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suppliers through advanced metering infrastructure. However, the performance of the

smart meter degrades due to impulse noise present in the power system. Besides
conventional thresholding techniques, deep learning has been proposed in the literature for
detecting noise in NOMA-enabled smart energy meters. This research introduces a novel deep
neural network (DNN) capable of simultaneously detecting and classifying impulse noise as
either high or low impulse. Combining the analysis of detected noise and its class has proven to
be more effective in mitigating noise compared to previously proposed methods. The input
feature vector to DNN is chosen based on its characteristics to detect impulse noise and its level
in the data and includes ROAD characteristics, median differences, and probability of impulse
arrival. The performance evaluation shows that the Bit Error Rate (BER) of the proposed DNN
is lower than the BER of single output DNN which is proposed in the literature for mitigation
only. It is also shown that besides simultaneous detection and mitigation, the second output of
the proposed DNN 1i.e. classification of IN validates the first output which is IN identification.
Keywords: Smart Energy Meters (SM), Impulse Noise (IN), Deep Neural Network (DNN) and
Non-orthogonal Multiple Access (NOMA).

The next-generation power grid enables information exchange between consumers and

) IPIndexin '.;?»?' . RESEARCHBIB B
(‘ Indexing Portdlg .:‘ ; .ClteFaCtOr ACADEMIC RESOURCE INDEX B ;-‘) @ I DEAS
JOURNALS RMTINDEXINC ili INFOBASE INDEX
I@/ MASTER LIST TS s Sci Ilt

—Tﬁjé ; Ml ResearchGate IV!HIKI,[I),!\!-}_\I i o
DRJI Crossref |

May 2024 | Vol 6 | Issue 2 Page | 444


mailto:engr.m.hussain.bukc@bahria.edu.pk
https://doi.org/10.33411/ijist/202462444458

International Journal of Innovations in Science & Technology

Introduction:

A Smart Meter (SM) is a crucial component of an intelligent power grid, also known as
a Smart Grid (SG). It is responsible for recording and exchanging information such as energy
consumption, power factor, voltage levels, current, peak, off-peak hours, and associated costs.
Power supply companies incorporate SMs in their infrastructure and run energy management
systems by receiving consumer information such as usage during peak versus off-peak hours,
power factor, line loss, and stealing electrical power. In terms of hardware logic, an SM consists
of transducers, a display unit, and a communication unit as shown in Figure 1 [1]. The
transducers are usually connected to the power line to measure energy parameters. These
parameters measured by a transducer are shown to the user via an in-home display and
simultaneously transmitted to power companies through the communication unit of SM.
However, it's essential to note that the performance of smart meters can be adversely affected
when electrical impulses occur within the system, impacting the communication unit and
degrading its functionality [1].

With the rapidly growing demand for increased bandwidth in SG, Non-orthogonal
Multiplex Access (NOMA) has emerged as a promising new technology for next-generation
wireless communications. The NOMA technique offers high spectral efficiency by allocating the
entire bandwidth to each user at the same frequency and time. This approach considers user
location with respect to BS in order to allocate different power suitable for SM communication
since most of the SMs are installed at different distances and exposed to different channel
conditions [2][3]. Despite its high performance, NOMA is sensitive to noise, which can degrade
its efficiency. This sensitivity is due to the non-orthogonal power allocation among users,
especially in the presence of interference (IN). Some research studies [4][5][6][7] have considered
impulsive noise, while studying the NOMA technique, most researchers have utilized AWGN
as the standard model to present noise in a communication system. The distinctive
characteristics of the NOMA scheme include power division multiple access of uset’s
interference cancellation, and the incorporation of impulsive noise in the transmitted samples
raising the requirement for complex mitigation solutions [5].
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Figure 1: Working Principle of Smart Meter
Authors in [5] proposed a deep learning approach to determine the clipping/blanking
threshold for NOMA users, given the impulsive noise parameters were already estimated. Since
clipping/blanking cannot be optimized to simultaneously maximize the performance of all users,
a multiple-stage clipping/ blanking receiver is tailored for NOMA. Deep learning has become
an integral part of the data analysis of images as well as wireless signals. Authors in [8] have
employed a Fuzzy SVM-based adaptive filter for impulse noise removal from color images. A
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research study in [9] implemented a convolutional neural network to successfully remove
impulse noise from the images. Authors in a research study in [10] developed a deep recurrent
neural network (RNN) for the reduction of transient sounds and analyzed the effect of transient
sound reduction on listening capability and speech intelligence. Research work in [11]
demonstrated suppression of impulse noise by developing deep learning-based receivers for
Orthogonal Frequency Division Multiplexing (OFDM) systems. However, research work on
noise mitigation using deep learning methods is still in its early stages, with promising
developments though. The authors in [4] have successfully implemented deep learning for IN
classification and mitigation in NOMA-based communication. Two different DNNs were
proposed for IN suppression and IN classification respectively. However, an advanced deep
learning network could be designed to simultaneously perform tasks of noise detection and
classification to enhance the noise mitigation performance.

