It is observable from Figure 4, Figure 5, and Table 1 that our proposed approach has given significantly good results from deep learning [13] and SDN [18] results. Other approaches have also given good results from our approach but they have not used the latest dataset and real-time approach. Also, we incorporate k-means with our other supervised learning algorithms [15]. Results are shown in Table 3.
By these observations, we can see that our proposed approach has given significant good results from Deep-Learning [16] and SDN [17] results. Other approaches have also given good results from our approach but they have not used the latest dataset and real-time approach. Also, we incorporate k-means with our other supervised learning algorithms.
Our project focuses on eliminating execution times, which is crucial for real-time machine learning, along with improving detection accuracy. Apache Spark integration means model training can be carried out distributed and parallel - resulting in significant time cost savings [18]. Machine learning and deep learning play an active advancement in different fields [19][20][21][22][23][24][25][26][27][28][29][30][31]. Optimization helps our machine learning model react rapidly in high-traffic situations where time is essential.
Weirdly integrating Apache Kafka in our machine learning architecture is the foundation of the success of our project. The distributed streaming platform employed by Kafka allows information ingestion and real-time processing of entered information. Machine learning model development is facilitated by its scalability, stream processing support, and fault tolerance. Our model can adjust to various input patterns effectively due to Kafka's real-time capability which is crucial in the processing of continuous data streams. The retention policy of Kafka allows for post-analysis, which will help uncover patterns and offer insights for further model adjustments. The comparison with existing studies is presented in Table 2.
[1] “Internet Organised Crime Threat Assessment (IOCTA) 2017 | Europol.” Accessed: Feb. 07, 2024. [Online]. Available: https://www.europol.europa.eu/publications-events/main-reports/internet-organised-crime-threat-assessment-iocta-2017
[2] S. Bukhari, A. Yousaf, S. Niazi, and M. R. Anjum, “A Novel Technique for the Generation and Application of Substitution Boxes (s-box) for the Image Encryption,” Nucl., vol. 55, no. 4, pp. 219–225, 2018, Accessed: Feb. 07, 2024. [Online]. Available: http://thenucleuspak.org.pk/index.php/Nucleus/article/view/229
[3] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and classification of malware behavior,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5137 LNCS, pp. 108–125, 2008, doi: 10.1007/978-3-540-70542-0_6/COVER.
[4] E. Konstantinou, S. Wolthusen, and R. Holloway, “Metamorphic Virus: Analysis and Detection,” 2008, Accessed: Feb. 07, 2024. [Online]. Available: http://www.rhul.ac.uk/mathematics/techreports
[5] Y. Özkan, “Malware Detection in Forensic Memory Dumps: The Use of Deep Meta-Learning Models,” Acta Infologica, vol. 7, no. 1, pp. 165–172, Jun. 2023, doi: 10.26650/ACIN.1282824.
[6] V. Minkevics and J. Kampars, “Methods, models and techniques to improve information system’s security in large organizations,” ICEIS 2020 - Proc. 22nd Int. Conf. Enterp. Inf. Syst., vol. 1, pp. 632–639, 2020, doi: 10.5220/0009572406320639.
[7] “An Efficient Approach for Advanced Malware Analysis Using Memory Forensic Technique | IEEE Conference Publication | IEEE Xplore.” Accessed: Feb. 12, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/8029568
[8] A. H. Lashkari, B. Li, T. L. Carrier, and G. Kaur, “VolMemLyzer: Volatile Memory Analyzer for Malware Classification using Feature Engineering,” 2021 Reconciling Data Anal. Autom. Privacy, Secur. A Big Data Challenge, RDAAPS 2021, May 2021, doi: 10.1109/RDAAPS48126.2021.9452028.
