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The application of Al and machine learning, particularly the vision transformer method, in
bacterial detection presents a promising solution to overcome limitations of traditional methods,
offering faster and more accurate detection of disease-causing bacteria like E. coli and salmonella
in water, crucial for human survival, with ongoing research to further assess its effectiveness in
microbiology. This research introduces a revolutionary positional self-attention transformer
model for the classification of bacterial colonies. Leveraging the proven success of transformer
architectures in vatious domains, we enhanced the model's performance by integrating a
positional self-attention mechanism. We presented a novel approach for bacterial colony
classification utilizing a positional self-attention transformer model. This allows the model to
effectively capture spatial relationships and patterns within bacterial colonies, contributing to
highly accurate classification results. We trained the model on a substantial dataset of bacterial
images, which ensures its robustness and generalization to diverse colony types. The proposed
model adeptly captured the spatial relationships and sequential patterns inherent in bacterial
colony images, allowing for more accurate and robust classification. The proposed model
demonstrated remarkable performance, achieving an accuracy of 98.50% in the classification of
bacterial colonies. This novel approach surpasses traditional methods by effectively capturing
intricate spatial relationships within microbial structures, offering unprecedented accuracy in
discerning subtle morphological variations. The model's adaptability to diverse colony shapes
and arrangements marks a significant advancement, promising to redefine the landscape of
bacterial colony classification through the lens of state-of-the-art deep learning techniques. The
high classification accuracy attained by the model, suggests its potential for practical applications
in the early diagnosis of infectious diseases and the development of targeted treatments. The
findings of this study underscore the effectiveness of incorporating positional self-attention in
transformer models for image-based classification tasks, particularly in the domain of bacterial
colony analysis.
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Introduction:

Microorganisms play a vital role in human life. Therefore, microorganism detection is of
great significance to human beings [1]. In recent years, there has been a growing interest in the
application of Artificial Intelligence (AI) and machine learning methodologies for various tasks
in the field of microbiology, including bacterial detection. Traditional methods for detecting
bacteria in samples, such as culture-based techniques, can be time-consuming and may not be
able to detect all types of bacteria present in a sample. Furthermore, manual detection methods
may be prone to human error, which can lead to inaccurate results.

Humans most heavily rely on water for their survival [2]. Water is crucial for metabolic
processes. Most common disease-causing bacteria found in water is the bacterium Escherichia
coli (E. coli) and salmonella [3]. In this context, bacterial detection using the vision transformer
method refers to the use of the transformer architecture for detecting bacterial cells in images.
This approach involves training a vision transformer model on a dataset of bacterial images,
which can then be used to classify new images as either containing or not containing bacterial
cells [4]. The application of this method is still relatively new, and research is ongoing to
determine its effectiveness in the field of microbiology.

Unhealthy water leads to many diseases related to gastrointestinal illness, reproductive
problems, and neurological disorders. People think that if the water is clear, it might be clean,
which is myth. Clean-looking water contains a number of impurities, contamination, and bacteria
that cannot be seen by the naked eye and causes severe health issues. Hence, it is rational to
apply advanced computational methods for image analysis technologies in the microorganism
identification field. Microorganisms can be detected with excellent accuracy and efficiency using
computer image analysis. Furthermore, these methods have the potential to decrease the
likelihood of erroneous identification in cases of diagnostic uncertainty, such as misleading
similarities in the morphology or structure of bacterial cells. The main contributions of this paper
are as follows:

. Enhanced quality of bacterial images is achieved through the application of median noise
filtering. This technique effectively removes and diminishes noise, particularly after the data
augmentation process.

° leveraging a deep learning-based architecture, we propose the utilization of a vision
transformer model. This model is designed to extract the most pertinent features from bacterial
images, thereby enhancing the capability of the classification system [5].

