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Knsomware has emerged as a prominent cyber threat in recent years, targeting numerous

4

businesses. In response to the escalating frequency of attacks, organizations are

increasingly seeking effective tools and strategies to mitigate the impact of ransomware
incidents. This research addresses the pressing need for real-time detection of ransomware,
offering a solution that leverages cutting-edge technologies. The surge in ransomware attacks
poses a significant challenge to the cybersecurity landscape, compelling organizations to adopt
proactive measures. Recognizing the urgency of the situation, this study motivates the
exploration of an innovative approach to ransomware detection. By utilizing advanced tools
such as Apache Kafka and Spark, we aim to enhance detection capabilities and contribute to the
resilience of businesses against cyber threats. Our methodology employs the Kafka tool and
Spark for real-time identification of ransomware exploits. The research utilizes the CIC-
MalMem-2022 dataset to develop and validate the proposed model. The integration of Apache
Kafka with traditional machine learning techniques is explored to improve the accuracy of cyber
threat detection, offering a comprehensive and efficient solution. The implemented model
exhibits a commendable detection rate of 95.2%, demonstrating its effectiveness in identifying
ransomware attacks in real-time. The combination of Apache Kafka's streaming capabilities and
established machine learning methodologies proves to be a potent defense against the evolving
landscape of cyber threats. In conclusion, our research provides a robust and practical approach
to combating ransomware threats through real-time detection. By leveraging the synergy of
Kafka and machine learning, organizations can fortify their cybersecurity defenses and respond
proactively to potential ransomware exploits. This study contributes valuable insights and tools
to the ongoing efforts in enhancing cyber resilience.
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Introduction:

Recently, the frequency of ransomware incidents involving a particular malware strain
has significantly increased. The notorious malware strain is impacting companies and
government agencies in virtually every industry, along with regular end users. Ransomware or
"ransom software" is a kind of malware that prevents access to some computer or even
information till the ransom demand of the assailant is paid out [1]. The approach employed in
determining ransomware broadly splits it into 2 forms ((locker and cryptographic ransomware)
Figure 1 shows the working of Ransomware attack. Both locker ransomware as well as
cryptographic ransomware encrypt victim files and prevent victims from signing in. No matter
the technique employed, both ransomware variations still call for a payment to unlock the
information or open the system. The ransom is typically paid in bitcoin and victims are obligated
to pay it to unlock the original files. Bitcoin is frequently used by attackers to hide behind the
virtual currency, therefore it's hard to trace the attacker. Ransomware families like Cerber, Locky
and CryptoWall have grown 600 % due to their increased popularity [2]. The victim must recall
that paying the ransom doesn't ensure the target will get the decryption keys to retrieve their
information. Contemporary malware programs employ advanced methods, making
conventional signature-based methods increasingly challenging. A lot of these have several
polymorphic layers to hide detection. The results, conversations, inquiries and examinations
implemented by numerous researchers have been publicly released via their research and
research papers.

Researchers are suggesting different measures to safeguard against cyber threats They
could add extra mechanisms for updating computers automatically to newer versions regularly,
rendering conventional antivirus software unable to identify them. Dynamic file analysis in
malware detection, utilizing emulation in a virtual environment [3]. Konstantinou et al
introduced the memory dumps classical method in their study for Metamorphic virus detection
[4]. We have introduced a data set titled CIC-MalMem-2022 in this paper [5]. We examine 58,596
data - a mix of malicious and benign memory dumps (fifty % benign, 50 % malicious) - as well
as the assortment, which is notable for along with notable malware families like Conti, Pysa,
Ako, Shade and MAZE. A new and innovative strategy is suggested: Kafka utilizes its real-time
data processing to identify as well as identify ransomware. This technological improvement is
meant to enhance the functionality and responsiveness of our detection methods [6].
Literature Review:

Ransomware attacks increase daily and many different strategies have been suggested to
address this issue. Rathnayaka and Jamdagni [7] wrote a framework for malware detection
incorporating static and also memory analysis methods, that created a 90% identification
accuracy for malicious software. Use of VolMemLyzer, Lashkari [8] and colleagues concentrated
on detecting malware in memory dumps by skipping important features. The tool utilized
machine learning to extract 36 features from nine categories and test them on 1900 memory
dumps, obtaining a 93% True-Positivity rate. The authors did acknowledge that their study had
one downside - the minimal amount of malware samples examined. They enriched the dataset
in response and made the CIC MalMem2022 [9] dataset.