[9] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Automated Dynamic Analysis of Ransomware: Benefits, Limitations and use for Detection,” Sep. 2016, Accessed: Feb. 07, 2024. [Online]. Available: https://arxiv.org/abs/1609.03020v1
[10] Y. L. Wan, J. C. Chang, R. J. Chen, and S. J. Wang, “Feature-Selection-Based Ransomware Detection with Machine Learning of Data Analysis,” 2018 3rd Int. Conf. Comput. Commun. Syst. ICCCS 2018, pp. 392–396, Sep. 2018, doi: 10.1109/CCOMS.2018.8463300.
[11] W. Z. A. Zakaria, M. F. Abdollah, O. Mohd, and A. F. M. Ariffin, “The rise of ransomware,” ACM Int. Conf. Proceeding Ser., pp. 66–70, Dec. 2017, doi: 10.1145/3178212.3178224.
[12] M. Dener, G. Ok, and A. Orman, “Malware Detection Using Memory Analysis Data in Big Data Environment,” Appl. Sci. 2022, Vol. 12, Page 8604, vol. 12, no. 17, p. 8604, Aug. 2022, doi: 10.3390/APP12178604.
[13] “Leveraging Feature Selection to Improve the Accuracy for Malware Detection,” Jun. 2023, doi: 10.21203/RS.3.RS-3045391/V1.
[14] A. Carrega, L. Caviglione, M. Repetto, and M. Zuppelli, “Programmable data gathering for detecting stegomalware,” Proc. 2020 IEEE Conf. Netw. Softwarization Bridg. Gap Between AI Netw. Softwarization, NetSoft 2020, pp. 422–429, Jun. 2020, doi: 10.1109/NETSOFT48620.2020.9165537.
[15] J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, “Evaluating the Quality of Machine Learning Explanations: A Survey on Methods and Metrics,” Electron. 2021, Vol. 10, Page 593, vol. 10, no. 5, p. 593, Mar. 2021, doi: 10.3390/ELECTRONICS10050593.
[16] M. M. Hasan and M. M. Rahman, “RansHunt: A support vector machines based ransomware analysis framework with integrated feature set,” 20th Int. Conf. Comput. Inf. Technol. ICCIT 2017, vol. 2018-January, pp. 1–7, Jul. 2017, doi: 10.1109/ICCITECHN.2017.8281835.
[17] G. Cusack, O. Michel, and E. Keller, “Machine learning-based detection of ransomware using SDN,” SDN-NFVSec 2018 - Proc. 2018 ACM Int. Work. Secur. Softw. Defin. Networks Netw. Funct. Virtualization, Co-located with CODASPY 2018, vol. 2018-January, pp. 1–6, Mar. 2018, doi: 10.1145/3180465.3180467.
[18] A. Ichinose, A. Takefusa, H. Nakada, and M. Oguchi, “A study of a video analysis framework using Kafka and spark streaming,” Proc. - 2017 IEEE Int. Conf. Big Data, Big Data 2017, vol. 2018-January, pp. 2396–2401, Jul. 2017, doi: 10.1109/BIGDATA.2017.8258195.
[19] M. A. Arshed, S. Mumtaz, O. Riaz, W. Sharif, and S. Abdullah, “A Deep Learning Framework for Multi Drug Side Effects Prediction with Drug Chemical Substructure,” Int. J. Innov. Sci. Technol., vol. 4, no. 1, pp. 19–31, Jan. 2022, doi: 10.33411/IJIST/2022040102.
[20] M. T. Ubaid, M. Z. Khan, M. Rumaan, M. A. Arshed, M. U. G. Khan, and A. Darboe, “COVID-19 SOP’s Violations Detection in Terms of Face Mask Using Deep Learning,” 4th Int. Conf. Innov. Comput. ICIC 2021, 2021, doi: 10.1109/ICIC53490.2021.9692999.
[21] M. A. Arshed, H. Ghassan, M. Hussain, M. Hassan, A. Kanwal, and R. Fayyaz, “A Light Weight Deep Learning Model for Real World Plant Identification,” 2022 2nd Int. Conf. Distrib. Comput. High Perform. Comput. DCHPC 2022, pp. 40–45, 2022, doi: 10.1109/DCHPC55044.2022.9731841.