The proposed model in research work carries out simultaneous detection and
classification of IN using deep learning techniques to minimize the aforementioned challenges
in existing systems using NOMA communication. The model's first output identifies IN and
then smoothens it by identifying IN-contaminated data samples through the DNN and decoding
them to eliminate IN. The second output classifies the present IN as high and low magnitude
impulse, providing valuable information regarding the IN class to enhance the mitigation
process carried out using the first output, thus ensuring better IN detection than the
conventional as well as deep learning methods. The structure of the article is organized as
follows: Section II examines the impact of IN in a NOMA-enabled communication system, as
well as conventional mitigation approaches in the previous work and the contribution of
research. Section III discusses the system model, whereas Section IV describes the structure of
the proposed DNNSs. Section V analyses the performance of the proposed approach for IN
mitigation and classification, and Section VI draws conclusions.

Obijectives:

. Exploring the challenges posed by impulsive noise (IN) in non-orthogonal multiple
access (NOMA) communication systems, particularly in the context of IoT-based smart energy
meters.

° Reviewing existing IN mitigation techniques, including traditional threshold-based
methods and emerging deep learning approaches, highlighting their limitations and potential.

o Proposing a novel deep neural network (DNN) architecture for simultaneous IN
detection and classification in NOMA-enabled smart energy meters, aiming to improve
performance compared to conventional methods.

° Evaluating the effectiveness of the proposed DNN approach through simulations,
analyzing its BER performance, and comparing it with existing mitigation techniques.

. Investigating the impact of user location and channel conditions on BER performance
in NOMA systems, particularly in scenarios involving distant and nearby users.

o Validating the proposed DNN model's performance in different noise environments,
such as Bernoulli-Gaussian (BG) and Laplacian-Gaussian (LG) models, to assess its robustness
and versatility.

The novelty of this research lies in the development of a comprehensive approach to
tackling impulsive noise (IN) challenges within non-orthogonal multiplex access (NOMA)
communication systems, specifically tailored for IoT-based smart energy meters. By integrating
traditional threshold and cutting-edge deep learning techniques, our proposed deep neural
network (DNN) architecture offers simultaneous IN detection and classification, surpassing the
limitations of conventional methods. Through extensive simulations and analysis, we
demonstrate the superior performance of our approach in mitigating IN, thereby advancing the
reliability and efficiency of NOMA-enabled smart energy metering systems. Additionally, our
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investigation into the influence of user location and channel conditions on bit error rate (BER)
performance, as well as validation across diverse noise environments, underscores the
robustness and versatility of our proposed solution.

Background:

Impulse Noise in NOMA-Enabled Smart Meters:

The impulse occurring in the power system eventually can introduce noise in the wireless
transmission unit of SM, impacting the communication channel and potentially leading to
transmission errors. In the presented work, the Bernoulli-Gaussian (BG) model and Laplacian-
Gaussian (LG) model [12][13] are chosen models for IN representation for power line
communication, these models were also utilized in [14][15] for wireless commutation analysis
which validates our selection.