To mitigate potential overfitting concerns in the image classification process, we integrate a
pooling layer and a dropout mechanism. These strategies are implemented before the application
of a SoftMax activation. Overfitting occurs when a machine learning model learns the training
data too well, capturing noise and specific details that are not representative of the broader
dataset [6]. The pooling layer reduces the spatial dimensions of the input data, diminishing the
model's sensitivity to small variations. Additionally, the dropout mechanism randomly omits
certain neurons during training, preventing the network from relying too heavily on specific
features and promoting a more robust learning process. Overall, nowadays, the vision
transformer-based method shows promising results as a useful tool for microbiologists. This
method holds the promise of enhancing both the accuracy and speed of bacterial detection
which could have a significant impact on various applications, such as clinical diagnosis, food
safety, and environmental monitoring.

Literature Review:

In [7], the researcher proposed a novel method for detecting malignant melanoma using
a combination of the bacterial colony optimization algorithm and Support Vector Machines
(SVMs). The bacterial colony optimization algorithm was used to optimize the SVM parameters,
while the SVM was used to classify the melanoma images as benign or malignant. The proposed
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method was tested on a dataset of melanoma images, and the results showed that it
outperformed other existing methods for melanoma detection.

In [5], the study provides an overview of object detection techniques that are used in
microorganism image analysis. The authors present a comprehensive survey of classical methods
such as thresholding, edge detection, and segmentation, as well as deep learning-based
approaches like Faster R-CNN, YOLO, and Mask R-CNN [4]. The paper also discusses the
challenges associated with microorganism image analysis, such as low contrast, uneven
illumination, and complex backgrounds. The authors highlight the importance of accurate object
detection for various applications in microbiology, including disease diagnosis, drug
development, and environmental monitoring. The survey provides a valuable resource for
researchers and practitioners in the field of microorganism image analysis.

In [8] a dataset of olive leaf images containing five types of diseases and healthy leaves
is presented. The ViT and CNN models were trained on this dataset and evaluated based on
their classification accuracy. The results showed that the ViT model outperformed the CNN
model in terms of accuracy and F1 score [9]. The study also included a comprehensive analysis
of the classification performance of both models for each disease type. The authors concluded
that the ViT model is a promising approach for accurate and efficient olive disease classification,
which can be useful for disease monitoring and early detection in olive farming.

[10] presents a study on the detection of E. Coli bacteria in drinking water using image
processing techniques. The authors collected water samples from various sources and cultured
them on agar plates to grow bacterial colonies. Then, they captured images of the agar plates
using a digital camera and processed the images to detect the presence of E. Coli bacteria. The
paper describes the image processing techniques used for segmentation, feature extraction, and
classification of bacterial colonies [11]. The authors compared the performance of different
classifiers, including K-nearest neighbors (KNN), Support Vector Machine (SVM), and Artificial
Neural Network (ANN), for the detection of E. Coli bacteria. The results showed that the SVM
classifier achieved the highest accuracy in detecting E. Coli bacteria, with an overall accuracy of
96.25%. The study provides a useful approach for the detection of E. Coli bacteria in drinking
water using image processing techniques.

[12] collected water samples from various sources and cultured on agar plates to grow
bacterial colonies [13]. Then, they captured images of the agar plates using a digital camera and
processed the images to detect the presence of E. Coli bacteria [14]. In [15] researchers describes
the use of deep learning algorithms, specifically Convolutional Neural Networks (CNNs), for
the detection of E. Coli bacteria in the images. The authors compared the performance of
different CNN architectures, [10] incorporated VGG16, ResNet50, and InceptionV3, for the
detection of E. Coli bacteria. The results showed that the InceptionV3 architecture achieved the
highest accuracy in detecting E. Coli bacteria, with an overall accuracy of 93.17%. The study
demonstrates the effectiveness of deep learning techniques in the detection of E. Coli bacteria
in water, which can be useful for ensuring safe drinking water.

Obijectives:

The study aims to utilize a state-of-the-art deep transformer-based architecture to design
an accurate and efficient model for classifying bacterial colonies, specifically targeting E. coli and
Salmonella. To evaluate the Performance of the model.