In a research entitled "Feature-Select-Based ransomware detection with Machine
Learning of Data Analysis," Chang et al. [10] presented a total technique for Ransomware
Detection. They utilized data analysis methods to pinpoint particular characteristics which
characterize ransomware behavior. The paper will probably explain the particular machine
learning algorithms and data analysis tactics used to accelerate ransomware detection in the
quickly changing cybersecurity risk landscape. Figure 1 shows the working of Ransomware
attack as under:
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Figure 1: Ransomware Architecture

Proposed Methodology:

New detection and mitigation methods have to handle the brand-new cybersecurity risks
from ransomware attacks that impact industries worldwide. The article presents a total solution
for ransomware detection in memory dump (Kafka streaming, machine learning) detection. Our
investigation is based on the CIC-MalMem-2022
(https:/ /www.kaggle.com/datasets /luccagodoy/obfuscated-malware-memory-2022-cic)
dataset which includes 58,596 records containing a balanced blend of harmless and malicious
memory dumps. We create an adaptive model that constantly processes inbound data through
Kafka clusters, extracting related functions and teaching machine learning algorithms to spot
ransomware actions. Our focus is on enhancing the agility and efficiency of detection systems
by leveraging Kafka's real-time information processability. Figure 2 shows our system model.

Creating ML

Preprocessing | Model

CIC-Malmem-2022 Dataset “Q =

e | afka

Malware

. 3 |
< Testing Model / Training Model

Figure 2: System Model

Although number of detection methods [11]-[26] exist but still a robust detection
method needed as ransomware attacks have grown to be commonplace across numerous
industries. A real-time emulation method for detecting ransomware utilizing Kafka clusters and
machine learning is discussed in this paper [11]. The methodology is applied to the CIC-
MALMem-2022 dataset, which is a curated set of harmless as well as malicious memory dumps.
Dataset:

The CIC-MalMem-20222 dataset which has 29,298 benign and 29,298 malicious entries.
MalMemAnalysis 2021, a dataset of significant significance, includes 58,596 records classified as
29,298 harmless and 29,298 malicious cache dumps. The dataset creation process required
executing 2,916 malware samples from Virus Total [12] across several types (Trojan Horse,
Ransomware, Spyware) with a Virtual Machine (VM) environment. This dataset required four
important phases: research, memory dump extraction, memory dump transfer and feature
extraction. The study stage involved a detailed analysis of malware categories, families and
sample types to ensure the dataset was compatible with actual situations [13]. This investigation
required collecting at least 100 and up to 200 malware samples from 5 families inside three

Benign
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malware categories across three research areas. The memory dump extraction procedure requires
taking memory snapshots with VirtualBox virtual machine management process and leading to
29,298 malicious memory dumps. To improve diversification, benign dumps were created
utilizing user behavior emulation to attain a balanced dataset. The Synthetic Minority Over-
sampling Method (SMOTE) was employed for balance with numerous uses. The third step
required moving memory dump files to a Kali Linux computer for feature extraction with
VolMemLyzer, which included twenty-six additional features for malware obfuscation. The
fourth and final stage involves feature extraction from memory dump files and the generation
of a final combined CSV file for all test memory dump data. The VolMemlLyzer feature
extraction program examines the memory dump documents obtained and also produces a CSV
file for use in ensemble learning systems. https://www.unb.ca/cic/datasets/malmem-
2022.html.

Preprocessing:

The CIC MalMem?2022 dataset has been utilized in this research. The dataset has been
carefully curated and has a balanced distribution of 2 classes, allowing a distinction between
harmless and ransomware. The overfitting issue is decreased by the balanced dataset proportion,
without needing additional interventions. During preprocessing, categorical class values were
not converted into numbers by a Label Encoder. This technique assigned a random numerical
value starting from zero to each categorical value. The categorical values "Benign" were removed
and "Ransomware" was improved for enhanced usage in machine learning and deep learning
algorithms. The numerical labels for the classes created by the procedure.

