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for producing high-resolution images of the retina, crucial in diagnosing and
monitoring retinal conditions such as diabetic macular edema (DME), choroidal
neovascularization (CNV), and DRUSEN. Despite its importance, there is a pressing need to
enhance eatly detection and treatment of these common eye diseases. While deep learning
methods have shown higher accuracy in classifying OCT images, the potential for machine
learning approaches, particularly in terms of data size and computational efficiency, remains
underexplored. This study presents different experiments for detect the retinal disease on
publically available dataset of retinal optical coherence tomography (OCT) images using
machine learning classifiers with the help of image feature extractions. It classifies the given
retinal OCT images as diabetic macular edema (DME), choroidal neovascularization (CNV),
DRUSEN and NORMAL. Firstly, it extracts image features using appropriate methods and then
it is trained, after training it pass through machine learning classifiers to classify the given input
images and then it is tested to get the better accuracy performance. The above steps are iterated
by varying over the pre-processing techniques in which we first resize the image into 100 x 100
after resizing, we remove the noise by using Gaussian Blur and then normalize the image. We
systematically benchmark its performance against established built-in methods, such as
Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and Feature from
Opponent Space for Filtering (FOSF). This comparative analysis serves to assess the efficacy of
to find out the best approach in relation to these widely recognized methods. The proposed
experiments based on these approaches reveals that the use of HOG on this dataset outperform
with SVM classifier with maximum accuracy of 78.8%.
Keywords: Random Forest Classifier (RFC), Support Vector Machine (SVM), K-Nearest
Neighbor (KINN), Machine Learning, Optical Coherence Tomography (OCT), Diabetic
Macular Edema (DME), Choroidal Neovascularization (CNV), DRUSEN, NORMAL.,
Diabetic Retinopathy (DR), Age Related Macular Degeneration (AMD), Histogram of Oriented
Gradients (HOG), Local Binary Patterns (LBP), Features from Opponent Space for Filtering
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Introduction:

Retinal disorders have recently emerged as a significant public health concern. These
disorders typically develop slowly without obvious symptoms and affect millions of individuals
worldwide each year. Retinal illnesses can manifest in various ways, with most causing visual
impairments that can lead to blindness. Some of these include DR, CNV, drusen, glaucoma,
macular holes, AMD, and optic nerve abnormalities. Therefore, early diagnosis and treatment
are important for preventing blindness. OCT is a noninvasive imaging technique that uses light
waves to create coherent images of the retina. By analyzing and quantifying the differences in
diseased retinal layers, OCT serves as an effective diagnostic tool, enabling the detection and
monitoring of retinal changes and optic nerve abnormalities over time.

OCT has found clinical applications in various medical fields including ophthalmology
[1]]2], cardiology [3][4], endoscopy [5][6], dermatology [7][8], and oncology [7][8]. In the realm
of developmental biology, OCT has proven valuable for characterizing the morphological and
functional development of organs such as the eyes [9], brain [10], limbs [11], reproductive organs
[12], and the heart [3][10][13][14]. This versatile imaging technology plays a crucial role in
advancing our understanding and diagnostic capabilities across a spectrum of medical
disciplines, contributing to both clinical practice and research. As evidenced in the literature,
OCT has exhibited promising outcomes in the diagnosis of retinal diseases, prompting our focus
in this brief review. OCT offers a cross-sectional resolution of the soft tissues of the eye,
enabling a noninvasive examination of the retina. More importantly, OCT is an important tool
to visualize and evaluate the retina. It helps identify and evaluate many eye diseases, such as
DME, glaucoma, and CNV [15][16]. Morphological features, such as the shape and distribution
of drusen, macular holes, and blood vessels, can be easily detected on OCT images as indicators
of disease. Therefore, OCT imaging is necessary for large-scale studies of changes in the retinal
structures. Several techniques rely on the consistency of the OCT layers used to ensure accurate
results [17].

Over the years, OCT technology has witnessed substantial advancements driven by
innovations in light sources, detection systems, and signal-processing techniques. Swept-source
OCT (SS-OCT) [18][19] and spectral-domain OCT (SD-OCT) [20] have significantly enhanced
imaging speed and depth penetration, enabling the three-dimensional reconstruction of tissue
architecture. Moreover, the integration of adaptive optics with OCT has opened new frontiers
in correcting aberrations, providing unprecedented clarity in imaging the cellular structures of
the retina.

