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ardiovascular diseases, particularly myocardial infarction (MI) constitute a significant 
health concern globally. A myocardial infarction, which is commonly known as a heart 
attack, happens when a part of the heart muscle doesn’t get enough blood because of a 

blockage. Studying MI is complex and it requires looking at it from different angles. In recent 
years the fusion of mathematical modeling and artificial intelligence (AI) techniques has emerged 
as a promising avenue for understanding the complexities associated with MI. The primary goal 
of this study is to provide an AI-based solution for a new nonlinear mathematical model related 
to myocardial infarction phenomena. To obtain the solution we will use a well-known deep 
learning technique, known as artificial neural networks (ANNs) with the combination of the 
optimization technique Levenberg-Marquardt back propagation (LMB). This combined method 
is referred to as ANNs-LMB. The results obtained from the model using ANNs-LMB are 
compared with a reference dataset constructed through the adaptive MATLAB solver ode45. 
The numerical performance is validated through a reduction in mean square error (MSE). The 

MSE is around 10−6 and the obtained results by ANNs-LMB almost overlapped with the 
reference dataset, which shows the accuracy and efficiency of the proposed methodology. 
Keywords: Artificial Neural Network; Myocardial Infarction; Mathematical Modeling. 
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Introduction: 
Myocardial Infarction, often referred to as a heart attack, stands as a significant 

contributor to morbidity and mortality globally. Myocardial infarction causes 17.1 million deaths 
per year throughout the world [1]. Based on the latest statistics from the World Health 
Organization (WHO) on the incidence of heart attacks in Pakistan, it was reported that 240,720 
individuals lost their lives due to heart attacks in the year 2020. Smoking, inadequate physical 
activity, excessive body weight, elevated cholesterol levels, high blood pressure, and an unhealthy 
diet leading to elevated blood sugar are all factors that contribute to the risk of experiencing a 
myocardial infarction [2]. After a heart attack, the blockage in blood vessels stops oxygen and 
nutrients from reaching the heart muscle downstream. This causes damage to the heart, leading 
to a series of events like cell death, inflammation, and changes in the heart’s structure, resulting 
in scars, stiffness, and altered function. People who’ve had a heart attack often face serious heart 
complications later on [3]. 

To respond to MI, the left ventricular (LV) of the heart will change its structural and 
functional behavior i.e. LV size, shape, and function called the remodeling of LV [4]. Because 
of the limited availability of experimental data and the biological complexity of LV remodeling, 
the understanding of the MI mechanism is a very complex process. By representing interaction 
of the factors such as blood flow, tissue oxygenation and cellular response through mathematical 
models can provide effective and valuable predictive capabilities. Previous studies [4][5][6], have 
explored the remodeling of left ventricular by using mathematical modeling. The approach 
employed in these articles involves using the numerical Runge-Kutta method with computer 
assistance to obtain the numerical solutions and collect various pieces of information. These 
investigations include exploring the important roles played by cytokines in the development of 
macrophages and other cells. Additionally, Zeigler et al. [7], has been investigated a mathematical 
model for fibrosis, using an ordinary differential equations (ODEs) framework to predict the 
behavior of collagen formation, breakdown, and aggregation. By using different assumptions, 
there exist some other papers [8][9], that include mathematical models to investigate the 
behavior of the heart after myocardial infarction, but all have some specific limitations. Agent-
based models [10][11] have been employed to study tissue fibrosis, while biomechanical models 
[12][13] are also present in the literature. However, there is a scarcity of studies focusing on 
ODE models. Dealing with changes in the heart after myocardial infarction is always a challenge. 

Various disciplines, including health, biology, physics, chemistry, civil and mechanical 
engineering, and economics, extensively use mathematical models [14][15][16][17][18][19]. In 
particular, there is a notable emphasis on combining these models with deep learning techniques, 
especially focusing on multilayer neural networks. In 2018, Side et al. [20] emphasized the crucial 
role of mathematical science in preventing the spread of illnesses. In addressing the spread of 
viruses, a mathematical model can be implemented, as in 2021 Umar et al. [21] highlighted the 
significant role of mathematics in exploring disease outbreaks,  spread, and predictive patterns, 
particularly in the field of epidemiology. To obtain numerical outcomes for these models, 
stochastic solvers based on artificial neural networks along with optimization techniques are 
employed. Sabir et al. [22] present applications of artificial neural networks with the combination 
of Levenberg-Marquardt backpropagation for COVID-19 in 2022. In 2023 Haider et al. [23] 
proposed a system of ODEs for the study of hepatitis B virus (HBV) through deep learning 
techniques i.e. artificial neural network with the combination of Levenberg-Marquardt 
backpropagation. In this paper, we apply a deep learning methodology, specifically leveraging a 
widely recognized approach known as artificial neural networks, to infarction. In the diagram, 
cells are depicted by boxes with black color, while green boxes contain cytokines and specific 
proteins. Two types of arrows are used: black arrows signify the physical transfer of cells between 