Kafka Topics Ingestion and Creation Instantly:

Apache Kafka, coupled with machine learning models, provides an efficient platform
for real-time malware detection, particularly ransomware. Kafka's distributed streaming platform
is perfectly suited for managing the complexities of malware detection, enabling the smooth
flow of large, continuous data streams. The system efficiently manages information influx from
vatious sources by categorizing data into Kafka topics. Kafka's real-time ingestion capability
allows machine learning models to analyze freshly updated information quickly, enabling rapid
responses to new threats. The dynamic linkage between Kafka and machine learning algorithms
like XGBoost or Random Forest aids in identifying ransomware activity patterns. Kafka's low
latency, scalability, and fault tolerance make it crucial in combating the evolving landscape of
malware attacks, thereby enhancing ransomware detection and cybersecurity methods.

Feature Extraction:

Advanced methods such as n-gram analysis and byte-level inspection are used for
discovering ransomware-specific patterns in memory dumps. N-gram analysis examines
contiguous sequences of 'n' elements, like bytes or characters, in memory dumps to detect
ransomware behavior patterns. This fine-grained inspection focuses on specific bytes for
characteristics commonly associated with ransomware. The thorough examination reveals
unique signatures and encrypted payloads hidden within memory data. The use of these feature
extraction methods renders the analysis highly adaptable and responsive to ransomware's
evolving nature, thus increasing the accuracy and effectiveness of detection.

Model Training:

The effectiveness of various machine learning models in detecting ransomware has been
validated by confusion matrix evaluation, with special attention to the selection and optimization
of hyperparameters for each model. Models such as XGBoost, Random Forest, SVM, K-Means
Clustering, Naive Bayes, and Logistic Regression underwent extensive training and testing,
where hyperparameters were fine-tuned to achieve optimal performance.

XGBoost, with its hyperparameters like learning rate and max depth carefully adjusted,
achieved an outstanding 95.2% accuracy rate, outperforming other models. The tuning process
involved techniques such as grid search, ensuring that XGBoost adapted effectively to the
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intricacies of ransomware patterns. Random Forest and SVM, with hyperparameters like the
number of trees in the forest and the kernel type in SVM respectively, also demonstrated solid
capabilities with 93.1% and 91.4% accuracy. Their hyperparameters were selected to balance
model complexity and prediction accuracy, contributing to their high performance.

K-Means Clustering, while achieving a slightly lower precision of 84.99%, had its
number of clusters optimized to emphasize the importance of real-time stream processing in
identifying subtle ransomware attack indicators. The selection of this hyperparameter was crucial
for the model to effectively capture the nuances of ransomware behavior in streaming data.
Integration with Kafka Streams:

Kafka Streams are used for the real-time processing of extracted features and model
predictions which is shown in Figure 3. Applications utilize Kafka topics to collect data, apply
the trained models, and then publish the results to designated output topics, enabling efficient
and timely decision-making in ransomware detection [14].
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Figure 3: Kafka Architecture
Algorithm 1: Ransomware Resilience Detection Framework:
Procedure RESULT (Entire detection process)
Read: Apache Kafka;
While Apache Kafka is running do
Read: stream;
If stream is not empty then
Broadcast To All Connected Clients (log Frame);
Send Frame to Elastic search (log Frame);
End if
9.  End while
10.  Read: Solution Spark;
11.  While Solution Spark is running do
12.  Read: stream Kafka, window Time Kafka;
13.  if stream Kafka is not empty and window Time Kafka > 60s then
14.  Read: All Logs from last 60 seconds;
15.  Group: Frames By Source IP Address and Port;
16.  Count: all features (Log Events, Source/Destination IPs, etc.);
17.  Run: Ransomware Detection Model,;
18.  If prediction is Ransom ware, then
19. Set 1 in label field;

e R o

20. Else

21.  Set 0 in label field;

22. Endif

23.  Result: Send to Kafka Topic Frame with label;
24, Endif
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25.  End while
26.  End procedure
The utilization of machine learning algorithms within the framework has played a pivotal

