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nmanned Aerial Vehicles (UAVs) have been very effective for data collection from 
widely spread Internet of Things Devices (IoTDs). However, in case of obstacles, the 
Line of Sight (LoS) link between the UAV and IoTDs will be blocked. To address this 

issue, the Reconfigurable Intelligent Surface (RIS) has been used, especially in urban areas, to 
extend communication beyond the obstacles, thus enabling efficient data transfer in situations 
where the LoS link does not exist. In this work, the goal is to jointly optimize the trajectory and 
minimize the energy consumption of UAVs on one hand and satisfy the data throughput 
requirement of each IoTD on the other hand. As it is a mixed integer non-convex problem, 
Reinforcement Learning (RL); a class of Machine Learning (ML), is used to solve it, which has 
proven to be computationally faster than the conventional techniques to solve such problems. 
In this paper, three discrete RL agents i.e. Double Deep Q Network (DDQN), Proximal Policy 
Optimization (PPO), and PPO with Recurrent Neural Network (PPOwRNN) are tested with 
multiple RISs to enhance the data transfer and trajectory optimization in an Internet of Things 
(IoT) network. The results show that DDQN with multiple RIS is more efficient in saving 
communication-related energy, while a single RIS system with the PPO agent provides more 
reduction in the UAV’s propulsion energy consumption when compared to other agents.  
Keywords: Internet of Things Devices (IoTDs); Reconfigurable Intelligent Surfaces (RIS); 
Reinforcement Learning (RL) agents; Unmanned Aerial Vehicle (UAV); 6G communication.   
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Introduction 
The concept of ‘smart cities’, ‘smart agriculture’, ‘smart industries’, ‘smart transportation 

systems’, and ‘smart health care systems’ rely heavily on information and communications 
technologies to gather the information critical for the efficient use of existing assets and 
resources, for increasing the land and the industrial productivity and for improving the safety 
and risk monitoring.  The ‘smart’ concept requires smooth data collection from various sensors 
connected to the ‘Internet of Things (IoT)’ network, hence requiring integration of information 
and communication technologies. It is forecasted that by 2025, the number of IoT devices 
(IoTDs) may exceed 500 billion [1] thus requiring an enabling technology to handle this load. 
6G is a potential technology expected to provide an enhanced user experience and better Quality 
of Service (QoS) for IoT networks due to its superior features over the previous network 
generations such as 1) ultra-low-latency, 2) extremely high throughput, 3) satellite-based 
customer services, and 4) massive autonomous networks [2]. Artificial Intelligence (AI), real-
time intelligent edge processing, cognitive radio, the use of Unmanned Aerial Vehicles (UAVs), 
and Reconfigurable Intelligent Surfaces (RISs) enable the 6G networks to provide 
communication in difficult-to-reach areas (rural/ mountainous), as well as providing better QoS 
in densely populated urban areas [3].  RIS can smartly reconfigure the radio environment by 
incurring some change (amplitude/ phase or both) in the incident signal [4]. Compared to the 
active relays, RIS does not require power to amplify and transmit the signal. It just reflects the 
signal, making it a cost-effective solution [4]. Instead of installing multiple antenna towers to 
collect the data from these power-constrained IoTDs, spread over a large geographical area; 
UAVs have proved to be more economical. However, the UAV itself is an energy-constrained 
device and requires batteries or solar panels to enhance its flight time. This increases its weight, 
which in turn would result in more energy consumption.   