groups, for instance, the transition of 𝑀1 to 𝑀2 macrophages and vice versa. On the other hand, 
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blue arrows denote interactions between distinct cell populations, like the release of cytokines 

by macrophages. The dotted black line represents the consumption rate of 𝑀𝑑 by 𝑀1.  

 
Figure 1: Diagram illustrating the cellular and molecular dynamics following a myocardial 

investigation of the phenomenon of myocardial infarction. 
In the diagram, cells are depicted by boxes with black color, while green boxes contain 

cytokines and specific proteins. Two types of arrows are used: black arrows signify the physical 

transfer of cells between groups, for instance, the transition of 𝑀1 to 𝑀2 macrophages and vice 
versa. On the other hand, blue arrows denote interactions between distinct cell populations, like 
the release of cytokines by macrophages. The dotted black line represents the consumption rate 

of 𝑀𝑑 by 𝑀1. 
The goal of this study is to introduce numerical simulations of the remodeling of MI 

through a nonlinear system of ODEs, including different compartments of the post-MI 
phenomenon. The solutions of the system are obtained using artificial neural networks 
methodology supported by an optimization technique called Levenberg-Marquardt 
backpropagation. Furthermore, an analysis of various components of ANNs-LMB is conducted 
to assess the proposed methodology’s efficacy in achieving high accuracy and optimal 
performance. This method is suggested as an artificial intelligence-based approach for solving 
complex types of ODE systems with known initial conditions [24][25][26]. Some salient 
geographies of the designed study are given as follows: 

• The MI mathematical model presented in this study is a modification of the 
mathematical model proposed by Lafci et al. [3]. We add two more cytokines: 

Transforming Growth Factor beta (𝑇𝛽), and Tumor Necrosis Factor alpha (𝑇𝛼), in the 

nonlinear system of ODEs proposed by Lafci et al. [3]. TGF-β is involved in the 
regulation of cell growth, differentiation, apoptosis, immune responses, and other 
cellular functions. It acts as a signaling molecule in various tissues and cell types, 
influencing both physiological and pathological processes [27], and is produced by 

alternatively activated macrophages (𝑀2) and fibroblasts (F). TNF-α is a cytokine 
involved in inflammation and immune system regulation. TNF-alpha is produced mainly 

by activated macrophages (𝑀1) and damaged cardiomyocytes (𝑀𝑑) and can induce fever, 
inflammation, and cell death in certain tissues [28]. 

• Detailed descriptions of all compartments of the MI model are provided. 

• The AI-based solutions of the model are performed by using a deep learning technique, 
ANNs-LMB in MATLAB. 

Mathematical Model: 

By incorporating 𝑇𝛽 and 𝑇𝛼, and introducing some modifications to the mathematical 

model proposed in [3], our enhanced model is formulated as: 
𝑑𝑀𝑐

𝑑𝑡
= −𝑘1𝑀𝑐                                                                     (1) 

𝑑𝑀𝑑

𝑑𝑡
= 𝑘1𝑀𝑐 − 𝑘2𝑀1𝑀𝑑 − 𝜇1𝑀𝑑                                      (2) 
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𝑑𝐼𝐿1

𝑑𝑡
= 𝑘3𝑀𝑑 + 𝑘4𝑀1

𝑐1

𝑐1+𝐼𝐿10
− 𝑑𝐼𝐿1

𝐼𝐿1                             (3) 

𝑑𝐼𝐿10

𝑑𝑡
= 𝑘5𝑀2

𝑐2

𝑐2+𝐼𝐿10
− 𝑑𝐼𝐿10

𝐼𝐿10                                                      (4) 