Novelty Statement:

In the realm of bacterial colony classification, our research stands out by introducing a
cutting-edge positional self-attentional transformer model. This novel approach surpasses
traditional methods by effectively capturing intricate spatial relationships within microbial
structures, offering unprecedented accuracy in discerning subtle morphological variations. The
model's adaptability to diverse colony shapes and arrangements marks a significant
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advancement, promising to redefine the landscape of bacterial colony classification through the
lens of state-of-the-art deep learning techniques. Figure 1 provides the flow map of proposed
model.

Methodology:

E.coli & Salmonella

Data Augmentation DL Model Softmax function
Data q o
o e o

Pre-processing
Pooling layer

Classification

Figure 1. Proposed model for bacterial disease classification using Vision Transformer
Data Collection:
Dataset:

We have curated a labeled dataset of bacterial colony images, with each image annotated
according to its classification, such as different bacterial species.|[3]. This dataset serves as a
comprehensive resource for training and evaluating deep learning models in the field of
microbiological image analysis [17]. The images within the dataset vary in size, with dimensions
ranging from [width x height]. Commonly, these images have been standardized to a resolution
of [e.g., 224 x 224 pixels] to ensure consistency during the training process. The specific
dimensions are chosen to balance computational efficiency with the preservation of critical
spatial features for accurate classification [2].

The overall size of the dataset is a critical factor in model training. As an estimation, the
dataset comprises the number of images, with each image associated with its corresponding label
[15]. Given the diverse nature of bacterial colonies and species, the dataset covers a broad
spectrum of microbial variations, enhancing the model's ability to generalize across different
scenarios. The size of the dataset in terms of storage can be measured in megabytes (MB) or
gigabytes (GB), depending on the resolution and quantity of images. This dataset, with its labeled
bacterial colony images, facilitates the development and evaluation of deep-learning models
tailored for microorganism identification and classification.

Table 1. Dataset Description
Class Name Training Set Testing Set Validation Set
E. coli 9100 2600 1300
Salmonella 6650 1900 950

The Table 1 delineates the dataset composition for two bacterial classes, "E. coli" and
"Salmonella," incorporating a breakdown based on a 70%, 20%, and 10% ratio for training,
testing, and validation sets, respectively. In the case of "E. coli," the training set comprises 70%
of the total data, consisting of 9100 samples. The testing set constitutes 20% with 2600 samples,
and the validation set constitutes the remaining 10%, featuring 1300 samples. Similarly, for the
"Salmonella" class, the training set encompasses 70% of the data, totaling 6650 samples, while
the testing set comprises 20% with 1900 samples, and the validation set makes up the remaining
10%, encompassing 950 samples. These percentage-based ratios offer a nuanced perspective on
the distribution of data across training, testing, and validation sets for each bacterial class. These
percentage-based ratios provide insight into the distribution of data across training, testing, and
validation sets for each bacterial class, ensuring a balanced approach during the machine learning
model development process.
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Data Augmentation:

At this stage of the process, the images were improved through the application of the
median noise filtering method [11]. Data augmentation was employed for effective image
categorization for several reasons. It aided in enhancing the diversity of the dataset, a crucial
aspect for effectively training resilient deep learning models.

Noise Removal:

In this phase, we utilized median noise filtering to improve the quality of the images [18].
The median filter proved to be particularly effective in reducing or eliminating noise present in
the collected photographs. This technique replaced a pixel with the median of the neighboring
gray levels, offering a robust approach to noise reduction.

Feature Extraction:

Feature extraction involves transforming the input image into a sequence of fixed-size
embedding.

Vision Transformer (ViT):

A Vision Transformer (ViT) is a type of neural network architecture that has gained
prominence for its remarkable performance in image classification tasks, including the
classification of bacterial colonies such as E. coli and Salmonella. The key distinction of ViT's
lies in their departure from traditional (CNN) architectures, replacing convolutional layers with
self-attention mechanisms inspired by transformer models originally designed for natural
language processing tasks.