Keeping in view the great potential of the 6G-IoT networks, many efforts have been put 
into research in this area. In a RIS-assisted UAV system for the IoT network proposed in [5], 
the UAV trajectory and the communication channel allocation to multiple IoTDs are jointly 
optimized by using the PPO agent. The RIS configuration is handled by invoking the Block 
Coordinate Decent (BCD) algorithm, where a finite set of phase angles is tested for each RIS 
element to maximize the amount of data collected from each IoTD. The objective was to 
provide a timely data collection service before the information became stale and was of no use. 
The proposed model has outperformed a similar model without an RIS, a model with randomly 
configured RIS, and the other two models implementing the random walk UAV and the 
stationary UAV configurations. In an IoT network of [6], the trajectory of UAV, RIS 
configuration, and traffic scheduling of IoTDs are jointly optimized by using the Double Deep 
Q Network (DDQN) and Deep Deterministic Policy Gradient (DDPG) Reinforcement 
Learning (RL) agents. It was found that the DDPG agent performs better than the DDQN 
agent, due to its continuous nature. The proposed systems have performed better than the 
system without RIS and the system with RIS but without optimal phase shifts configured. In the 
RIS-assisted UAV system of [7], multiple RISs are proposed to serve a single moving user. It 
was found that using multiple RIS units would result in increasing the communication Energy 
Efficiency (EE) and reducing the propulsion energy consumption. At any time, only one RIS is 
assumed to be active, while the others are considered to be in sleep mode to avoid the occurrence 
of destructive interference at the Ground Terminal (GT). The scheduling of RIS is based on its 
proximity to GT. In this model, Deep Q Network (DQN) and DDPG agents are used for 
designing the UAV trajectory and configuring the RIS phase shifts. Again, the DDPG agent 
outperforms the DQN agent and also produces better results than the system with fixed UAV 
and fixed RIS phases and another with randomly moving UAV and random RIS phases. 
Our Contribution: In this paper, our main objective is to reduce the energy consumption of 
UAVs, by using various discrete RL agents and multiple RIS. Instead of using multiple UAVs 
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(as proposed by [8]), we prefer designing our proposed system with multiple RIS units, because 
the RIS is a passive device and its energy requirements are far lesser than the UAV. In our 
proposed IoT model, the UAV motion is allowed in 3D trajectory as in [6] and the system is 
tested with multiple agents, including PPO (as in [5]) and DDQN (as in [6]) and a newer agent 
PPO with Recurrent Neural Network (PPOwRNN). A comparison of these agents is made for 
IoT networks with single and multiple RIS. Our model uses Time Division Multiple Access 
(TDMA) for traffic scheduling. 

The rest of the paper is organized as follows. In the next section, our proposed 
methodology and the experimental settings are given followed by the section on results and 
discussion, and finally, the paper is concluded. 
Material and Methods: 
Proposed Methodology: 

Figure 1 shows the environment of our proposed model. As shown there, a single UAV 

is deployed to serve the 𝐾 IoTDs, spread randomly on the ground, in the Area of Interest (AoI). 

The AoI is partitioned into equal-sized 𝐿 cells.  The location of the 𝑖𝑡ℎcell in 𝑥𝑦 coordinates is 

given by 𝐿𝑖
𝑐 = [𝑥𝑖 , 𝑦𝑖]

𝑇  ∈  ℝ2 ×1, where 𝐿𝑖
𝑐 is the center of cell 𝑖. The centers of the adjacent 

cells are separated by a distance of 𝑥𝑠 and 𝑦𝑠 in 𝑥 and 𝑦 coordinates respectively. The horizontal 

location of the of 𝑘𝑡ℎ IoTD is given as 𝜔𝑘 = [𝑥𝑘 , 𝑦𝑘 ], while they are on ground level, their 

height 𝑧𝑘 = 0, and the average amount of data of the 𝑘𝑡ℎ IoTD is 𝐷𝑘, which needs to be 
uploaded to the UAV. 

 
Figure 1: Network architecture with Area of Interest (AoI) 

The horizontal location of the UAV at time 𝑛 is given as 𝐿𝑛 
𝑢 ∈  ℒ where ℒ =

{1,2,3, … … . 𝐿}, 𝑛 = {1,2, 3, … … , 𝑁}, 𝐿 is the total number of possible locations, and 𝑁 is the 
maximum number of time instants, defined for an agent’s training episode. At the end of each 
episode, the system restarts with the reset conditions, defined for any agent by the designer. 

Keeping the same nomenclature, 𝐿0
𝑢 and 𝐿𝑓

𝑢 would be the initial and final locations of the UAV 

respectively. Then the horizontal trajectory of UAV in 𝑁 instants is given 

as {𝐿0
𝑢 ,  𝐿1

𝑢 ,  𝐿2
𝑢,  𝐿3

𝑢, … …  𝐿𝑛
𝑢 … ,  𝐿𝑁

𝑢 ,  𝐿𝑓
𝑢}. In the vertical direction, the UAV height level at any 

time instant 𝑛 is given as ℎ𝑛
𝑢, where  ℎ𝑛

𝑢  ∈  ℋ = {1, 2, 3, … … . , 𝐻} and 𝐻 is the total number 

of height levels. The height is also divided into discrete steps of size ℎ𝑠, where ℎ𝑠 = ℎ𝑚𝑎𝑥/𝐻. 