𝑑𝑀0

𝑑𝑡
= 𝑘6𝑀𝑑 − 𝑘7𝑀0

𝐼𝐿1

𝐼𝐿1+𝑐𝐼𝐿1

− 𝑘8𝑀0
𝐼𝐿10

𝐼𝐿10+𝑐𝐼𝐿10

− 𝜇𝑀0                  (5) 

𝑑𝑀1

𝑑𝑡
= 𝑘7𝑀0

𝐼𝐿1

𝐼𝐿1+𝑐𝐼𝐿1

+ 𝜏1𝑀2
𝑇𝛼

𝑇𝛼+𝑐𝑇𝛼

− 𝑘9𝑀1
𝑇𝛽

𝑇𝛽+𝑐𝑇𝛽

− 𝜇𝑀1            (6) 

𝑑𝑀2

𝑑𝑡
= 𝑘8𝑀0

𝐼𝐿10

𝐼𝐿10+𝑐𝐼𝐿10

+ 𝑘9𝑀1
𝑇𝛽

𝑇𝛽+𝑐𝑇𝛽

− 𝜏1𝑀2
𝑇𝛼

𝑇𝛼+𝑐𝑇𝛼

− 𝜇𝑀2.         (7) 

𝑑𝐶

𝑑𝑡
= 𝑘10𝐹

𝐼𝐿10

𝐼𝐿10+𝑐3
+ 𝛼1𝐹

𝑇𝛽

𝑇𝛽+𝛽1
− 𝑘11𝐶

𝐼𝐿1

𝐼𝐿1+𝑐4
− 𝜏2𝐶

𝑇𝛼

𝑇𝛼+𝑐4
− 𝑑𝑐𝐶  (8) 

𝑑𝐹

𝑑𝑡
= 𝑘12𝐹

𝐼𝐿10

𝐼𝐿10+𝑐5
+ 𝛽2𝐹

𝑇𝛽

𝑇𝛽+𝛽1
− 𝑑𝐹𝐹                                            (9) 

𝑑𝑇𝛽

𝑑𝑡
= 𝛼2𝐹 + 𝛼3𝑀2 − 𝑑𝑇𝛽

𝑇𝛽                                                          (10) 
𝑑𝑇𝛼

𝑑𝑡
= (𝜏3𝑀1 + 𝜏4𝑀𝑑)

𝑐6

𝑐6+𝑇𝛽
− 𝑑𝑇𝛼

𝑇𝛼                                              (11) 

The model’s parameters, along with their descriptions, values, and units are listed in 
Table 1. This mathematical model captures the cellular and molecular dynamics associated with 
MI. It is derived from the depicted interactions in Figure 1, which serves as a flow diagram 
illustrating the system dynamics after MI, specifically focusing on scenarios of post-MI without 
any medical interventions. 

Equation 1 shows how the number of heart muscle cells (𝑀𝑐) changes over time. 

Equation 2 explains how the number of damaged heart muscle cells (𝑀𝑑) changes over time. It 

goes up as healthy cells 𝑀𝑐 damage and decreases at a rate of 𝑘2 and 𝜇1. Equation 3 illustrates 

how the concentration of interleukin 1 cytokines (𝐼𝐿1) changes over time. These cytokines are 
released by both damaged heart muscle cells and a specific type of immune cells, classically 

activated macrophages (𝑀1). The impact of the inhibition by interleukin 10 cytokines (𝐼𝐿10) is 

modeled as a decreasing function, where 𝑐1 signifies the strength of inhibition. Equation 4 

outlines the temporal evolution of 𝐼𝐿10. These cytokines are released by specific types of 

immune cells, alternatively activated macrophages (𝑀2). A decreasing function is used to depict 

the inhibition of 𝐼𝐿10 by 𝐼𝐿1. Equation 5 explains how the quantity of monocytes (𝑀0) changes 

over time. It rises because of 𝑀𝑑 and declines due to two factors: the differentiation of 𝑀0 into 

𝑀1 and 𝑀2, and a constant emigration rate. The transition of 𝑀0 into 𝑀1 is stimulated by 

interleukin 1, while the transition into 𝑀2 is promoted by interleukin 10 cytokines. Equation 6 

delineates how the density of 𝑀1  changes over time. It increases when 𝑀0  differentiates into 

𝑀1 and 𝑀2 transferred into 𝑀1 because of 𝑇𝛼, and decreases when 𝑀1 transfer to 𝑀2 by 

stimulation of 𝑇𝛽 and emigration. Equation 7 portrays the temporal evolution of the density of 