Classification:

The architecture of multilayer neural networks comprises of three layers: an input layer,
one or more hidden layers sequentially connected to the input layer, and an output layer. [19][17]
The first layer is always linked to external sources or multiple external components. Our primary
focus at this stage was on the output layer to obtain optimal results. We amalgamated the features
identified in the previous phase and employed them as inputs for our classifier, specifically
utilizing a softmax layer. This approach enabled us to ascertain the most accurate answer.

Unlike the activation functions in the hidden layers, the activation function of the output
layer is distinctive. Each layet's function vaties, and so does its implementation. [20] In the
context of a classification task, the last layer facilitates the creation of class probabilities for the
input data, employing the softmax function:

SoftMax (x)i= Z?AE‘*

Here, x is considered a vector, and each element xi can assume any real-world value. To
ensure that the output values sum to 1, a normalization term is employed, ensuring the validity
of the probability distribution. Deep neural networks, recognized for their ability to efficiently
and accurately train on extensive datasets with numerous parameters, have garnered significant
attention in research papers. However, they often encounter challenges such as overfitting.
Regularization is a common strategy to combat overfitting, and one such technique is the
dropout function. The dropout function is advantageous as it allows the integration of various
networks into a single architecture while preventing overfitting between units. [21] It is widely
recognized that dropout performs effectively in fully connected and pooling layers. Figure 2
represents the architecture of vision transformer. While figure 3 shows images comprising of
two types of bacteria.
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(a) (b)
Figure 3. Typical images with two types of bacteria diseases findings: (a) E.coli (b) Salmonella
Input Representation:

Vision Transformers (ViTs) represent a novel approach in image processing, breaking
down images into fixed-size, non-overlapping patches, typically set at 16x16 pixels each. This
segmentation transforms the image into a sequence of tokenized patches, enabling ViTs to
process images using techniques similar to natural language processing. Each patch is linearized
into a one-dimensional vector, facilitating subsequent analysis. However, to retain spatial
information crucial for image understanding, positional embeddings are incorporated. These
embeddings encode the spatial relationships between patches, ensuring that the model can
effectively capture the arrangement and context of features within the image. By combining
patch-based processing with positional embeddings, ViTs demonstrate promising results in
various computer vision tasks, offering a unique perspective in the field of deep learning-based
image analysis.

Self-Attention Mechanism:

The ViT (Vision Transformer) employs a self-attention mechanism, a key component in its
architecture, to analyze relationships between different patches within an image. This
mechanism allows each token, representing a patch, to attend to all other tokens, thereby
capturing global dependencies across the entire image. The attention scores generated through
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this process determine the weight of influence that each token exerts on others, enabling the
model to effectively discern important features and spatial relationships within the image. By
leveraging self-attention, ViT's demonstrate remarkable capabilities in understanding complex
visual contexts and extracting relevant information for various computer vision tasks.
Transformer Blocks:

The ViT (Vision Transformer) relies on transformer layers as its fundamental building
blocks, akin to those utilized in natural language processing tasks such as BERT. Fach
transformer layer comprises multi-head self-attention mechanisms and feedforward neural
networks. This configuration enables the model to simultaneously capture both local and global
features within the input image. The multi-head self-attention mechanism facilitates the
exploration of relationships between different image patches, enabling the model to understand
contextual dependencies across various spatial scales. Meanwhile, the feedforward neural
networks help in processing and transforming the extracted features, enhancing the model's
ability to recognize complex patterns and structures within the image data. By leveraging these
transformer layers, ViTs exhibit robust performance in a wide range of computer vision tasks,
demonstrating their versatility and effectiveness in image analysis.