This study aims to delve into recent developments and applications of OCT, with a
specific emphasis on its role in advancing our understanding of retinal diseases and guiding
clinical interventions. Machine learning is beneficial in analyzing OCT images, as it can efficiently
detect and classify subtle pathological features, often surpassing manual analysis in both speed
and accuracy. Additionally, advanced algorithms can learn from vast datasets of OCT images,
enabling the eatly detection of diseases like AMD CNV, DRUSEN and DR, which are critical
for timely treatment. We perform the experiments on different methods to find out the best
methods that classify the OCT retinal diseases.

Literature Review:

Medical image processing is a crucial area of research, where researchers face several
challenges such as artifact acquisition, segmentation, and feature extraction. In recent years,
machine learning techniques [21] have been widely used to analyze OCT images, as
demonstrated in several studies. Schmidt Erfurth et al. [22] conducted a study comparing
unsupervised and supervised learning methods for binary classification in patients with AMD
and DR, using a deep learning approach on a database of about 20,000 images. The research
achieved up to 97% accuracy in distinguishing health and AMD. The team utilized a Deep
Denoising Autoencoder (DDAE), trained on healthy samples, to identify features differentiating
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normal tissue from anomalies in SD-OCT scans. Additionally, they employed SVM for modeling
normal probability distributions and a clustering technique to spot inconsistencies in the data.
These identified categories were then assessed by retinal experts, with some matching known
retinal structures while others were novel anomalies not previously associated with known
structures. The study found that these novel categories were also linked to the disease,
showcasing the potential of these methods in disease detection and classification.

Lee et al. [23] developed a 21-layer CNN to rank AMD disease and achieved a 93%
accuracy in binary classification (AMD vs. normal). Kermany et al. [24] reported a CNN solution
based on the Inception V3 model; using transfer learning, they achieved a 96.6% accuracy on
data containing approximately 84,000 samples classified into drusen, CNV, and DME categories.
Huang et al. [25] proposed a classification method based on the CNN method to classify normal
retina, CNV, DME, or drusen, achieving an accuracy of 89.9%. Chowdhary et al. [26] proposed
a fuzzy c-means segmentation and classification giving a final result at the 89.9%. Tsuji et al. [27]
achieved 99.6% and 99.8% accuracy using the Capsule Network and InceptionV3, respectively.
Finally, Prabhakaran proposed the OctNET model, which achieved 99.69% accuracy on the
Kermany database, and is a relatively lightweight architecture capable of quick computations. G
Latha and P Aruna Priya [28] focused on evaluating the effectiveness of various machine learning
classifiers in detecting glaucoma in retinal images. Their proposed method combined Gabor
transforms and efficient computational classification. A SVM, neural network, and adaptive
neuro-fuzzy inference system (ANFIS) classifiers were used to evaluate the performance of the
glaucoma retinal image classification system.

Zhou [29] introduced an automated system for detecting DR using a deep learning
approach, involving two key stages: image preprocessing and deep learning classification. The
preprocessing stage employed morphological operations, adaptive histogram equalization, and
vessel segmentation to enhance image quality and reduce noise. For classification, the study
utilized a pre-trained EfficientNet-B4 model, fine-tuned on a DR fundus image dataset, to
categorize images into five levels of DR severity. Data augmentation techniques like random
rotation, flipping, and cropping were applied to bolster the model's generalization capabilities.
The system was tested on two public datasets, where it achieved high accuracy, surpassing
existing state-of-the-art methods in DR detection.

Jian Li [30] developed a sophisticated deep learning system for detecting and classifying
DR, consisting of four stages: initial image processing, image enhancement, subtraction, and
classification. The process began with enhancing the quality of retinal images using
morphological operations and contrast-limited adaptive histogram equalization (CLAHE),
followed by binary thresholding for segmentation. The image enhancement stage utilized a dual
attention mechanism to refine image quality by focusing on both channel and spatial
relationships. The EfficientNet-B4 model was employed for feature extraction, which was fine-
tuned on a DR fundus imaging dataset. The classification was conducted using a multiclass SVM
classifier, categorizing images into five DR severity levels. The system's efficacy was validated
on two public datasets, where it achieved high accuracy, outperforming existing state-of-the-art
methods, and demonstrating its potential as a valuable tool in diagnosing and classifying diabetic
retinopathy.