𝑀2. It increases when 𝑀0 activates 𝑀2 and when 𝑀1 shifts to 𝑀2, and it decreases due to 

emigration. Equation 8 shows the variation in the density of collagen (𝐶) over time. It increases 

as fibroblasts (𝐹) produce collagen in response to stimulation by 𝐼𝐿10 and 𝑇𝛽. On the other 

hand, it decreases due to degradation caused by the presence of 𝐼𝐿1, 𝑇𝛼 and a constant decay 

rate represented by 𝑑𝑐. Equation 9 characterizes how the density of fibroblasts changes over 

time. It increases through stimulation by 𝐼𝐿10 and 𝑇𝛽 but decreases due to death or emigration, 

represented by the rate 𝑑𝐹. Equation 10 details the rate of change of transforming growth factor-

β over time. It is secreted by both 𝐹 and 𝑀2. Equation 11 represents the change of 𝑇𝛼 over time. 

It produces by 𝑀1 and 𝑀𝑑 with constant rates 𝜏3 and 𝜏4 respectively. A decreasing function is 
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used to represent the inhibition of 𝑇𝛼 by 𝑇𝛽. In this equation 𝑑𝑇𝛼
 shows the decay rate of 𝑇𝛼 by 

considering its half-life time. 

 
Figure 2: Designed A NNs-LMB 

Table 1: MODEL’S PARAMETERS 

Parameters Description: Values 

𝑘1 Death rate of 𝑀𝑐 0.3 

𝑘2 Rate at which 𝑀𝑑 are consumed by 𝑀1 0.003 

𝑘3 Rate of Secretion of 𝐼𝐿1 by 𝑀𝑑 0.0004 

𝑘4 Rate of Secretion of 𝐼𝐿1 by 𝑀1 0.0005 

𝑘5 Rate of Secretion of 𝐼𝐿10 by 𝑀2 0.0005 

𝑘6 Rate of recruitment of 𝑀0 based on 𝑀𝑑 0.4 

𝑘7 Activation rate of 𝐼𝐿1 to activate 𝑀1 0.7 

𝑘8 Rate of activation of 𝐼𝐿10 to activate 𝑀2 0.3 

𝑘9 Rate of transition from state 𝑀1 to 𝑀2 0.075 

𝑘10 𝐶 production rate by 𝐹 26 × 105 

𝑘11 Degradation rate of 𝐶 by 𝐼𝐿1 0.0003 

𝑘12 Fibroblasts growth rate 0.25 

𝑐1 Effectiveness of 𝐼𝐿10 inhibition on 𝐼𝐿1 2.5 

𝑐2 Effectiveness of 𝐼𝐿1 inhibition on 𝐼𝐿10 10 

𝑐3 Effectiveness of 𝐼𝐿10 inhibition on 𝐹 5 

𝑐4 Effectiveness of 𝐼𝐿1 and 𝑇𝛼  on 𝐶 10 

𝑐5 Impact of promoting of 𝐼𝐿10 on 𝐹 2.5 

𝑐6 Effectiveness of 𝑇𝛽 inhibition on 𝑇𝛼 0.0007 

𝜏1 Transition rate of 𝑀2 to 𝑀1 because of 𝑇𝛼 0.7 

𝜏2 Degradation rate of C by 𝑇𝛼 0.0003 

𝜏3 Rate at which 𝑀1 produces 𝑇𝛼 0.0007 

𝜏4 Rate at which 𝑀𝑑 produces 𝑇𝛼 0.000005 

𝛼1 Stimulation rate of transition of F to C by 𝑇𝛽 10 

𝛼2 Secretion rate of 𝑇𝛽 by 𝐹 0.0167 

𝛼3 Rate at which 𝑀2 produces 𝑇𝛽 0.0144 

𝛽1 Effectiveness of 𝑇𝛽 promotion on 𝐹 0.00316 

𝛽2 Stimulation rate of 𝑇𝛽 on 𝐹 0.03 

𝑐𝐼𝐿1
 Impact of promoting of 𝐼𝐿1 on 𝑀1 10 

𝑐𝐼𝐿10
 Impact of promoting of 𝐼𝐿10 on 𝑀2 5 

𝑐𝑇𝛽
 Effectiveness of 𝑇𝛽 promotion on 𝑀2 0.00316 

𝑐𝑇𝛼
 Impact of promoting of 𝑇𝛼 on 𝑀1 10 

𝑑𝐼𝐿1
 Decay rate of 𝐼𝐿1 considering its half-life time 0.2 

𝑑𝐼𝐿10
 Decay rate of 𝐼𝐿10 considering its half-life time 0.2 
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𝑑𝐶 The decay rate of 𝐶 by some enzymes 0.002 