The literature extensively discusses various challenges associated with IN and its impact
on the implementation of Non-Orthogonal Multiple Access (NOMA) systems, specifically in
next-generation networks such as the Internet of Things (IoT) or Smart Grids (SGs). Research
studies have explored the effects of IN on both NOMA uplink [5] and downlink [7] systems.
The evaluation of the outage of uplink NOMA in the presence of IN is demonstrated in [5].
Performance deterioration of the NOMA system due to IN occurrence was shown using
analytical results and Monte-Carlo simulations. Authors studied the effect of IN on sum-rate
capacity for NOMA downlink systems in [7], while in [6] they examined the performance of IoT
networks with NOMA in the presence of IN and proposed a deep-learning-based IN
suppression method to estimate IN parameter for received OFDM symbols originating from
PD-NOMA.

Impulse Noise Mitigation Techniques:

The non-linear memory-less IN mitigation approach is categorized as a threshold-based
IN mitigation technique. It incorporates schemes such as blanking [16], clipping [17], and
clipping/blanking [18], which utilize preset threshold levels to detect IN, having high amplitude
and small duration. Even though the appropriate selection of a preset threshold level is still a
debatable and challenging issue, authors in [19] proposed a Neyman-Pearson criterion-based
technique for the selection of an optimized threshold level. Researchers in [20] proposed an
analytical solution approach to mitigate IN via clipping and blanking. A hybrid method
comprises blanking/clipping clips and receives data level threshold when signal amplitude lies
between prescribed threshold ranges [21]. A comparative study based on various analog domain
processing approaches for IN mitigation affirms the significance of appropriate threshold level
selection in improving the response of threshold-based non-linear mitigation techniques [22].
However, the dependency of threshold selection on channel parameters makes the model
inconsistent in varying channel conditions. Consequently, all conventional threshold-based
techniques experience performance deterioration under extensive impulsive environments.
Deep learning has recently gained tremendous popularity among machine learning algorithms
and has also been explored as a new alternative to mitigate IN in applications related to
communication network powetr/bandwidth allocations [23], signals [24] images [25], etc. In this
context, a deep learning-based IN elimination strategy is proposed for an OFDM
communication model [20]. In [20], the authors formulated a deep neural network scheme for
the identification of affected signal samples which are blanked or clipped in the next step. In the
research work presented in [27], run-time sample values were processed by DNN using a median
filter output that serves as an input parameter for IN detection. Another study in [28] employed
a statistical technique that used absolute differences of sample value from neighboring samples
to assess the effect of IN on runtime samples. Table 1 summarizes the comparison of the
proposed DNN technique with other modern IN mitigation methods.
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Table 1: An overview of noise mitigation state-of-the-art techniques

Ref Objective Solution Approach Technique Performance

[16] Evaluate the Combination of Iterative Blanking  The best results were
performance  of adaptive  blanking achieved through an
the blanking threshold and assigned blanking
method for IN iterative interference threshold in three
mitigation in cancellation scheme. iterations.

OFDM signals.

[17] Evaluate the Computation of Stochastic Performance was
performance  of clipping threshold by Clipping better  than  the
the clipping estimating the arrival conventional method
method by probability for using a turbo decoder
applying threshold OFDM coupling.
with a  priori transmission.
knowledge.

[18] Improvement of Nonlinear Multiple The proposed
SNR at OFDMA estimators based on Threshold clipping and
receiver by the multiple Blanking/Clipping attenuating estimators
suppression of IN.  thresholding  with attain nearly the same

associated piece- performance as the

wise attenuation. optimal Bayesian
estimator with only
five thresholds.

[20] Threshold Estimaton of a Blanking/Clipping Well, is suited for soft
Calculation of threshold for limiting in moderately
blanking and blanking and soft noisy  environments
clipping. limiting. and for blanking in

strong noisy
environments.

[21] Elimination of IN A time and Blanking, The combined
from PLC-based frequency domain Clipping, and TD/FD  technique
systems utilizing combined method Blanking/Clipping petrforms Better than
OFDM symbols.  for suppressing the the conventional

IN in PLC systems techniques in IN
employing reduction.
OFDMA.

[29] Interference Distributed power Machine Learning The proposed
reduction for allocation algorithm technique is  well
small-sized BS in based on multi-agent suited for
high-density Q-learning. comparatively small-
network. sized BS.