H. Fu [31] developed a deep-learning method for automatically diagnosing DR using
fundus images, utilizing a dataset of 128,175 retinal images, with 88,744 for training and 39,431
for testing. The method is based on a 12-layer convolutional neural network and incorporates
various data augmentation techniques like rotation, translation, and scaling to enhance
performance and prevent overtraining. The method's effectiveness was assessed using metrics
like accuracy, sensitivity, specificity, recall, and F1 score, achieving an impressive 92.9%
accuracy, 93.5% sensitivity, and 92.5% specificity on the test data. It also demonstrated high
precision, recall, and F1 scores, suggesting its capability to accurately identify DR with minimal
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false positives. Comparisons with five groups of experts revealed the system's superior accuracy,
showcasing the potential of deep learning in diagnosing DR and its applicability as a useful tool
for improving DR diagnosis, eatly detection, and treatment. S. W. Ting et al. [32] provides a
comprehensive review of the advancements and applications of artificial intelligence and deep
learning specifically within the field of ophthalmology. It likely covers the utilization of deep
learning algorithms for tasks such as image analysis, disease detection, classification, and
treatment planning in various ocular diseases. Additionally, it may discuss the potential impact
of Al on improving diagnostic accuracy, patient outcomes, and healthcare delivery in
ophthalmology. R. Gargeya and T. Leng [33] presents a study on the development and evaluation
of a deep learning-based system for the automated identification of diabetic retinopathy. It likely
includes details about the dataset used, the architecture of the deep learning model, training
procedures, and performance evaluation metrics. Moreover, it may discuss the clinical
implications of employing such automated systems for DR screening, including potential
benefits in early detection and management of the disease. A. Lang et al. [17] focuses on the
segmentation of retinal OCT images using a RFC. It likely describes the methodology of feature
extraction, training of the classifier, and the segmentation process. Additionally, it may discuss
the importance of accurate retinal segmentation in OCT imaging for clinical applications such
as disease diagnosis, monitoring disease progression, and assessing treatment efficacy. Hwang et
al. [34] also proposed a method based on the Inception V3 model with pre-processed images
resulting in a 96.9%. Tasnim et al. [35] conducted research on utilizing deep learning techniques
for analyzing retinal OCT images. Among the models they explored, MobileNetV2 achieved an
accuracy of 99.17% when tested on the Kermany dataset [24], which consists of 84,484 samples
categorized into four groups.

This study aims to bridge the existing research gap in the application of machine learning
classification methods to OCT data. Our experiment focuses on finding out which methods will
perform better on machine learning classifiers in terms of accuracy and time.

OCT Dataset:

In this study, we utilized the OCT dataset, as made available by Kermany et al. [24] on
Kaggle for previous research. The dataset comprises a substantial collection of 84,484 images.
However, owing to hardware limitations, we randomly selected a subset of 4,000 images from
the training dataset, ensuring representation from each class. This subset includes 1,000 images
per class, providing a manageable yet diverse sample for our investigation. The careful curation
of this subset maintains a balance between dataset size and computational constraints, ensuring
the feasibility of our experimental analysis.

CNV DRUSEN DME NORMAL
Figure 1: Optical coherence tomography images in the OCT dataset [35].
Material and Methods:

This study presents a solution for disease classification based on OCT images. We
emphasize that these solutions must be both effective and accurate.
Data Pre-Processing:

The machine and deep learning play an active role in different tasks. Preprocessing is an
essential part of cleaning the dataset for effective results. For preprocessing, the OCT Dataset
is imported from the directory. Each image is read from the corresponding folder of the dataset
and then resized to a square shape with dimensions of 100 X 100 pixels. After resizing, Gaussian
Blur is applied to remove noise from the images. Upon successful resizing and noise removal,
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each image, along with its corresponding class label (CNV', 'DME', 'DRUSEN', or ' NORMAL),
is appended to the training data list.

Pre Processing

Resize Images
(100 x 100)

Start ——» OCT Dataset ——» LabelingData ——» Noise Remove
(Gaussian Blur)

Normalize
Image

Splitting Data

End Machine Learning

"' Train Data |
Classifiers

(80%)

( Test Data )
(20%)

Figure 2: OCT retinal disease detection approach
Data Normalization:

The pixel values are normalized by dividing each pixel by 255. This is a common
preprocessing step for image data, as it scales the pixel values to a range of 0 to 1, which can
help the model learn more efficiently. In this study, the data were split into training and testing
sets.

Model Training:

The training-test split function randomly splits the data into training and testing sets.
The default split was 80% for training and 20% for testing. Arrays are then passed as input to
the function, which returns the training data and test data. The training dataset is used to train
the machine learning model, while the testing dataset is used to evaluate the model's
performance on unseen data.