𝑑𝐹 Emigration rate of 𝐹 0.02 

𝑑𝑇𝛽
 Decay rate of 𝑇𝛽 considering its half-life time 4.06 

𝑑𝑇𝛼
 Decay rate of 𝑇𝛼 considering its half-life time 0.5 

𝜇 𝑀0,  𝑀1   and 𝑀2 emigration rate 0.2 

𝜇1 Removal rate of 𝑀𝑑 0.002 

Methodology: 
The two-step approach to the stochastic numerical procedure for the MI mathematical 

model is used. The first step involves offering comprehensive and detailed explanations of the 
computational stochastic numerical procedure, which is centered on ANNs-LMB. The second 
step encompasses the implementation procedures that bolster the stochastic numerical 
computation for the MI nonlinear mathematical model. The implementation of ANNs-LMB is 
employed to analyze and utilize the computational stochastic numerical outcomes of the 
mathematical model for myocardial infarction. We use MATLAB for the implementation of 
ANNs-LMB to obtain the results.  

The “MATLAB” implementation follows a specific structure depicted in Figure 2, 
comprising a single input layer, hidden layers, and output layers. The configuration involves 20 
hidden neurons, n-fold cross-validation, a log-sigmoid activation function, 20000 epochs, and 
the Levenberg-Marquardt optimization algorithm. It is important to highlight that the label data 
for input and targets are obtained from the standard numerical solution i.e. MATLAB solver 
command ode45. 

Table 2: Model’s Initial Conditions 

Variables Values Units 

𝑀𝑐(0) 400 cells/mL 

𝑀𝑑(0) 0 cells/mL 

𝐼𝐿1(0) 0.00001 pg/mL 

𝐼𝐿10(0) 0.000001 pg/mL 

𝑀0(0) 0.02 cells/mL 

𝑀1(0) 0 cells/mL 

𝑀2(0) 0 cells/mL 

𝐶(0) 839.5 pg/mL 

𝐹(0) 1 cells/mL 

𝑇𝛽(0) 0.054 pg/mL 

𝑇𝛼(0) 0.00001 pg/mL 

Numerical Simulations: 
The parameters used in the numerical simulations are presented in Table 1, providing 

descriptions and values for each parameter. The initial values of all compartments used in the 
model are illustrated in Table 2. Numerical outcomes for the nonlinear dynamical model of 
myocardial infarction within the input range [0, 60] are obtained through the ANNs-LMB 
methodology. The results are generated by using MATLAB and depicted in Figures 3-6. The 
graphs illustrating calculated results for the MI mathematical model are presented in Figures 3-
6. In particular,  

In particular, Figure 3 offers insights into the performance, error histogram with 20 bins, 
and regressions of the applied methodology. Specifically, Figure 3(a) displays the calculated mean 
square error, measures for the best curves during training, validation, and testing with optimal 

performance achieved at epoch 20000, which is 2.6795 × 10−6. These visual representations 
underscore the successful convergence and precision achieved by the used methodology. 
Moreover, in Figure 3(c), correlation measures are presented, highlighting the regression 



                               International Journal of Innovations in Science & Technology 

ICTIS|May 2024|Special Issue                                                                Page |24 

performances. The correlation performances, expressed as the coefficient of determination (𝑅2 
values), predominantly approach 1, underscoring the precision in solving the model. These plots 
encompass training, validation, testing and collectively indicating the accuracy of the scheme. 
Finally, fitting curves are depicted in Figure 4 to show the comparison between training, 
validation, and testing of the used methodology. 