[26] Elimination of IN A two-step DNN- DNN Better  performance
in received based technique for than blanking and
symbols for an identification  and clipping.

OFDM system. suppression of IN.

[6] Finding the Deep learning  DNN Performance
optimal threshold applied for threshold maximized by using
for IN reduction estimation of IN DNN for threshold

parameters in estimation.
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of a PD-NOMA symbols on OFDM-

Uset. based PD-NOMA
systems.

[4] IN mitigation in Deep learning  DNN IN  mitigation and
PD-NOMA- approach using classification is better
based system. statistical properties than traditional

to model techniques.
randomness.
Contribution:

In this research study, the performance of deep learning-based IN mitigation [4][5] has
been improvised by designing a novel multiple-input dual-output deep neural network. The
developed DNN model with two outputs can detect and classify IN at the same time for a
NOMA-enabled SM communication model. Earlier, a deep learning model presented in [5]
predicted signal threshold for noise detection and mitigation for highly impulsive data of 1 Mbps
with 0-5 dB SNR in a NOMA-based IoT network. Another Deep Learning (DL) model
described in [4] detected the noise for the aforementioned network scenario and noise
parameters which were then mitigated by setting a threshold parameter. In contrast to the above
DL techniques, this research work proposes a deep learning model that can efficiently detect as
well as classify the noise. This dual functionality enables better noise mitigation for a 2-user
scenario i.e. two users are allocated different power levels based on their distance from the base
station using the same time/frequency resource blocks. While BER values of 0.35 and 0.5 were
obtained for two user scenarios tested on the DL model in [5], the DNN proposed in [4]
accomplished BER values of 0.04 and 0.15 for the same given scenario. Comparatively, the
proposed dual output DNN has successfully reduced the BER values up to 0.03 and 0.1 for a
two-user scenario in NOMA-enabled smart energy meters. The comparison of recent deep
learning-based IN mitigation techniques with the proposed method is illustrated in Table 2.

Table 2: Critical analysis and comparison of the recent DNN-based IN mitigation techniques

Title Data set Method Performance

[5] NOMA-Based IoT 1 Mbits data sample Deep learning DNN-based  optimum

Networks: Impulsive affected by highly threshold achieves 0.5

Noise Effects and impulsive of 0-5 dB. BER for user 1 and 0.35

Mitigation (2020). BER for user 2 at an SNR
of 10 dB.

[4] Deep Learning 1 Mbits data sample Deep learning DNN-based  detection

Approaches for affected by highly achieved 0.04 BER for

Impulse Noise impulsive noise of 0- user 1 and 0.15 BER for

Mitigation and 5 dB. user 2 atan SNR of 10 dB.

Classification in

NOMA-Based

Systems (2021).

[Proposed] An 1 Mbits data sample Deep learning Improved DNN-based

Advanced  2-Output affected by highly mitigation achieves 0.03

DNN  Model for impulsive of 0-5dB. BER for user 1 and 0.1

Impulse Noise BER for user 2 at an SNR

Mitigation in NOMA- of 10 dB.

Enabled Smart Energy

Meters.
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Material and Methods:
Impulse Noise Analysis in NOMA-Based Smart Energy Meters:

The SG field comprises large IN segments that degrade the received signal leading to a
communication failure. Therefore, key parameters such as SG noise parameter ¢ for SM have
been used to analyze the effect of IN in the proposed model. The developed mitigation method
incorporates BG and MC representation models for IN. In the BG model, the sum of
background and impulse noise can be represented as follows: & = ng + n;. Here, n; and ng our
representation of AWGN for Bernoulli and Gaussian random sequences respectively with zero
mean and variance 6 and o [12][14]. Here, for the Bernoulli random sequence, b is known as
the impulse arrival rate with the probability p which is independent of n; and ng. The noise is
considered an independent and identically distributed (i.i.d.) random variable whose Probability
Density Function (PDF) is given by:

P, (x) = (1 - p)G(x,0,0¢) + pG(x,0,0¢, 07) ©)