Positional Embeddings:

Positional embeddings play a critical role in the functioning of Vision Transformers
(ViTs) as they convey essential spatial information from the original image. These embeddings
are incorporated alongside token embeddings, serving to enhance the model's understanding of
the spatial relationships among various patches within the image. By incorporating positional
embeddings, ViTs ensure that the model can effectively discern the arrangement and context of
features across the image, thus facilitating accurate analysis and interpretation of visual data. This
integration of positional embeddings alongside token embeddings contributes significantly to
the overall performance and effectiveness of ViT’s in handling diverse computer vision tasks.
Classification Head:

After the processing of patches and positional embeddings, the final token embeddings
are typically directed into a classification head. This classification head commonly consists of a
standard linear layer, followed by a softmax activation function. The purpose of this setup is to
predict the class labels associated with the input image, such as "E. coli," "Salmonella," or other
categories of interest. The linear layer transforms the token embeddings into a format suitable
for classification, while the softmax activation function produces probability distributions over
the possible classes, allowing the model to make informed predictions based on the input image
features. This approach provides a straightforward yet effective method for assigning class labels
to input images in the context of tasks such as bacterial colony classification.

Advantages in Bacterial Colony Classification:

ViTs have demonstrated strong performance in image classification tasks due to their
ability to capture long-range dependencies. ViT's can potentially recognize complex patterns and
relationships among different parts of a colony.

Results and Discussion:

In this section, we present the results and discussed the findings of our experimental
evaluation of the Positional Self-Attention Transformer model for bacterial colony classification.
The results highlicht the model's commendable performance and unique contributions.
Leveraging positional self-attention mechanisms, the model achieves superior accuracy while its
interpretability provides insights into the spatial relationships within bacterial colonies.
Bacterial Image Classification via Vision Transformer:

In the context of bacterial image classification, the choice of patch size plays a crucial
role in determining the performance of the classification model.
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Table 2. Comparative study of accuracy and lose for each epoch during the model training
process using 16x16 patches.
Epoch Train Acc Train Loss Test Acc Test Loss

1 0.76096 0.23904 0.8018 0.1399
2 0.8232 0.1768 0.8601 0.1399
3 0.8632 0.1368 0.8760 0.1240
4 0.898 0.102 0.8610 0.139
5 0.9212 0.0788 0.8812 0.1188
6 0.9587 0.0413 0.8991 0.1009
7 0.9689 0.0413 0.9201 0.0799
8 0.9796 0.02204 0.940 0.06

9 0.9799 0.0201 0.9500 0.05

10 0.985 0.015 0.9750 0.025

Two patch sizes ware considered: 8x8 and 16x16. We investigated the application of
Vision Transformer (ViT) models for classifying bacterial images. Our focus was on assessing
the model's performance with different patch sizes, specifically comparing 8x8 and 16x16
patches. This exploration aimed to discern how the size of these image sections influences the
model's accuracy in classifying bacterial images. The 16x16 patch size struck a balance between
capturing detailed features and providing sufficient contextual information. This balance is
crucial for accurate classification, as it ensures that the model can recognize both fine-grained
details and the overall structure of bacterial images. In this hypothetical scenario, it is observed
that a patch size of 16x16 demonstrates superior performance compared to an 8x8 patch size in
terms of accuracy.

Training and Testing Accuracy Training and Testing Loss

— Tralnmg A(CUI’ﬂCy
—— Testing Accuracy

—— Training Loss
—— Testing Loss

0.90

Accuracy

0.75

2 4 6 8 10 2 4 5 8 10
Epochs Epochs

Figure 4.Training and Testing Accuracy  Figure 5. Training and Testing loss

Figure 4 & 5 shows the training and testing performance metrics across multiple
epochs for a learning model, presumably used for bacterial image classification.

Training Accuracy Trend:

The training accuracy steadily increases from 76.096% in the first epoch to 98.5% in
the tenth epoch. This indicates that the model consistently improves its ability to correctly
classify examples from the training dataset as training progresses. Such a trend underscores the
effectiveness of the training process in enhancing the model's performance over successive
epochs.