Then the height of UAV at any instant 𝑛 is given as 𝐻𝑛
𝑢 = ℎ𝑛

𝑢 ℎ𝑠, constrained by the condition 
in eq.(1)  

ℎ𝑚𝑖𝑛  ≤ 𝐻𝑛
𝑢  ≤  ℎ𝑚𝑎𝑥 (1) 

With ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥  being the maximum and the minimum heights respectively. We 

assume that 𝑡𝑛
𝑢 is the duration of time slot 𝑛, allocated to an IoTD and is given by eq. (2).  

𝑡𝑚𝑖𝑛  ≤  𝑡𝑛
𝑢  ≤  𝑡𝑚𝑎𝑥 (2) 
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The total flight time of UAV is given as in eq. (3). 

𝜏 =  ∑  𝑡𝑛
𝑢

𝑁

𝑛=1

(3) 

The 3D trajectory of UAV is given by 𝑁 waypoints, where a single waypoint is given as 

[ 𝐿𝑛
𝑢  , 𝐻𝑛

𝑢], ∀𝑛 ∈ 𝑁 along with the time slot duration  𝑡𝑛
𝑢 , ∀𝑛 ∈ 𝑁. With the constraint of 

maximum horizontal speed 𝑉𝑚𝑎𝑥
ℎ  on UAV, the number of time instants 𝑁 must be large enough 

that the UAV location within the duration  𝑡𝑛
𝑢 must remain negligible as compared to the link 

distances between the UAV and the IoTDs. The horizontal speed of UAV at any time 𝑛 is given 
by eq. (4).  

𝑣𝑛
ℎ =  

|𝐿𝑛+1
𝑢 − 𝐿𝑛

𝑢 | 

 𝑡𝑛
𝑢 ≤ 𝑉𝑚𝑎𝑥

ℎ  , ∀𝑛 ∈ 𝑁(4) 

If 𝑣𝑛
ℎ = 0, the UAV will hover at time 𝑛. Likewise, for the maximum vertical 

speed 𝑉𝑚𝑎𝑥
𝑣 , UAV’s vertical speed at any time 𝑛 is given by eq. (5). 

𝑣𝑛
𝑣 =  

|𝐻𝑛+1
𝑢 − 𝐻𝑛

𝑢| 

 𝑡𝑛
𝑢 ≤ 𝑉𝑚𝑎𝑥

𝑣   , ∀𝑛 ∈ 𝑁(5) 

For rotary wing UAV, the propulsion energy at time 𝑛 is given in eq. (6) as: 

𝑒𝑛
𝑢𝑎𝑣 =   𝑡𝑛

𝑢(𝑃0 (1 +  
3(𝑣𝑛

ℎ)2

𝑢𝑡𝑖𝑝
2 ) +

1

2
𝑑0𝜌𝑠ỽ(𝑣𝑛

ℎ)3 + 𝑃1 (√1 +  
(𝑣𝑛

ℎ)4

4𝑣0
4 −

(𝑣𝑛
ℎ)2

2𝑣0
2 )

1
2⁄

+ 𝑃2𝑣𝑛
𝑣   (6) 

Where 𝑃0 , 𝑃1 and 𝑃2 are constant blade profile power, induced power in hovering status 

and constant ascending/ descending powers respectively. 𝑢𝑡𝑖𝑝 is the tip speed of the rotor blade, 

𝑑0 is the main body drag ratio, 𝑠 is the rotor’s solidity, 𝑣0 is the mean rotor’s induced velocity 

while hovering, 𝜌 the air density, and ỽ denotes the rotor’s disc area. 
As shown in Figure 1, there are multiple RISs in the AoI. Each RIS has a large number of Passive 

Reflecting Units (PRUs). PRUs are arranged in  𝑀𝑟 × 𝑀𝑐  uniform planar array and the distance 

between the adjacent PRUs is 𝑑𝑟  meters row-wise and  𝑑𝑐 meters column-wise. The reflection 

coefficient  Ɍ𝑚𝑟,𝑚𝑐 of each PRU is given by eq. (7) as: 

Ɍ𝑚𝑟,𝑚𝑐 = 𝛼𝑒𝑗𝜃𝑚𝑟,𝑚𝑐 , ∀ 𝑚𝑟 ∈ 1, … 𝑀𝑟 , 𝑚𝑐 = 1, … 𝑀𝑐 (7) 

Where 𝛼 is the attenuation loss of PRU and 𝜃𝑚𝑟,𝑚𝑐 is the phase shift of PRU, adjusted 

according to the direction of the IoTD being served. Suppose that there are total 𝑅 RIS available 

in the AoI. Then, at any particular time 𝑛, only one of them is considered to be switched on, 

while the rest are switched off or in sleep mode. The turn-on schedule decision of the 𝑟𝑡ℎ RIS 

is given as 𝑟𝑛
𝑅𝐼𝑆 = {0, 1}, where 𝑟𝑛

𝑅𝐼𝑆 = 1 means 𝑟𝑡ℎ RIS is switched on and 𝑟𝑛
𝑅𝐼𝑆 = 0 indicates 

that it is switched off at time 𝑛. The RIS scheduling scheme is given in eq. (8). 