Here, G(x,0,0¢) is a Gaussian PDF with a mean p, and variance 0 . The average
noise power & of BG model is given as follows: &, = E[n?] = E[nZ] + E[b*]E[n%] = 0§ +
pot [12]. The PDF of Laplacian noise with zero mean and variance 2¢? is heavy-tailed and
approaches slowly to zero [13][15]. The average noise power in the Laplacian-Gaussian noise
model can be expressed as:y = E[n?] = E[n2] + E[r?]E[n?] = & + p2%. Where
Bernoulli's random variable 7 is known as the impulse arrival rate for the Laplacian-Gaussian
(LG) model. Although the LG model can be a good candidate to represent IN with a large
number of impulses occurring with a short amplitude, the BG model is more suitable otherwise
and hence it is chosen for noise representation in our work.

The Middleton Class-A (MCA) noise model is a form of the Poisson noise model which

is an extension of Bernoulli distribution to the continuous space but with the impulse width
. T . . .
taken into account. The parameter A = Z— here, represents the density of impulses (of a certain
0

width) in an observation period [30] where 7] is the average number of impulses per second and
Ty is unit time. The parameter 7, is the average duration of each impulse, with each impulse

occurring for the same duration. The PDF MCA noise can be written as:

Ame A , @)
P = ) S =6(x,0,08)
m=0

G(x,0,0%) represents a Gaussian PDF with mean y and variance . The MCA noise
model is a sum of different zero mean Gaussian PDFs with different variances 0% , where PDFs
AMe~A
m!

are expressed as weighted Poisson PDF B, = The average noise power in the MCA

noise model can be expressed as: &y = & + — 0. Here, the parameter A is the density of
A

impulses (of a certain width). By utilizing the NOMA system, multiple SMs can share the same
frequency bandwidth since each SM only uses a portion of the total power. They can be
identified by the power level allotted by the BS. Successive interference cancellation (SIC) allows
the decoder to identify an SM’s signals while treating the other SMs as noise [31][32]. For two
SM models, which are placed apart from each other, the symbol received by SM 1 (nearby SM)
with IN added can be written as:

SMl == Slﬂ alphl + Szﬂ azphl + f (3)

A symbol received by SM 2 (distant SM) with IN added can be written as:

SMZ == 52»\/ azphz + Slﬂ alphz + f (4)
Here, 1 and s, are transmitted symbols, a1 and a, are power allocation coefficients, hq
and h; are channel gains for SM 1 and SM 2 respectively. Subsequently, received a symbol for
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an k¢ SM, with IN contamination can be mathematically represented as:

k-1 (5)
SMk = Sk akPhk + z Slﬂasphk + f
1=1,l#k

Here, s, and s; are the symbols transmitted from BS for k¢p, and Iy, SMs respectively,
and hy represents channel gain for ky; SM. Nearer users’ signals are considered to be

interference and distant ones as the noise. The term Z%;i,li k S1v @1Phy = x,in (5) represents
level inter-cell interference symbols for UEy. Also, Zl;llli ke @ P|hy |2 is the total power of inter-
cell users’ interference which is considered as a noise component. Whereas, a is the power
allocation coefficient such that @; + a; + a3 + -+ a, =1 and / is the Rayleigh fading
coefficient for the wireless channel. The above equation can be re-written as:

SMk =.S’khk'|'.9('|'éT (6)
System Model:

An SG infrastructure is shown in Figure 2 in which GS (Grid Station) controls the power
transfer through information exchange between consumers and utility using smart metering,
hence performing the function of BS as well. To accommodate a large number of users, NOMA
is implemented for information transmission and reception through the transceiver unit of SM.
However, disruptions in the power system can cause disturbances in the wireless transmission
unit of SMs, leading to the introduction of IN at SMs. The NOMA scheme, on the other hand,
suffers from inter-user interference due to power division multiple user access which increases
the complexity of noise representation in wireless links. To reduce IN effect, an advanced 2-
output DNN model is introduced at the receiving end. On the first output, DNN identifies the
IN-affected signal and then mitigation is applied to remove the identified noisy signal. The
mitigation process is supported by DNN second output which classifies the noise as low level
and high-level impulse.