[22] A. Shahzad, M. A. Arshed, F. Liaquat, M. Tanveer, M. Hussain, and R. Alamdar, “Pneumonia Classification from Chest X-ray Images Using Pre-Trained Network Architectures,” VAWKUM Trans. Comput. Sci., vol. 10, no. 2, pp. 34–44, Dec. 2022, doi: 10.21015/VTCS.V10I2.1271.
[23] M. Mubeen, M. A. Arshed, and H. A. Rehman, “DeepFireNet - A Light-Weight Neural Network for Fire-Smoke Detection,” Commun. Comput. Inf. Sci., vol. 1616 CCIS, pp. 171–181, 2022, doi: 10.1007/978-3-031-10525-8_14.
[24] M. A. Arshed, S. Mumtaz, M. Hussain, R. Alamdar, M. T. Hassan, and M. Tanveer, “DeepFinancial Model for Exchange Rate Impacts Prediction of Political and Financial Statements,” 3rd IEEE Int. Conf. Artif. Intell. ICAI 2023, pp. 13–19, 2023, doi: 10.1109/ICAI58407.2023.10136658.
[25] H. Younis, M. Asad Arshed, F. ul Hassan, M. Khurshid, H. Ghassan, and M. Haseeb-, “Tomato Disease Classification using Fine-Tuned Convolutional Neural Network,” Int. J. Innov. Sci. Technol., vol. 4, no. 1, pp. 123–134, Feb. 2022, doi: 10.33411/IJIST/2022040109.
[26] M. A. Arshed, A. Shahzad, K. Arshad, D. Karim, S. Mumtaz, and M. Tanveer, “Multiclass Brain Tumor Classification from MRI Images using Pre-Trained CNN Model,” VFAST Trans. Softw. Eng., vol. 10, no. 4, pp. 22–28, Nov. 2022, doi: 10.21015/VTSE.V10I4.1182.
[27] M. A. Arshed et al., “Machine Learning with Data Balancing Technique for IoT Attack and Anomalies Detection,” Int. J. Innov. Sci. Technol., vol. 4, no. 2, pp. 490–498, 2022, doi: 10.33411/ijist/2022040218.
[28] H. A. Arshad, M. Hussain, A. Amin, and M. A. Arshed, “Impact of Artificial Intelligence in COVID-19 Pandemic: A Comprehensive Review,” 2022 2nd Int. Conf. Distrib. Comput. High Perform. Comput. DCHPC 2022, pp. 66–73, 2022, doi: 10.1109/DCHPC55044.2022.9732091.
[29] M. A. Arshed, W. Qureshi, M. Rumaan, M. T. Ubaid, A. Qudoos, and M. U. G. Khan, “Comparison of Machine Learning Classifiers for Breast Cancer Diagnosis,” 4th Int. Conf. Innov. Comput. ICIC 2021, 2021, doi: 10.1109/ICIC53490.2021.9692926.
[30] M. A. Arshed and F. Riaz, “Machine Learning for High Risk Cardiovascular Patient Identification 1,” J. Distrib. Comput. Syst., vol. 4, no. 2, pp. 34–39, 2021.
[31] M. Hussain, A. Shahzad, F. Liaquat, M. A. Arshed, S. Mansoor, and Z. Akram, “Performance Analysis of Machine Learning Algorithms for Early Prognosis of Cardiac Vascular Disease,” Tech. J., vol. 28, no. 02, pp. 31–41, Jun. 2023, Accessed: Dec. 26, 2023. [Online]. Available: https://tj.uettaxila.edu.pk/index.php/technical-journal/article/view/1778
[32] S. K. Shaukat and V. J. Ribeiro, “RansomWall: A layered defense system against cryptographic ransomware attacks using machine learning,” 2018 10th Int. Conf. Commun. Syst. Networks, COMSNETS 2018, vol. 2018-January, pp. 356–363, Mar. 2018, doi: 10.1109/COMSNETS.2018.8328219.