𝑟𝑛
𝑅𝐼𝑆 = {

1,   𝑟𝑅𝐼𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑛
𝑢𝑅)

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (8) 

Where 𝑑𝑛
𝑢𝑅 = {𝑑𝑛

𝑢𝑟 , ∀𝑟 ∈ 𝑅} denotes the set of distances between UAV and RIS at 

time 𝑛. Additionally, we have the condition of ∑ 𝑟𝑛
𝑅𝐼𝑆 = 1, ∀𝑛 ∈ 𝑁𝑁

𝑛=1 , restricting only a single 

RIS to be turned on, which is nearest to the UAV. For the  𝑟𝑡ℎ RIS, the location of its first 

element is given by 𝜔𝑟 = [𝑥𝑟 , 𝑦𝑟 ] and its height above ground is given by  𝑧𝑟. Although, the 

horizontal locations of all RISs differ, their height above ground  𝑧𝑟 is same. 
Assume that the LoS does not exist between the UAV and any of the IoTDs, making it 

necessary for the IoTD to transmit its data to the UAV via RIS. Now the data from the IoTD 
is uploaded to the UAV via a cascaded channel, consisting of two LoS links (as shown by dotted 
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lines in Figure 1). The first LoS link is from IoTD to RIS and the other is from RIS to UAV. 

Then the channel gain between the UAV to 𝑟𝑡ℎ  RIS (switched-on according to eq. (8)) at time 𝑛) 

can be denoted as 𝑔𝑛
𝑢𝑟 ∈  ℂ𝑀𝑟 ×𝑀𝑐  and given in eq. (9) as 

𝑔𝑛
𝑢𝑟 =

√𝜉

𝑑𝑛
𝑢𝑟   [1, 𝑒−𝑗

2𝜋

𝜆
𝑑𝑟𝜙𝑛

𝑢𝑟𝜓𝑛
𝑢𝑟

, … … . 𝑒−𝑗
2𝜋

𝜆
(𝑀𝑅−1)𝑑𝑟𝜙𝑛

𝑢𝑟𝜓𝑛
𝑢𝑟

]
𝑇

⊗

⊗ [1, 𝑒−𝑗
2𝜋

𝜆
𝑑𝑐𝜑𝑛

𝑢𝑟𝜓𝑛
𝑢𝑟

, … … . 𝑒−𝑗
2𝜋

𝜆
(𝑀𝐶−1)𝑑𝑐𝜑𝑛

𝑢𝑟𝜓𝑛
𝑢𝑟

]
𝑇

(9) 

Where [ . ]𝑇 represents the transpose operation, 𝜉 is the path loss at a reference distance 

𝐷𝑜 = 1 m, 𝑑𝑛
𝑢𝑟 =  √(𝐻𝑛

𝑢 − 𝑧𝑟)2 + (𝐿𝑛
𝑢 − 𝜔𝑟)2 ,  𝜆 is the carrier wavelength, 𝜙𝑛

𝑢𝑟 =
𝑥𝑖− 𝑥𝑟

𝑑𝑛
𝑢𝑟  is 

the cosine and 𝜑𝑛
𝑢𝑟 =

𝑦𝑖− 𝑦𝑟

𝑑𝑛
𝑢𝑟  is the sine of the horizontal Angle of Arrival (AoA) and  𝜓𝑛

𝑢𝑟 =

 ℎ𝑛
𝑢− 𝑧𝑟

𝑑𝑛
𝑢𝑟  is the sine of the vertical AoA of signal at the 𝑟𝑡ℎ  RIS. The symbol ⊗ shows the tensor 

product. Far-field array response vector model is assumed at RIS, where 𝑑𝑛
𝑢𝑟 ≫

𝑚𝑎𝑥 ( 𝑀𝑟 𝑑𝑟 , 𝑀𝑐  𝑑𝑐). The channel gain between 𝑟𝑡ℎ  RIS and 𝑘𝑡ℎ IoTD is denoted as 𝑔𝑛
𝑟𝑘 ∈

 ℂ𝑀𝑟 ×𝑀𝑐 and given as in eq. (10). 