Random Forest Classifier:

The RFC is a supervised machine-learning algorithm used for classification. It is an
integrated learning process that creates multiple decision trees and combines their results to
make predictions. The RFC has two stages: (i) random forest generation, and (ii) prediction
based on the random forest classifier created in the first stage. The main idea behind the Random
Forest approach is to create multiple decision trees, each training on a different set of training
data and using different features. To build each decision tree, the algorithm randomly selects a
set of training data and a set of features. It then uses these selected training data and features to
create a decision tree. The algorithm considers the results of each decision tree in the forest
when making predictions. For classification tasks, each tree in the forest predicts a list of input
classes, and the final prediction is based on the majority vote across all the trees' predictions.
K-Nearest Neighbot:
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KNN is a versatile and intuitive machine-learning algorithm used for classification and
regression tasks. In the training phase, KNN stores the entire dataset in memory. When making
predictions for a new instance, the algorithm calculates the distances between that instance and
all the instances in the training set using a chosen distance metric, such as Euclidean or
Manhattan distance. The next step involves selecting the top 'k' nearest neighbors based on these
distances. For classification tasks, 'k' neighbors are chosen, and the class label for the new
instance is determined by a majority voting mechanism. In other words, the class that is most
prevalent among the 'k' neighbors is assigned to the new instance. The choice of 'k' is a crucial
hyperparameter, influencing the model's sensitivity to noise and its ability to capture local
patterns. Despite its simplicity, KNN has limitations, including the computational cost
associated with calculating distances for each prediction and its sensitivity to irrelevant features.
Moreover, in high-dimensional spaces, KNN may struggle without appropriate feature scaling.
In a visual example with two classes, the algorithm considers the nearest neighbors of a new
data point to classify it. The value of 'k’ dictates the number of neighbors to consider, affecting
the decision boundary and, consequently, the model's performance. While KNN is
straightforward and easy to implement, practitioners need to be mindful of its strengths and
weaknesses when applying it to different datasets and problem domains.

ocT
DATASET

N1 Faatures N2 Features N1 Features H4 Features
- . 0
- L] [ ]
L] L L] .
L] . L]

DRUSEN CHY HORMAL
Majorty Wobng
CHY Classity

Figure 3: Random Forest Classifier Tree Diagram
Support Vector Machine:

SVM is a robust and versatile supervised learning algorithm widely utilized for
classification tasks. At its core, SVM aims to identify an optimal hyperplane in the feature space
that effectively separates different classes within the data. The fundamental principle is to
maximize the margin, defined as the distance between the hyperplane and the nearest data points
trom each class, known as support vectors. This margin maximization not only ensures a clearer
distinction between classes but also enhances the model's generalization to new, unseen data,
making SVM particularly resilient to noise.

Support vectors, being the critical data points influencing the decision boundary, play a
pivotal role in SVM. The algorithm strategically selects these support vectors, and the decision
boundary is shaped based on their positions. Additionally, SVM can handle non-linear
relationships within the data by employing kernel functions. These functions transform the input
features into a higher-dimensional space, allowing SVM to find a hyperplane that corresponds
to a more complex decision boundary in the original feature space. This flexibility makes SVM
effective in scenarios where the relationship between features and classes is not linear.

Furthermore, SVM introduces a cost parameter (C) that regulates the trade-off between
achieving a smooth decision boundary and minimizing misclassifications. A higher C value leads
to a smaller margin but fewer misclassifications, while a lower C value prioritizes a larger margin
even at the potential cost of a slightly higher misclassification rate. SVM's effectiveness extends
to high-dimensional spaces, making it well-suited for applications in various domains, including
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image classification, text analysis, and biological data analysis. While SVM is a powerful
algorithm, practitioners should carefully tune parameters like C and choose appropriate kernel
functions based on the characteristics of the data at hand.

Results and Discussion:

Our experiments revealed promising results across different feature extraction methods
and machine learning classifiers. Notably, the use of a HOG in conjunction with a SVM classifier
outperformed other combinations, achieving a maximum accuracy of 78.8%. This indicates the
effectiveness of HOG in capturing discriminative features from retinal OCT images, facilitating
accurate disease classification.

Comparison of different Models and Classifiers:

The study offers a detailed comparison across various models for retinal disease
distribution, emphasizing both time efficiency and accuracy tailored to the specific requirements
of each method. We have employed three distinct feature extraction techniques in this research:
HOG, LBP, and FOSF. Additionally, the study incorporates three widely used classification
approaches: RFC, SVM, and KNN.