[33] and T. L. A. Tseng, Y. Chen, Y. Kao, “Deep learning for ransomware detection”.
[34] S. Maniath, A. Ashok, P. Poornachandran, V. G. Sujadevi, A. U. P. Sankar, and S. Jan, “Deep learning LSTM based ransomware detection,” 2017 Recent Dev. Control. Autom. Power Eng. RDCAPE 2017, pp. 442–446, May 2018, doi: 10.1109/RDCAPE.2017.8358312.
[35] H. Daku, P. Zavarsky, and Y. Malik, “Behavioral-Based Classification and Identification of Ransomware Variants Using Machine Learning,” Proc. - 17th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. 12th IEEE Int. Conf. Big Data Sci. Eng. Trust. 2018, pp. 1560–1564, Sep. 2018, doi: 10.1109/TRUSTCOM/BIGDATASE.2018.00224.
[36] Y. Takeuchi, K. Sakai, and S. Fukumoto, “Detecting ransomware using support vector machines,” ACM Int. Conf. Proceeding Ser., Aug. 2018, doi: 10.1145/3229710.3229726.
[37] “Machine Learning-Based Detection of Ransomware Using SDN | Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization.” Accessed: Feb. 07, 2024. [Online]. Available: https://dl.acm.org/doi/10.1145/3180465.3180467
[38] O. M. K. Alhawi, J. Baldwin, and A. Dehghantanha, “Leveraging Machine Learning Techniques for Windows Ransomware Network Traffic Detection,” vol. 70, 2018, doi: 10.1007/978-3-319-73951-9_5.
[39] S. Poudyal, K. P. Subedi, and D. Dasgupta, “A Framework for Analyzing Ransomware using Machine Learning,” Proc. 2018 IEEE Symp. Ser. Comput. Intell. SSCI 2018, pp. 1692–1699, Jul. 2018, doi: 10.1109/SSCI.2018.8628743.
[40] K. Lee, S. Y. Lee, and K. Yim, “Machine Learning Based File Entropy Analysis for Ransomware Detection in Backup Systems,” IEEE Access, vol. 7, pp. 110205–110215, 2019, doi: 10.1109/ACCESS.2019.2931136.
[41] F. Khan, C. Ncube, L. K. Ramasamy, S. Kadry, and Y. Nam, “A Digital DNA Sequencing Engine for Ransomware Detection Using Machine Learning,” IEEE Access, vol. 8, pp. 119710–119719, 2020, doi: 10.1109/ACCESS.2020.3003785.
[42] L. Chen, C.-Y. Yang, A. Paul, and R. Sahita, “Towards resilient machine learning for ransomware detection,” Dec. 2018, Accessed: Feb. 07, 2024. [Online]. Available: https://arxiv.org/abs/1812.09400v2
[43] S. Il Bae, G. Bin Lee, and E. G. Im, “Ransomware detection using machine learning algorithms,” Concurr. Comput. Pract. Exp., vol. 32, no. 18, p. e5422, Sep. 2020, doi: 10.1002/CPE.5422.
[44] J. Hwang, J. Kim, S. Lee, and K. Kim, “Two-Stage Ransomware Detection Using Dynamic Analysis and Machine Learning Techniques,” Wirel. Pers. Commun., vol. 112, no. 4, pp. 2597–2609, Jun. 2020, doi: 10.1007/S11277-020-07166-9/METRICS.
[45] H. Zuhair, A. Selamat, and O. Krejcar, “A Multi-Tier Streaming Analytics Model of 0-Day Ransomware Detection Using Machine Learning,” Appl. Sci. 2020, Vol. 10, Page 3210, vol. 10, no. 9, p. 3210, May 2020, doi: 10.3390/APP10093210.