𝑔𝑛
𝑟𝑘 =

√𝜉

𝑑𝑛
𝑟𝑘   [1, 𝑒−𝑗

2𝜋

𝜆
𝑑𝑟𝜙𝑛

𝑟𝑘𝜓𝑛
𝑟𝑘

, … … . 𝑒−𝑗
2𝜋

𝜆
(𝑀𝑅−1)𝑑𝑟𝜙𝑛

𝑟𝑘𝜓𝑛
𝑟𝑘

]
𝑇

⊗ [1, 𝑒−𝑗
2𝜋

𝜆
𝑑𝑐𝜑𝑛

𝑟𝑘𝜓𝑛
𝑟𝑘

, … … . 𝑒−𝑗
2𝜋

𝜆
(𝑀𝐶−1)𝑑𝑐𝜑𝑛

𝑟𝑘𝜓𝑛
𝑟𝑘

]
𝑇

(10) 

Where 𝑑𝑛
𝑟𝑘 =  √(𝑧𝑟)2 + (𝜔𝑟 −  𝜔𝑘)2 ,  𝜙𝑛

𝑟𝑘 =
𝑥𝑟− 𝑥𝑘

𝑑𝑟𝑘
𝑛  is the cosine and 𝜑𝑛

𝑟𝑘 =
𝑦𝑟− 𝑦𝑘

𝑑𝑛
𝑟𝑘  is 

the sine of the horizontal AoA and  𝜓𝑛
𝑟𝑘 =

 𝑧𝑟

𝑑𝑛
𝑟𝑘 is the sine of the vertical AoA of signal at the 

𝑘𝑡ℎ IoTD. The cascaded channel gain is then given as in eq. (11). 

𝑔𝑛
𝑢𝑟𝑘 =  𝑔𝑛

𝑢𝑟 . 𝜭𝒏. 𝑔𝑛
𝑟𝑘(11)  

Where 𝜭𝒏 =  𝑑𝑖𝑎𝑔 (𝜃𝑛)  ∈ ℂ𝑀𝑟𝑀𝑐 ×𝑀𝑟𝑀𝑐  is the 𝑟𝑡ℎ RIS reflection coefficient matrix, 

and 𝜃𝑛 = [𝑒𝑛
𝑗𝜃1,1 , … . , 𝑒𝑛

𝑗𝜃𝑚𝑟,𝑚𝑐 , … . , 𝑒𝑛
𝑗𝜃𝑀𝑟,𝑀𝑐  ]𝑇 ∈  ℂ𝑀𝑟𝑀𝑐 ×1  According to our assumption of 

the Non-LoS (NLoS) path between UAV and IoTD, the channel gain at the 𝑘𝑡ℎ IoTD is given 
by eq. (12) as 

𝑔𝑛
𝑘 = (1 − 𝑝𝑛

𝑘)
𝜉

(𝑑𝑛
𝑢𝑘)

2 +  𝑝𝑛
𝑘𝑔𝑛

𝑢𝑟𝑘(12) 

Where 𝑑𝑛
𝑢𝑘 =  √(𝐻𝑛

𝑢)2 + (𝐿𝑛
𝑢 − 𝜔𝑘)2  and 𝑝𝑛

𝑘 is the blocking probability between 

UAV and 𝑘𝑡ℎ IoTD at time 𝑛, given by eq. (13) as  

𝑝𝑛
𝑘 = 1 −  

1

1 + 𝜂1𝑒
−𝜂2𝑡𝑎𝑛−1(

𝐻𝑛
𝑢

𝑑𝑛
𝑢𝑘)−𝜂1

(13) 

Where 𝜂1 and 𝜂2 are constants depending on the environment. The data rate 

𝑅𝑛
𝑘 achieved at the 𝑘𝑡ℎ IoTD is given in eq. (14). 

𝑅𝑛
𝑘 =  𝑐𝑛

𝑘 𝐵 𝑙𝑜𝑔2 (1 +
𝑃𝑔𝑛

𝑘

𝐵𝜎2
) (14) 

Where 𝑃 is the transmission power of an IoTD, 𝐵 is the channel bandwidth, 𝜎 is the 

noise variance and 𝑐𝑛
𝑘 = {0, 1} is the scheduling decision for the 𝑘𝑡ℎ IoTD at time 𝑛. As TDMA 

is used, so only a single IoTD is scheduled for service at any time instant, i.e. 