Histogram of Oriented Gradients (HOG):

The HOG is a feature descriptor extensively used in computer vision and image
processing for object detection tasks. It operates by segmenting an image into smaller,
overlapping sections, calculating the gradients in each section, and then categorizing these
gradient orientations into histograms. This process generates feature vectors that effectively
encapsulate the local intensity gradients, offering a robust representation of the shapes and
structures of objects. In our study, we have employed the HOG feature descriptor for the
classification of OCT images, leveraging its renowned capabilities in computer vision and image
processing. We applied the HOG algorithm to our dataset, which involved breaking down
images into small, overlapping sections, computing the local intensity gradients, and then
generating histograms that characterize the gradient orientations.

To assess the effectiveness of HOG features in object recognition, we utilized three
distinct classifiers: RFC, SVM, and KNN. Our experimental approach included a meticulous
division of the dataset into training and test sets, with each classifier configured appropriately.
The results were comprehensively analyzed using standard evaluation metrics such as accuracy,
precision, recall, and F1-score. This analysis aimed to elucidate the performance of each classifier
in accurately distinguishing between different object classes, thereby highlighting the potential
of HOG features in object detection and classification.

Table 1: Classification Report of RFC
Labels Precision Recall F1-Score  Support

CNV 0.81 0.82 0.82 248
DME 0.71 0.75 0.73 216
DRUSEN 0.76 0.71 0.73 278
NORMAL 0.72 0.72 0.72 258

Table 2: Classification Report of KNN
Labels Precision Recall F1-Score Support

CNV 0.80 0.73 0.76 248
DME 0.78 0.69 0.73 216
DRUSEN 0.54 0.64 0.59 278
NORMAL 0.65 0.64 0.64 258

Table 3: Classification Report of SVM
Labels Precision Recall F1-Score Support

CNV 0.89 0.85 0.87 248
DME 0.75 0.78 0.76 216
DRUSEN 0.73 0.74 0.74 278
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NORMAL 0.76 0.74 0.75 258
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Figure 4: Confusion Matrix of RFC, KNN, and SVM.

Local Binary Pattern (LBP):

The LBP is a texture descriptor widely utilized for texture analysis and classification in
image processing. It functions by comparing a central pixel's intensity with that of its
surrounding pixels, encoding these relational intensities into binary patterns. These patterns are
subsequently converted into histograms, effectively encapsulating the texture features of the
image. LBP is particularly adept at identifying textural patterns such as edges, corners, and
diverse texture variations. In our study, we applied the LBP method to our dataset and engaged
three different classifiers for evaluation: RFC, SVM, and KNN. The goal was to determine the
effectiveness of LBP, in combination with these classifiers, in differentiating various textures
within the dataset, thereby offering valuable insights into its applicability for texture-centric
image classification tasks.

To gauge the efficacy of the LBP when used alongside the RFC, SVM, and KNN
classifiers, our evaluation focused on key metrics such as accuracy, recall, precision, and the F1

Feb 2024 | Vol 6 | Issuel Page | 90




('

OPEN (2) ACCESS
O

International Journal of Innovations in Science & Technology

score. These metrics collectively serve as critical indicators of the classifiers' proficiency in
accurately detecting and classifying different textures present in the images. Accuracy indicates
the overall correctness of the classifications made, recall measures the ability of the classifiers to
correctly identify relevant examples of each texture class, precision assesses the exactness of the
classifiers in correctly labeling instances of a specific class, and the F1 score provides a
harmonized evaluation, considering both precision and recall. These performance indicators
present a holistic view of the effectiveness of LBP, in synergy with RFC, SVM, and KNN, in
precisely classifying textures within our dataset. This analysis thereby contributes significant
insights to the broader domain of texture-based image analysis.