Proposed DNN for IN Detection and Classification:

A deep feed-forward neural network with backpropagation is proposed for the
simultaneous detection and classification of IN in the incoming signal samples that are
contaminated/corrupted by IN. The hidden layers are an integral part of a neural network and
provide an appropriate mapping of input to the outputs. Several experiments were performed
to obtain minimum training losses which led to an optimal number of layers and connected
neurons for the proposed setup. The presented DNN comprised four hidden layers

H[l], H[z],HB], and H¥ .

] PDMA
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Figure 2: System Model
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Each layer is constituted of n neurons. The input to the proposed DNN includes three
features in addition to the input sample and is represented as F = [fi, f5, f3, fa]” (The next
subsection discusses the features in detail). The output of DNN is represented as [01, 0,] and
comprised of a single layer with two nodes which yield (i) a binary sequence of ‘1’ and ‘0
representing IN or no IN respectively, (ii) IN classification of each bit. The connection between
each preceding and subsequent hidden layer and between the last layer to the output layer is
created by an activation function C, multiplying hidden layers with parameter matrix P and
adding a bias vector b. The association of different layers in the network can be mathematically
expressed as:

H=4 = cl(plE 4 pltl) ¢ (pBIHE] 4 pI3]y (7)
0 = [04,0,] = C#I(PHy] 4 pl4]) ®)
Here, Rectified Linear Unit ReLU(F) = max(F, 0) is used as an activation function in

the hidden layers and gives 0 for input value F less than 0 and gives an output equal to F for all

values otherwise. The sigmoid function is used as the activation function at the output layer
1

1+eF’
off the result. The training accuracy of the proposed deep neural network for a training dataset
is evaluated through a cost function that determines the mean error present in the output
predicted value. The magnitude of evaluated error using a cost function has a direct relationship

with the difference between predicted 0" and actual output O values and is expressed as [33]:

©)

represented by Sgmd (F) =

This function gives either 0 or 1 as output after rounding

m
Error(P,b) = ——| " 0,10g(0)) + (1~ 0) log(1 ~ )
Jj=1
R—1 Ny Ny+1
A 2
eI
r=1p=1 g=1

Where k is the number of samples used for training, A is the scalar regularization rate
for fine-tuning the network, n, represents the number of neurons in R layer. The training of
DNN is done with Adam’s optimizer as the proposed DNN works on a backward propagation
algorithm [34]. Since the Error parameter is a function of P and b, DNN needs to calculate these
values during training to minimize the value of Error (P, b).

Input Features of Proposed DNN:

A DNN often experiences over-fitting problems during the training period which can
be eliminated by accurate extraction of input features and devising their appropriate relationship
with the output. The idea is to remove the redundancy in the DNN learning framework by
carefully selecting the input features. This allows a fair sample classification of corrupted and
true data. Furthermore, to understand the pattern of noise in data samples, the sample bit under
test must be analyzed in conjunction with its adjacent sample data. To attain this, the following
useful and relevant features are fed to the input layer along with input sample values.

ROAD Statistic Value: Rank Order Absolute Difference (ROAD) statistic is a well-
known technique used in the detection of IN which is randomly generated in 2D images and
serves as one of the inputs in the proposed DNN. The ROAD feature can identify a sample as
noisy or true by returning a high value or low value respectively [20]. In the proposed work, the
value of ROAD statistic is determined for data samples stored in a 1-D vector having a 1x2n
dimension. To calculate the ROAD score, the following steps are executed:

The magnitude of variance between the sample data under test S, and its adjacent data
(both right and left side) is represented by Absvar(i) and is computed as:

Absvar(a) = | sq — [Sav=n - Sav~1, Sa+1s > Sasn 1|
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(10)

Absvar (i) values are sorted in ascending order:
vector(a) = sort(Absvar(a)) (11)
The first n values of vector(a) are summed up to obtain the ROAD feature:

n
ROAD = Z vector(a) (12)
a=1

Median Deviation feature: The Median Deviation feature of Med Dev is computed as

follows:
MedDev = s, — median([Sq_n, --»Sa» > Sa+n])
(13)

Here median is a standard moving average filter that calculates the median of 2n+1
samples.