 
(a) 

 
(b) 

Figure 3: The performance of the used methodology ANNs-LMB to solve the MI 
mathematical model is presented in (a). Error histogram, and regression measure through 

ANNs-LMB are shown in (b) and (c) respectively. 
Figures 5 and 6 display comparison plots of the solutions obtained by using the 

ANNs-LMB methodology and the true solutions (reference dataset constructed through 
MATLAB solver ode45) for the nonlinear dynamical system associated with myocardial 
infarction. Figure 5(a) compares the ANNs-LMB solution with the exact solution of the 
cardiomyocytes. We can observe that the solution obtained by ANNs-LMB and the exact 
solution are almost overlapped. Similarly, comparisons of dead cardiomyocytes, monocytes, 
macrophages, and fibroblasts are presented in Figure 5(b)-5(f). The comparison of cytokines 
and proteins after myocardial infarction is presented in Figure 6. These plots reveal a nearly 
perfect overlap between the exact solutions and those obtained by ANNs-LMB, 
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underscoring the precision and effectiveness of the designed ANNs-LMB in solving the 
nonlinear system of differential equations related to the phenomena of myocardial 
infarction. 

 
Figure 4: Function fit for output 

Discussion: 
A mathematical model is constructed to encompass critical interactions among cardiac 

cells, immune responses, and matrix proteins following myocardial infarction. Our model 
represents a notable improvement over earlier mathematical models, as highlighted in the work 
by Lafci et al. [3]. It stands out for considering significant biological factors, explicitly addressing 
the change of cardiomyocytes, the behavior of fibroblasts, and the deposition of fibrotic collagen 
in the context of post-myocardial infarction. Through numerical simulations, we tested the 
model’s ability to describe events following a heart attack. The model’s accurate predictability 
enhances our understanding of left ventricular remodeling after a heart attack. To derive 
solutions for the model, we used the deep learning strategy known as ANNs-LMB.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 5: Dynamical behavior of cells after MI 
Many papers on mathematical models lack visual representations, such as plots, that 

illustrate the evolution of various populations and species over time. While notable exceptions 
include the works of Jin et al. [4] and Wang et al. [5], Lafci et al.’s paper [3] stands out by 
providing insightful plots of evolution. To enhance understanding, we introduced changes to 
Lafci et al.’s model, particularly by adding two new compartments, TGF-β and TNF-α, and then 
solving the modified model by using a deep learning strategy, specifically ANNs-LMB. 

Existing models related to MI, capture various aspects but often neglect key 
components. For example, Wang’s model considers the monocytes and macrophage 
relationship, inhibitory and synthesizing bio factors, yet overlooks collagen, fibroblasts, and 
cardiomyocytes. Jin’s model includes multiple elements but omits the behavior of 
cardiomyocytes. Zeigler et al. [7] primarily focus on fibroblast and collagen concentrations post-
MI. Our study distinguishes itself by incorporating two additional compartments into the 
existing model proposed by Lafci et al., which plays a role in left ventricular remodeling after 
myocardial infarction. Furthermore, we obtained solutions for the myocardial infarction 
mathematical model by applying the deep learning strategy ANNs-LMB. Despite its 
thoroughness, a limitation stems from the lack of clinical data to derive certain unknown 
parameters. This model’s limitation can be addressed in the future with more detailed data, 
allowing for a more precise representation of post-MI biological processes. Additionally, in this 
work, we used eleven compartments of the MI phenomena, a simplification compared to the 
real-world scenario. Future improvements may involve including more compartments to reduce 
this limitation. 

 

 
(a) (b) 
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(c) (d) 

 
(e) 

Figure 6: Dynamical behavior of cytokines and proteins after MI. 
Conclusions: 

The objective of the current study is to apply deep learning strategies for the 
investigation of myocardial infarction through mathematical modeling. Several parameters in the 
mathematical model proposed by Lafci et al., for myocardial infarction are modified. The 
primary alteration involves the addition of two more compartments, namely Transforming 
Growth Factor beta and Tumor Necrosis Factor-alpha. Results of the nonlinear dynamical MI 
mathematical model are obtained by using a deep learning technique ANNs-LMB. The 
mathematical model is dependent on eleven dimensions.  

Validation, testing, and training processes are conducted utilizing ANNs-LMB for the 
MI mathematical model. The numerical solutions derived from the model are compared with a 
reference dataset constructed through MATLAB. The outcomes demonstrate a notable 
overlapping with the reference dataset, underscoring the accuracy of the used methodology. 
Additionally, the results are further validated through the reduction of MSE. To evaluate the 
precision, reliability, and efficiency of the approach, various analyses, including MSE, error 
histograms, and regressions are used in this study. 
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