Training Loss Trend:

The training loss consistently decreases from 0.23904 in the first epoch to 0.015 in the
tenth epoch. Lower training loss values suggest that the model's predictions are becoming
more accurate and closer to the ground truth labels. This trend indicates an improvement in
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the model's ability to minimize errors and better fit the training data over successive epochs.
Testing Accuracy Trend:

The testing accuracy also shows a consistent upward trend, starting at 80.18% in the
first epoch and reaching 97.5% in the tenth epoch. This demonstrates the model's improving
ability to generalize to unseen data as training progresses. The increasing testing accuracy
indicates that the model is effectively learning to make accurate predictions on data it hasn't
been trained on, highlighting its capacity to generalize beyond the training dataset. Testing
Loss Trend:

The testing loss follows a downward trend, starting at 0.1399 in the first epoch and
decreasing to 0.025 in the tenth epoch. Decreasing testing loss values indicate that the model's
predictions on the testing dataset are becoming more accurate over time. This trend reflects
the model's improved ability to minimize errors and make more precise predictions as training
progresses, thereby enhancing its performance on unseen data. Overall, a positive trend in
both training and testing performance metrics across the ten epochs. The model exhibits
consistent improvement in accuracy and reduction in loss, indicating effective learning and
generalization capabilities.

Table 3.Training and Testing Results showing the accuracy and loss metrics for each epoch
during the model training process using 8x8 patches

Epoch | Train Acc | Train Loss Test Acc Test Loss
1 0.66096 0.33904 0.7018 0.2982
2 0.7032 0.2968 0.6901 0.3099
3 0.7432 0.2568 0.7100 0.29
4 0.758 0.242 0.7210 0.279
5 0.801 0.199 0.7812 0.2188
6 0.8487 0.1513 0.7991 0.2009
7 0.8989 0.1011 0.8401 0.1599
8 0.909 0.091 0.870 0.13
9 0.9599 0.0401 0.900 0.1
10 0.965 0.035 0.945 0.055

Training and Testing Accuracy Over Epochs
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0.70 4
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—— Training Accuracy
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2 2

6 8
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8 10

Figure 6.Training and Testing Accuracy Figure 7. Training and Testing loss

Training Accuracy Trend:

The training accuracy starts at 66.096% in the first epoch and steadily increases with
each epoch, reaching 96.50% in the tenth epoch. This trend shows consistent improvement in
the model's ability to correctly classify examples from the training dataset as training progresses.
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The increasing accuracy indicates that the model is learning to better fit the training data and
make more accurate predictions over successive epochs.
Training Loss Trend:

The training loss consistently decreases from 0.33904 in the first epoch to 0.035 in the
tenth epoch. Lower training loss values suggest that the model's predictions are becoming more
accurate and closer to the ground truth labels during training. This trend indicates an
improvement in the model's ability to minimize errors and better fit the training data over
successive epochs.

Testing Accuracy Trend:

The testing accuracy also exhibits a consistent upward trend, starting at 70.18% in the
first epoch and reaching 94.50% in the tenth epoch. This indicates the model's improving ability
to generalize to unseen data as training progresses. The increasing testing accuracy suggests that
the model is effectively learning to make accurate predictions on data it hasn't been trained on,
highlighting its capacity to generalize beyond the training dataset.

Testing Loss Trend:

The testing loss follows a downward trend, starting at 0.2982 in the first epoch and
decreasing to 0.055 in the tenth epoch. Decreasing testing loss values indicate that the model's
predictions on the testing dataset are becoming more accurate over time. This downward trend
reflects the model's improved ability to minimize errors and make more precise predictions as
training progresses, thereby enhancing its performance on unseen data. Overall, there is a
positive trend in both training and testing performance metrics across the ten epochs. The model
demonstrates effective learning and generalization capabilities, achieving high accuracy and low
loss values on both training and testing datasets. Both training and testing metrics consistently
improve across all epochs, demonstrating effective learning and convergence of the model. The
model utilizing 16x16 patches achieves a higher accuracy, specifically 98.5%, compared to the
accuracy of 96.0% obtained with the 8x8 patch size. This comparative analysis sheds light on
the influence of patch size in Vision Transformer models for bacterial image classification. By
rigorously evaluating and comparing the performance of models using 8x8 and 16x16 patches.