∑ 𝑐𝑛
𝑘 = 1, ∀𝑛 ∈ 𝑁𝑁

𝑛=1 . The aim of this research is to minimize the propulsion energy and 

maximize the EE of UAVs. Let 𝐿 = {𝐿𝑛 
𝑢 , 𝑛 ∈  𝑁}, 𝐻 = { ℎ𝑛

𝑢 , 𝑛 ∈  𝑁}, 𝒞 = {𝑐𝑛
𝑘, 𝑛 ∈  𝑁}, 𝑇 =
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{ 𝑡𝑛
𝑢, 𝑛 ∈  𝑁} and 𝛳 = {𝛳𝑛 , 𝑛 ∈  𝑁} as already defined in the discussion above. The 

optimization problem can be formulated in eq. (15) as. 

𝒫: 𝑚𝑖𝑛𝐿,𝐻,𝒞,𝑇,𝜃 ∑ 𝑒𝑛
𝑢𝑎𝑣

𝑁

𝑛=1

(15) 

Due to being a mixed variable problem, eq. (15) is non-convex and would need extensive 
computational resources to be solved in real-time. As already pointed out, RL has been very 
effective in solving such optimization problems in real-time. The goal of eq. (15) is to minimize 

the fuel consumption of UAVs at all times with the constraints of: 1). 𝑐𝑛
𝑘 = {0, 1},

∑ 𝑐𝑛
𝑘 = 1, ∀𝑛 ∈ 𝑁𝑁

𝑛=1 , ensuring a single IoTD link to UAV at any time instant 𝑛, 2). 

∑  𝑡𝑛
𝑢𝑁

𝑛=1 𝑅𝑛
𝑘 ≥ 𝐷𝑘, ∀𝑘 ∈ 𝐾,  for making sure that the data uploading from 𝑘𝑡ℎ IoTD must be 

completed within the flight time of the UAV, 3).𝑣𝑛
ℎ ≤  𝑉𝑚𝑎𝑥

ℎ     , 4). 𝑣𝑛
𝑣 ≤  𝑉𝑚𝑎𝑥

𝑣  and 5). ℎ𝑚𝑖𝑛  ≤
ℎ𝑛

𝑢  ≤  ℎ𝑚𝑎𝑥 ,   ∀𝑛 ∈ 𝑁 for guaranteeing that the UAV's horizontal and vertical speeds and 

heights do not exceed the maximum limits, and finally 6). 𝑡𝑚𝑖𝑛  ≤  𝑡𝑛
𝑢  ≤  𝑡𝑚𝑎𝑥  restricts the 

time slot duration allocation to an IoTD between 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥  for data transmission.  
For eq. (15), the observation and action spaces and the rewards for RL agents are defined below. 
Observation Space: 

The current state 𝑠(𝑛) at time 𝑛 is defined as in eq. (16) 

𝑠(𝑛) = {𝑠𝑢(𝑛)} ∈ 𝒮 ≜  ℒ ×  ℋ(16) 

Where  𝒮  is the overall state space and 𝑠(𝑛) = (𝐿𝑛 
𝑢 ,  ℎ𝑛

𝑢) ∈  ℒ ×  ℋ    is the current 
horizontal and vertical location of the UAV.  
Action Space: 

The action space can be continuous or discrete, depending on the type of agent used. 
However, as we are using only the discrete agents, so, we will define only the discrete action 

space here. Ref [6] provides continuous space for a similar problem. The discrete action 𝑎(𝑛) 

at time 𝑛 is defined as in eq. (17). 

𝑎(𝑛) = {𝑙𝑛, ℎ𝑛, 𝑐𝑛
𝑘 ,  𝑡𝑛

𝑢 } ∈ 𝐴 ≜ ℒ𝑢 × ℋ𝑢 × 𝒞 × 𝑇(17) 

Where 𝐴 is the overall action space and 𝑎(𝑛) = (𝑙𝑛, ℎ𝑛, 𝑐𝑛
𝑘,  𝑡𝑛

𝑢) ∈ ℒ𝑢 × ℋ𝑢 × 𝒞 × 𝑇 

is the current action chosen from 𝐴. ℒ𝑢 × ℋ𝑢 is the action space from which the current UAV 

flying actions in horizontal and vertical directions 𝑙𝑛, ℎ𝑛 are chosen. 𝒞 is the IoTD scheduling 

space 𝒞 = {𝑐𝑛
𝑘, ∀𝑘, 𝑛} and 𝑇 = {𝑡𝑚𝑖𝑛 ∶ 0.1𝑚𝑠:  𝑡𝑚𝑎𝑥 } is the action space of discrete flight time 

durations from which  𝑡𝑛
𝑢 is chosen between 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥  with the step size of 0.1ms. Assume 

that during a one-time instant 𝑛, the UAV is only allowed to move to one of its adjacent cells 
from its current cell in the horizontal plane and also it is allowed only to move one step in the 
vertical direction. Then the horizontal and vertical locations of UAV in the next time instant 