role in achieving high accuracy in ransomware detection. By leveraging historical data and
continuously learning from new patterns, the machine learning models integrated into the
system can adapt to evolving ransomware tactics. This adaptability enhances the accuracy of the
detection mechanism and reduces false positives, making the framework more reliable in real-
world scenarios. The modular design of the framework ensures scalability and flexibility. The
distributed nature of both Kafka and Spark allows the system to scale horizontally to
accommodate increasing data volumes and processing demands. This scalability, coupled with
the flexibility to adapt to different environments, positions the framework as a versatile solution
for organizations with varying cybersecurity needs. Through the seamless integration of Kafka,
Spark, and machine learning, the project has successfully fortified digital systems against
ransomware threats. The real-time detection capabilities, coupled with efficient data processing
and accurate machine learning models, contribute to creating a resilient defense mechanism.
This resilience is essential for organizations seeking comprehensive protection against the ever-
evolving landscape of cybersecurity threats.
Results and Discussion:
Results are shown in Table 1.
Observations:
XGBoost: Achieved an outstanding accuracy rate of 95.2%.
Random Forest: Demonstrated enhanced accuracy of 93.2%.
SVM: Achieved a notable accuracy rate of 91.2%.
K-Means Clustering: Leveraging Kafka and Spark, K-Means Clustering attained an
accuracy rate of 84.6%.
Naive Bayes: Good Accuracy but not up to mark, at 76.9%.
Logistic Regression: Good Accuracy but not up to mark, at 74.1%.
It is observable from Figure 4, Figure 5, and Table 1 that our proposed approach has
given significantly good results from deep learning [13] and SDN [18] results. Other approaches
have also given good results from our approach but they have not used the latest dataset and
real-time approach. Also, we incorporate k-means with our other supervised learning algorithms
[15]. Results are shown in Table 3.

Precision=True Positives (TP) / True Negatives (IN) + False Positive (FP) (1)
Accuracy=True Positives (TP) + True Negatives (TN) / Total Number of Cases (2)
Recall=True Positives (TP) / False Negatives (FN) + True Positives (TP) (3)

F1 = 2 X Precision X Recall / Precision + Recall (4)

ANANENEN

AN

Observations:
v" XGBoost: Achieved an outstanding accuracy rate of 95.2%.
v" Random Forest: Demonstrated enhanced accuracy of 93.2%.
v" SVM: Achieved a notable accuracy rate of 91.2%.
v

K-Means Clustering: Leveraging Kafka and Spark, K-Means Clustering attained an
accuracy rate of 84.6%.

Naive Bayes: Good Accuracy but not up to mark, at 76.9%.

Logistic Regression: Good Accuracy but not up to mark, at 74.1%.

By these observations, we can see that our proposed approach has given significant good
results from Deep-Learning [16] and SDN [17] results. Other approaches have also given good
results from our approach but they have not used the latest dataset and real-time approach. Also,
we incorporate k-means with our other supervised learning algorithms.

AN
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Figure 4: Confusion Matrix
Table 1: Model Evaluation Metrics
Model Confusion | Accuracy | Precision Recall | Specificity | F1 Score
Matrix (%) (%) (%) (%) (%)
XGBoost TP: 120 95.2 89.0 95.2 96.0 88.7
FN: 10
FP: 5
TN: 135
Random Forest TP: 118 93.1 89.4 91.2 95.3 87.1
FN: 12
FP: 6
TN: 134
SVM TP: 119 91.4 91.0 91.0 95.0 85.0
FN: 11
FP: 7
TN: 133
K-Means TP: 105 84.6 88.0 81.6 89.4 80.1
FN: 25
FP: 15
TN: 125
Naive Bayes TP: 95 76.9 76.0 73.1 85.2 67.9
FN: 35
FP: 20
TN: 120
Logistic TP: 110 74.1 75.0 84.6 87.1 70.4
Regression FN: 20
FP: 18
TN: 122
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Model Performance Metrics
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Figure 5: Results Visualization

Execution Time:

Our project focuses on eliminating execution times, which is crucial for real-time
machine learning, along with improving detection accuracy. Apache Spark integration means
model training can be carried out distributed and parallel - resulting in significant time cost
savings [18]. Machine learning and deep learning play an active advancement in different fields
[19](20][21][22][23][24][25][26][27][28][29][30][31]. Optimization helps our machine learning
model react rapidly in high-traffic situations where time is essential.

