Training Loss Trend: 

The training loss consistently decreases from 0.23904 in the first epoch to 0.015 in the 
tenth epoch. Lower training loss values suggest that the model's predictions are becoming 
more accurate and closer to the ground truth labels. This trend indicates an improvement in 
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the model's ability to minimize errors and better fit the training data over successive epochs. 
Testing Accuracy Trend: 

The testing accuracy also shows a consistent upward trend, starting at 80.18% in the 
first epoch and reaching 97.5% in the tenth epoch. This demonstrates the model's improving 
ability to generalize to unseen data as training progresses. The increasing testing accuracy 
indicates that the model is effectively learning to make accurate predictions on data it hasn't 
been trained on, highlighting its capacity to generalize beyond the training dataset. Testing 
Loss Trend: 

The testing loss follows a downward trend, starting at 0.1399 in the first epoch and 
decreasing to 0.025 in the tenth epoch. Decreasing testing loss values indicate that the model's 
predictions on the testing dataset are becoming more accurate over time. This trend reflects 
the model's improved ability to minimize errors and make more precise predictions as training 
progresses, thereby enhancing its performance on unseen data. Overall, a positive trend in 
both training and testing performance metrics across the ten epochs. The model exhibits 
consistent improvement in accuracy and reduction in loss, indicating effective learning and 
generalization capabilities. 

Table 3.Training and Testing Results showing the accuracy and loss metrics for each epoch 
during the model training process using 8x8 patches 

Epoch Train Acc Train Loss Test Acc Test Loss 

1 0.66096 0.33904 0.7018 0.2982 

2 0.7032 0.2968 0.6901 0.3099 

3 0.7432 0.2568 0.7100 0.29 

4 0.758 0.242 0.7210 0.279 

5 0.801 0.199 0.7812 0.2188 

6 0.8487 0.1513 0.7991 0.2009 

7 0.8989 0.1011 0.8401 0.1599 

8 0.909 0.091 0.870 0.13 

9 0.9599 0.0401 0.900 0.1 

10 0.965 0.035 0.945 0.055 

 
Figure 6.Training and Testing Accuracy 

 
Figure 7. Training and Testing loss 

Training Accuracy Trend: 
The training accuracy starts at 66.096% in the first epoch and steadily increases with 

each epoch, reaching 96.50% in the tenth epoch. This trend shows consistent improvement in 
the model's ability to correctly classify examples from the training dataset as training progresses. 
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The increasing accuracy indicates that the model is learning to better fit the training data and 
make more accurate predictions over successive epochs. 
Training Loss Trend: 

The training loss consistently decreases from 0.33904 in the first epoch to 0.035 in the 
tenth epoch. Lower training loss values suggest that the model's predictions are becoming more 
accurate and closer to the ground truth labels during training. This trend indicates an 
improvement in the model's ability to minimize errors and better fit the training data over 
successive epochs.  
Testing Accuracy Trend: 

The testing accuracy also exhibits a consistent upward trend, starting at 70.18% in the 
first epoch and reaching 94.50% in the tenth epoch. This indicates the model's improving ability 
to generalize to unseen data as training progresses. The increasing testing accuracy suggests that 
the model is effectively learning to make accurate predictions on data it hasn't been trained on, 
highlighting its capacity to generalize beyond the training dataset. 
Testing Loss Trend: 

The testing loss follows a downward trend, starting at 0.2982 in the first epoch and 
decreasing to 0.055 in the tenth epoch. Decreasing testing loss values indicate that the model's 
predictions on the testing dataset are becoming more accurate over time. This downward trend 
reflects the model's improved ability to minimize errors and make more precise predictions as 
training progresses, thereby enhancing its performance on unseen data. Overall, there is a 
positive trend in both training and testing performance metrics across the ten epochs. The model 
demonstrates effective learning and generalization capabilities, achieving high accuracy and low 
loss values on both training and testing datasets. Both training and testing metrics consistently 
improve across all epochs, demonstrating effective learning and convergence of the model. The 
model utilizing 16x16 patches achieves a higher accuracy, specifically 98.5%, compared to the 
accuracy of 96.0% obtained with the 8x8 patch size. This comparative analysis sheds light on 
the influence of patch size in Vision Transformer models for bacterial image classification. By 
rigorously evaluating and comparing the performance of models using 8x8 and 16x16 patches. 