𝑛 + 1 is given as in eq. (18) and (19): 

𝐿𝑛+1 
𝑢 =  𝐿𝑛 

𝑢 +  𝑙𝑛(18) 

𝐻𝑛+1 
𝑢 =  𝐻𝑛 

𝑢 +  ℎ𝑛(19) 

Where 𝑙𝑛 is the horizontal flying action of a UAV defined as 𝑙𝑛 ∈  ℒ𝑢 ≜
{(0, 𝑦𝑠), ((0, −𝑦𝑠), (𝑥𝑠, 0), (−𝑥𝑠, 0), (0, 0)}  with ℒ𝑢 being the horizontal action space of UAV 
comprising 5 actions including moving to north, south, east, west, or hovering at its current 

location respectively, and ℎ𝑛 is the vertical flying action of a UAV defined as ℎ𝑛 ∈  ℋ𝑢 ≜
{ℎ𝑠 , −ℎ𝑠 , 0} with ℋ𝑢 being the vertical action space of UAV comprising 3 actions including 
moving upward, downward, or staying there respectively. 
Step Reward: 

The reward of taking an action 𝑎(𝑛), when the system is in state 𝑠(𝑛) at time 𝑛, is given 
by eq. (20): 
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𝑟𝑤𝑑(𝑠(𝑛), 𝑎(𝑛)) =  ∑ ∑
 𝑡𝑛

𝑢𝑅𝑛
𝑘

𝑒�́�
𝑢𝑎𝑣

𝑁

�́�=1

𝐾

𝑘=1

− 𝑝0(20) 

Where the reward function 𝑟𝑤𝑑 is the ratio of the total data uploaded by the 𝐾 IoTDs 

up to time instant 𝑛 + 1, to the propulsion energy of the UAV consumed till that time. However, 

penalty 𝑝0 is applied to reward, if the data transferred to UAV at time 𝑛 is less than the average 

data rate of any IoTD i.e.  𝑡𝑛
𝑢𝑅𝑛

𝑘 <
𝐷𝑘

𝑁
. 

The reward would be highest if the data rate 𝑅𝑛
𝑘 is maximized. 𝑅𝑛

𝑘 can be maximized by 

maximizing the device gain 𝑔𝑛
𝑘, which depends on the cascaded gain  𝑔𝑛

𝑢𝑟𝑘 , which in turn is 

maximized, when the phase shift of each PRU of the active RIS (having 𝑟𝑛
𝑅𝐼𝑆 = 1 ) is adjusted 

to produce the maximum beamforming towards the IoTD scheduled during the current time 𝑛. 

The maximum reward for the state-actor pair 𝑠(𝑛), 𝑎(𝑛) is given as in eq. (21). 

𝑟𝑤𝑑𝑚𝑎𝑥(𝑠(𝑛), 𝑎(𝑛)) =  ∑ ∑
 𝑡𝑛

𝑢𝑅𝑛
𝑘𝑚𝑎𝑥

𝑒�́�
𝑢𝑎𝑣

𝑁

�́�=1

𝐾

𝑘=1

− 𝑝0(21) 

The DDQN, PPO, and PPOwRNN agents are used for solving the complex 
optimization problem given in eq. (15). The first agent in the list belongs to the critic and the 
last 2 belong to the actor-critic categories of RL agents respectively. We will use the 
implementations of [9] for DDQN, and [10] for the PPO and PPOwRNN agents. 
Experimental Settings: 

 
(a) 

 
(b) 

 
(c) 

Figure 2: Trajectory of UAV with a). Single RIS, b). Two RIS, c). Three RIS 
The UAV’s trajectory in the presence of multiple RIS is depicted in Figure 2 and the 

settings for the environment, observation and action spaces, and the hyper-parameters for the 
Neural Networks (NNs) of RL agents along their training settings are listed in tables 1 to 3 
respectively. 