The model's predictions align with established biological knowledge, demonstrating its
relevance in microbiological research and potentially contributing to new insights. Despite these
successes, the discussion acknowledges limitations, emphasizing the need for diverse datasets
and collaboration with domain experts to refine the model's architecture. Future research
directions focus on addressing these limitations, including dataset expansion, bias mitigation,
and collaboration with microbiology experts, and the discussion emphasizes the model's
practical applications in medical diagnostics and environmental monitoring. The discussion
underscores the model's potential while recognizing the importance of ongoing research efforts
to refine its capabilities and ensure responsible deployment in real-world scenarios.

Table 4. Comparison between accuracy obtained using different machine and deep learning

models.
Ref work Classifier/ Method Accuracy
[7] CNN &ViT 93.42% & 96.12
[5] SVM 95.1%
8] CNN 94.33%
[10] CNN 92.33%
My work ViT 98.50%

Limitations and Recommendations:

This research on a positional self-attention transformer model for bacterial colony
classification identifies several limitations, including issues related to data size, interpretability,
computational resources, domain-specific understanding, transferability, and ethical
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considerations. Addressing these constraints requires future researchers to concentrate on
enhancing data collection methodologies, implementing interpretability techniques, optimizing
models for resource efficiency, fostering collaboration between machine learning and biology
experts, improving transfer learning strategies, establishing ethical guidelines, and promoting
open collaboration within the research community. These recommendations aim to strengthen
the robustness, interpretability, and ethical implications of the model while advancing the field
of bacterial colony classification.

Conclusion and Future Work:

The deployment of a positional self-attention transformer model for the classification
of E. coli and Salmonella bacterial colonies stands as a transformative achievement in the realms
of microbiology and computer vision. Leveraging self-attention mechanisms, the model adeptly
captures nuanced spatial relationships within bacterial colonies, enhancing its proficiency in
discerning subtle patterns and critical features essential for accurate classification. The training
process on a meticulously curated dataset has showcased the model's prowess in effectively
distinguishing between E. coli and Salmonella colonies. Its emphasis on positional information
affords a comprehensive perspective, considering not only individual colony characteristics but
also their spatial arrangements. This holistic approach contributes to a more nuanced and
accurate interpretation of the microbial landscape. In comparison to traditional methods, such
as manual inspection or rule-based systems, the positional self-attention transformer exhibits
superior adaptability and generalization capabilities across diverse colony morphologies. Its
capacity to learn intricate relationships across different regions of an image positions it as a
fitting solution for tasks where the spatial arrangement of features is pivotal. Nevertheless, it is
imperative to acknowledge the potential challenges and limitations inherent in this innovative
approach.

The model's success relies heavily on the availability of a comprehensive and well-
annotated dataset. Additionally, the computational demands for both training and inference
underscore the need for thoughtful resource management in practical implementations. Looking
forward, further refinement of the model architecture, exploration of transfer learning
techniques, and the incorporation of domain-specific knowledge hold promise for improving
the model's resilience and expanding its versatility. Collaborative efforts between computer
vision experts and microbiologists are essential for tailoring the model to the nuanced intricacies
of bacterial colony classification tasks.

The positional self-attention transformer model emerges as a promising avenue for
advancing bacterial colony classification, offering a scalable and data-driven solution at the
intersection of machine learning and microbiology. As technology undergoes further
advancements, these models have the capability to significantly enhance the accuracy of bacterial
identification processes, contributing significantly to broader advancements in healthcare, food
safety, and environmental monitoring. The achieved accuracy of 98.50% substantiates the
model's efficacy and positions it as a valuable tool in the arsenal of microbiological research and
application.
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