Table 4: Classification Report of RFC

Labels Precision Recall F1-Score Support

CNV 0.65 0.58 0.01 255

DME 0.55 0.58 0.57 253
DRUSEN 0.40 0.52 0.45 221
NORMAL 0.42 0.34 0.38 271

Table 5: Classification Report of KNN

Labels Precision Recall F1-Score Support
CNV 0.44 0.24 0.31 255
DME 0.28 0.93 0.43 253

DRUSEN 0.57 0.02 0.04 221
NORMAL 1.00 0.00 0.01 271

Table 6: Classification Report of SVM

Labels Precision Recall F1-Score Support
CNV 0.72 0.56 0.63 255
DME 0.70 0.58 0.64 253
DRUSEN 0.46 0.49 0.47 221
NORMAL 0.42 0.55 0.48 271
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Figure 5: Confusion Matrix of RFC, KNN;, and SVM.
Fourier Transform of Spectral Features (FOSF):

The FOSF is a method that employs the Fourier transform to derive spectral features
from signals or images. In image processing, FOSF translates the spatial details of an image into
the frequency domain, revealing its frequency components. This conversion is pivotal in various
tasks, including image compression, filtering, and feature extraction. FOSF is especially useful
in fields where analyzing an image's frequency content is essential, such as in medical or satellite
image analysis. To examine its effectiveness, we applied FOSF to our dataset and engaged three
classifiers for assessment: RFC, SVM and KNN. This technique is particularly advantageous in
situations where discerning an image's frequency details is crucial, for instance in medical
imaging or satellite imagery analysis.

The next phase of our study focused on evaluating how FOSF, combined with these
classifiers, performs in image processing tasks like classification and object detection. We
assessed the performance using key metrics such as accuracy, recall, precision, and F1 score.
This comprehensive analysis was aimed at determining the proficiency of FOSF, in conjunction
with Random Forest, SVM, and KNN, in accurately differentiating various patterns and
structures within our dataset. The results provided a nuanced understanding of FOSF's
capabilities when integrated with different classification methods, offering valuable insights into
its potential applications in the field of image analysis.

Table 7: Classification Report of RFC
Labels Precision Recall F1-Score Support

CNV 0.55 0.60 0.57 247
DME 0.53 0.49 0.51 264
DRUSEN 0.42 0.42 0.42 245
NORMAL 0.46 0.45 0.45 244

Table 8: Classification Report of KNN
Labels Precision Recall F1-Score Support

CNV 0.38 0.50 0.43 247
DME 0.39 0.41 0.40 264
DRUSEN 0.30 0.27 0.28 245
NORMAL 0.46 0.32 0.38 244

Table 9: Classification Report of SVM
Labels Precision Recall F1-Score Support
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CNV 0.38 0.49 0.43 247
DME 0.42 0.30 0.35 264
DRUSEN 0.26 0.18 0.21 245
NORMAL 0.39 0.52 0.45 244
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Figure 6: Confusion Matrix of RFC, KNN;, and SVM.
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Figure 7: Proposed methodology of retinal disease detection.
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The results of this study provide fascinating insights into the relative effectiveness of the
explored methods. Universally, the SVM demonstrated superior performance compared to the
RFC and KNN, excelling not only in accuracy but also in computational efficiency.

Table 10: ACCURACY of proposed methods on OCT Dataset
Methods No. of Attributes Accuracy (RFC) Accuracy (KNN) Accuracy (SVM)

HOG 10,000 75% 67% 78.8%
FOSF 10,000 49% 38% 37%
LBP 10,000 50% 30% 55%
Lo Classifier Accuracy Comparison
' —&— HOG
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—a— LBP
0.8 \///,‘
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£
0.4
0.2 {
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Figure 8: Accuracy comparison with different models and classifiers
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Figure 9: Time comparison with different models

This paper goes beyond merely comparing different feature extraction techniques and
classifiers for Retinal Disease detection; it also emphasizes the importance of judiciously
choosing the most effective combination of filters and classifiers to achieve enhanced accuracy.
The results underscore the notable benefits of integrating HOG with the SVM Classifier. This
provides critical insights for future studies and practical implementations in medical image
analysis, highlighting a promising direction for advancements in this field.
Conclusion:
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In conclusion, this paper has proposed a detailed comparison of various combinations
of filters and classifiers used in Retinal disease classification is presented. The HOG method
along with the SVM classifier enhances the diagnosis and management of retinal diseases by
offering swift and objective OCT image processing. However, there is a need for further
research to understand the application of this system on larger datasets and its clinical utility.
Future investigations could focus on several critical areas. Firstly, expanding the dataset in size
and diversity is essential to strengthen the model's capability to identify complex patterns in
retinal images.

Additionally, OCT images allow for an in-depth analysis of structural features present in
the tissues imaged. Investigating detailed aspects of anatomical structures, like the thickness of
layers, vessel density, and unique markers within the retinal tissues, could unveil sophisticated
structure-based features pivotal for increasing diagnostic accuracy. Future research endeavors
should aim to elevate the precision of OCT image analysis systems, thereby significantly
contributing to their practical application in clinical settings.
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