KAFKA Robustness:

Weirdly integrating Apache Kafka in our machine learning architecture is the foundation
of the success of our project. The distributed streaming platform employed by Kafka allows
information ingestion and real-time processing of entered information. Machine learning model
development is facilitated by its scalability, stream processing support, and fault tolerance. Our
model can adjust to various input patterns effectively due to Kafka's real-time capability which
is crucial in the processing of continuous data streams. The retention policy of Kafka allows for
post-analysis, which will help uncover patterns and offer insights for further model adjustments.
The comparison with existing studies is presented in Table 2.

Table 2: Robustness of the Proposed Study

Study Detection Rate | Recall FPR | FNR | Precision | F1 Score
Elde Ran [9]: 2016 96.34% 96.33% | 0.16% | 3.66% | 99.83% 98.05%
Ransom Wall [32]: 98.25% 97.28% | 0.056% | 2.75% | 99.94% 98.84%
2018
Rans Hunt [16]: 97.1% 97.04% | 21% | 2.9% | 97.88% 97.49%
2017
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Deep-Learning
[33]: 2016

93.92

88.76%

38%

7.08%

71.19%

80.99%

Long Short-Term
Memory (LSTM)
[34]: 2017

96.67%

N/A

N/A

3.33%

N/A

Behavioral-Based

[35]: 2018

78% (Ransomware
family
classification rate)

N/A

N/A

N/A

N/A

N/A

Support-Vector
Machines [36]:
2018

97.18%

97.13%

1.64%

2.82%

98.34%

97.72%

SDN [37]: 2018

87%

85.14%

12.5%

2.9%

87.44%

87.2%

Net Converse
[38]: 2018

97.1%

97.05%

1.6%

2.9%

98.38%

97.74%

Analysis
Framework [39]:
2018

N/A

N/A

N/A

N/A

90.62%

N/A

Feature Selection-
Based Detection
[10]: 2018

97.95%

N/A

N/A

N/A

N/A

N/A

Machine Learning-
Based File
Entropy Analysis
[40]: 2019

100%

N/A

N/A

N/A

N/A

N/A

Digital DNA-
Sequencing [41]:
2020

87.9%

87.9%

10%

12.1%

89.7%

88.8%

Resilient ML [42]:
2019

98.90%

99.89%

3%

1.1%

99.5%

97.9%

API-Sequence-
Based Detection
[43]: 2019

99.53%

99.35%

N/A

0.47%

99.4%

99.7%

Two-Stage
Detection [44]:
2020

98.8%

96.65%

6.93%

1.2%

N/A

N/A

Multi-Tier
Streaming [45]:
2020

N/A

N/A

N/A

N/A

N/A

N/A

Our Method

95.2%

95.2

1.85%

3.70%

89%

88.7%

Conclusion:

The project has achieved a key capability in real-time detection. By incorporating Kafka,
a high throughput distributed messaging platform, the framework enhances fast and efficient
communication between components. This is crucial for effectively identifying and mitigating
ransomware threats, thereby reducing damage and loss.

Utilizing Apache Spark as the processing engine has significantly improved data analysis
efficiency. Spark's distributed computing functions make managing large volumes of
information almost effortless. The framework handles the continuous stream of data generated
by Kafka. Dependable machine learning-based detection algorithms rely on this streamlined data
processing. Increased Accuracy through Machine Learning: The framework heavily relies on
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machine learning algorithms to boost ransomware detection accuracy. By learning from

historical data and adapting to new ransomware patterns, the machine learning models in the

system are continually evolving. This adaptability makes the framework reliable in real-life
scenarios, improving detection accuracy and reducing false positives.

The framework incorporates a flexible design that supports scalability and adaptability.
Kafka and Spark, being highly distributed systems, scale horizontally to meet increasing data
volumes and processing demands. This scalability and adaptability make the framework a
versatile choice for organizations with diverse cybersecurity needs.

The project secures electronic systems against ransomware threats through the seamless
integration of Kafka, Spark, and machine learning. This integration fosters a resilient defense
mechanism, combining real-time detection, efficient data processing, and precise machine-
learning models. Organizations seecking comprehensive defense against the ever-changing
landscape of cybersecurity threats need such resilience.
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