Average Occurrence Probability feature (Avg Prob): This is the third input feature
chosen for the proposed deep learning model and is a powerful index to classify low and high
impulsivity. It is computed by averaging the occurrence probability P, on 64 samples including
the input sample under the test and subsequent 63 samples [26]. The low chance of high-noise
happening often is confirmed by the low average occurrence probability at outputs. Similarly,
the high chance of low noise happening often is confirmed by the high average occurrence
probability at outputs. Avg Prob feature is computed as follows:

Yaz1 Fa (14)

AvgProb =
vgPro 2

Outputs of Proposed DNN:

As discussed earlier, inputs to the presented DNN for IN detection are the incoming
sample, ROAD statistic, difference median, and average occurrence probability. Response of
the first two input features appears to be high when an input sample is contaminated with IN
and response is low when the true sample is received. Both outputs of DNN generate binary
sequences of 0’s and 1’s. By learning the statistical characteristics of contaminated samples,
DNN is trained such that a value of 1 at the first output indicates a noisy sample detection and
a value of 0 as a true sample detection. The second output of the developed network classifies
IN into high or low categories. However, this task is challenging due to randomly varying
amplitude. The output is represented as a 0 or 1. A ‘0’ output at location k’ of sample data
represents k¢j the sample being contaminated by a low-intensity IN while a received ‘1’
indicates the contamination from high-intensity IN.

Result and Discussion:

The presented DNN is integrated into the NOMA downlink to mitigate and classify IN
coming from a Rayleigh fading channel. The proposed research work was done through the
BPSK modulation technique for computational convenience. The tuning parameters used for
network training are as follows: Learning Rate hyper-parameter 7 = 0.02; Regularization
parameter A = 0.4; Number of data bits taken at a time (n) = 5; Number of neurons in 4 hidden
layers are chosen as ny = 20, n, = 20, n3 = 20 and n, = 10 respectively. Power allocation
coefficients for the NOMA system are @y = 0.333 and @, = 0.667. The parameter matrices pll
, P2l pB1 pl4l 204 PIS] have dimensions of 20x4, 20x20, 20x20, 20x10 and 2x10
respectively. Wheteas bias vectors pll pl2l pB1 pl4 and bS] were selected to have
dimensions of (20 X 1), (20 X 1), (20 X 1), (10 X 1) and (2 X 1) respectively. The initialization
of chosen parameters in neural networks was done using Xavier initialization [35] which is
known for its good random initialization. The number of BPSK symbols used in training of dual
output DNN is 4 X 10, The symbols are mathematically defined in (3) and (4) and noise
occurrence in these symbols is represented using the Gaussian-Bernoulli noise model. First,
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DNN identifies whether a bit is affected by IN or not which is reflected in the first output of
DNN. In case of bits being unaffected by IN, conventional hard decoding is performed. If bits
are affected by IN, the effect of IN is removed by implementing adaptive decoding in which the
threshold is predicted by the second output of the proposed DNN.

Figure 3 shows graphs of predicted values of threshold by proposed DNN using a red
line against the amplitude of impulses accrued at that time. In the conventional/nonlinear
mitigation method, a fixed threshold is used which is based on historical data. If there is any
change in channel condition or sources of IN, the threshold becomes ineffective. The proposed
DNN predicts threshold values close to the targeted amplitude of IN as shown in Figure 3 which
is very useful in successfully removing the effect of IN in received bits. Moreover, if the channel
condition or source of IN is altered by any means, DNN updates its threshold accordingly. BER
petformance of different mitigation techniques including blanking, clipping, clipping/blanking
[16][17][18], DNN [4], and new DNN (proposed DNN) are compared in Figure 4. Although
BER is observed to improve with increasing SNR, the proposed DNN demonstrates the best
BER for all SNR values. The results obtained in Figure 4 show that traditional threshold-based
mitigation techniques (blanking and clipping methods) are prone to noise for smaller SNR
values. Therefore, computing an acceptable threshold value for discrimination between noisy
and noiseless symbols is a challenging task for traditional mitigation techniques.
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Figure 3: Predicted values of threshold by ~ Figure 4: BER performance of mitigation
proposed DNN. models.