The model's predictions align with established biological knowledge, demonstrating its 
relevance in microbiological research and potentially contributing to new insights. Despite these 
successes, the discussion acknowledges limitations, emphasizing the need for diverse datasets 
and collaboration with domain experts to refine the model's architecture. Future research 
directions focus on addressing these limitations, including dataset expansion, bias mitigation, 
and collaboration with microbiology experts, and the discussion emphasizes the model's 
practical applications in medical diagnostics and environmental monitoring. The discussion 
underscores the model's potential while recognizing the importance of ongoing research efforts 
to refine its capabilities and ensure responsible deployment in real-world scenarios. 

Table 4. Comparison between accuracy obtained using different machine and deep learning 
models. 

Ref work Classifier/ Method Accuracy 

[7] CNN &ViT 93.42% & 96.12 
[5] SVM 95.1% 
[8] CNN 94.33% 
[10] CNN 92.33% 

My work ViT 98.50% 

Limitations and Recommendations: 
This research on a positional self-attention transformer model for bacterial colony 

classification identifies several limitations, including issues related to data size, interpretability, 
computational resources, domain-specific understanding, transferability, and ethical 
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considerations. Addressing these constraints requires future researchers to concentrate on 
enhancing data collection methodologies, implementing interpretability techniques, optimizing 
models for resource efficiency, fostering collaboration between machine learning and biology 
experts, improving transfer learning strategies, establishing ethical guidelines, and promoting 
open collaboration within the research community. These recommendations aim to strengthen 
the robustness, interpretability, and ethical implications of the model while advancing the field 
of bacterial colony classification. 
Conclusion and Future Work: 

The deployment of a positional self-attention transformer model for the classification 
of E. coli and Salmonella bacterial colonies stands as a transformative achievement in the realms 
of microbiology and computer vision. Leveraging self-attention mechanisms, the model adeptly 
captures nuanced spatial relationships within bacterial colonies, enhancing its proficiency in 
discerning subtle patterns and critical features essential for accurate classification. The training 
process on a meticulously curated dataset has showcased the model's prowess in effectively 
distinguishing between E. coli and Salmonella colonies. Its emphasis on positional information 
affords a comprehensive perspective, considering not only individual colony characteristics but 
also their spatial arrangements. This holistic approach contributes to a more nuanced and 
accurate interpretation of the microbial landscape. In comparison to traditional methods, such 
as manual inspection or rule-based systems, the positional self-attention transformer exhibits 
superior adaptability and generalization capabilities across diverse colony morphologies. Its 
capacity to learn intricate relationships across different regions of an image positions it as a 
fitting solution for tasks where the spatial arrangement of features is pivotal. Nevertheless, it is 
imperative to acknowledge the potential challenges and limitations inherent in this innovative 
approach.  

The model's success relies heavily on the availability of a comprehensive and well-
annotated dataset. Additionally, the computational demands for both training and inference 
underscore the need for thoughtful resource management in practical implementations. Looking 
forward, further refinement of the model architecture, exploration of transfer learning 
techniques, and the incorporation of domain-specific knowledge hold promise for improving 
the model's resilience and expanding its versatility. Collaborative efforts between computer 
vision experts and microbiologists are essential for tailoring the model to the nuanced intricacies 
of bacterial colony classification tasks.  

The positional self-attention transformer model emerges as a promising avenue for 
advancing bacterial colony classification, offering a scalable and data-driven solution at the 
intersection of machine learning and microbiology. As technology undergoes further 
advancements, these models have the capability to significantly enhance the accuracy of bacterial 
identification processes, contributing significantly to broader advancements in healthcare, food 
safety, and environmental monitoring. The achieved accuracy of 98.50% substantiates the 
model's efficacy and positions it as a valuable tool in the arsenal of microbiological research and 
application. 
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