In contrast, new DNN can successfully detect IN for low as well as high levels of signal
compared to DNN in [4]. For example, the proposed network has identified approximately 0.25
Mbits more true symbols within a stream of 1 Mbits at 5 dB SNR in comparison to nonlinear
mitigation methods and 0.15 Mbits more true symbols in comparison to DNN in [4]. Moreover,
DNN recognized 810 more true symbols at greater SNR values than the nonlinear mitigation
methods. This is the result of better noise detection at high SNR. Overall, achieved results with
the new DNN approach at different (high as well as low) SNRs are superior to DNN [4] and
nonlinear mitigation methods.

The BER performance highly depends upon user location with respect to BS. Distant users
receive more power than nearby users since they have to perform a smaller number of SIC operations
as compared to nearby users. Consequently, they face interference from nearby users and have low
BER performance. Theoretically, the transmitted power of a user is determined using the power
coefficient . For two user scenarios, if the nearby user (user 1) transmits signal power of a4, then the
transmitted power of the distant user (user 2) is expressed as @ = 1 — a; which shows the
coefficient's sensitivity to noise/interference. In Figure 5, the performance of distant and nearer
NOMA user pair has been demonstrated using the based IN mitigation approach in [4] and the
proposed DNN approach. The BER performances of user 1 and user 2 are almost the same at less
than 5 dB SNR, while at a higher SNR of 30 dB, the proposed DNN detected 200 more true symbols
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from the near user (user 1) and 500 more true symbols from the distant user (user 2) compared to
DNN presented in [4]. Since the number of IN occurrences in user 2 signal is high, user 2 exhibits a
poor BER performance than user 1. Consequently, noisy samples of user 2 are better mitigated by the
proposed DNN. Furthermore, as shown in Figure 5, IN mitigation in user 1 samples has been
performed more consistently than for user 2. However, user 1 still suffers from IN since it cancels

inter-user interference using SIC.
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Figure 5: Performance of NOMA user pair Figure 6: BER Performance in BG test
with deep learning-based IN mitigation. environment.

Due to IN occurrence as well as inter-user interference, user 2 shows varying BER for
different SNR values. Figure 6 and Figure 7 illustrate the BER performance evaluation of the
proposed DNN-based IN mitigation technique in test environments of BG and MCA
respectively. In Figure 6, parameter A represents the density value of impulse (of a certain width)
for a particular observation period whereas, in Figure 7, parameter p represents the probability

value of IN arrival rate which is independent of n; and n;.
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Figure 7: BER Performance in MCA test environment.

The MCA noise model is an infinite sum of different zero mean Gaussian PDFs with
different variances with weighted PDFs weighted by Poisson PDF. Another important model is
the BG model which is a mixture of two Gaussian PDFs with different variances. The
parameters in the MCA model are linked to the physical channel but do not represent the bursty
nature of the impulses observed. Figures 6 and 7 show that with an increase in frequency of IN
occurrence as expected, BER performance is degraded in BG and MCA environments.
Conclusion:

In this research work, a multiple-input dual-output DNN is proposed for IN detection
and classification generated in NOMA-enabled smart energy meters. The described work
addresses the issues faced in conventional mitigation techniques and improvises the
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performance of the deep learning method proposed in the literature for noise mitigation. The
two outputs of presented DNN in this research study efficiently detect as well as classify the IN.
By investigating and incorporating new input features that can predict better thresholds for noise
mitigation, the performance of the proposed deep neural network can be further improved.
The future work of this research will focus on enhancing the understanding of power
system impulses' effects on wireless transmissions within NOMA-enabled smart grid
communication systems. Additionally, future research will address NOMA challenges by
developing optimization strategies tailored to effectively mitigate inter-user interference.
Moreover, the research will continue to explore noise mitigation techniques and signal
processing algorithms beyond deep learning to optimize reception quality in smart grid
communication systems. Lastly, future research will investigate advanced optimization
techniques such as power allocation and resource management to maximize spectral efficiency
and system performance.
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