Table 1: Environment settings 

Environment Symbol Value 

IoTDs and AoI AoI 1000m x 1000m 

L 10000 

K 6 

[ωk, zk] [Random, 0] 

hs 2 m 

xs 10 m 

ys 10 m 

UAV utip 120 

d0 0.6 

s 0.05 
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v0 4.3 

ρ 1.225 

ỽ 0.503 

P0  12 × 303 × 0.43

8
ρsỽ 

P1  1.1 × 203/2

√2ρỽ
 

P2 11.46 

hmin 30m 

hmax  100m 

Vmax
h  10 m/s 

Vmax
v  10 m/s 

tmin 1s 

tmax  3s 

RIS R 3 

M 100 

zr 50m 

ωr See the result section 

dr, dc λ/2 
Channel η1, η2 9.61, 0.16 

B 2 MHz 

Dk 1024 bits 

f (carrier frequency) 900MHz 

P 500mW 

σ 169 dBm/Hz 

Reset conditions h0
u 100m 

L0
u = [x0

u, y0
u] [0,0] 

𝛳i 0o 

h0
u 100m 

Table 2: Observation and Action Space 

𝒮 3→{[Ln 
u ,  hn

u] = [xn 
u , yn 

u , hn
u]} 

ℒu 5 →{‘north’, ’east’, ’west’, ’south’, ‘hover’} 

ℋu 3 →{‘upward’, ‘downward’, ‘stay there’) 

𝒞 6 →{(0,0,0,0,0,1), (0,0,0,0,1,0), (0,0,0,1,0,0), (0,0,1,0,0,0), 
(0,1,0,0,0,0), (1,0,0,0,0,0)} 

T =
tmax − tmin

0.1ms
 

21 → {1:0.1:3} 

A 5x3x6x21 = 1890 

Table 3: RL agents’ NN and training parameters 

Evaluation and target networks DDQN PPO PPOwRNN 

Total hidden layers in each NN 2 2 2 
Total neurons in hidden layer 1 20 200 200 
Total neurons in hidden layer 2 20 100 100 
Number of LSTM cells inside each hidden neuron NA NA 2 
Optimizer RMS prop Adam Adam 
Weights Initialization Ɲ(0,0.003) Ɲ(0,0.003) Ɲ(0,0.003) 
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Number of epochs O NA* 25 25 

Number of episodes E 60 120 120 

Number of time instants N 600 600 600 

Learning rate 0.005 0.001 0.001 

Experience buffer F 3200 10000 10000 

Mini batch size G 32 8 8 

Discount factor γ  0.9 0.9 0.9 

Exploration factor ɛ 0.9 NA* NA* 

Clip ratio ᶓ NA* 0.2 0.2 

Lambda (for advantage estimation function)  NA* 0.95 0.95 
Value function loss coefficient NA* 0.5 0.5 

NA* =Not Applicable 
PPOwRNN has feedback connections in their NNs, which are composed of Long Short 

Term Memory (LSTM) cells, which impact the current outputs of the hidden layer’s neurons 
from their previous outputs and the previous outputs of the next layers’ neurons. All agents start 

with a random policy 𝜋, and after every action 𝑎(𝑛), the agent stores the current state 𝑠(𝑛), 

action pair [𝑠(𝑛), 𝑎(𝑛)], action’s reward 𝑟𝑤𝑑(. ), and the state of the system 𝑠(𝑛 + 1), after the 

action in its experience buffer 𝐹. During the training stage, mini-batches of 𝐺 random samples 
from the experience buffer are selected to train the actor and critic’s NNs. The discount factor 

𝛾 determines how the rewards at the individual time steps are weighted. An action’s influence 
over the future states of the environment typically decreases over time. A few parameters listed 
in Table 3 are specific to an agent and are not applicable to others. For example, the exploration 

factor ɛ  is specific to DDQN and decides how much the agent would explore. Similarly, the 

number of epochs 𝑂, the clipping ratio ᶓ, lambda, and the value function loss coefficients are 
specific to the PPO agents (both PPO and PPOwRNN) and are used for calculating its loss 
functions.  
Result and Discussion: 

The results for the DDQN, PPO, and PPOwRNN with single and multiple RISs are 
given in Table 4. The best results and the agents generating them are boldfaced. For multiple 
RIS, many random locations are tested, but among them, only those which generated the best 
results for any of the 3 agents, are reported in Table (4). 

Table 4: Performance comparison of different agents with multiple RIS 

# of RIS Location [𝝎𝒓, 𝒛𝒓] 
m 

Agent Propulsion 
energy (kJ) 

(EE) bits/J 

1 [50 50 50] DDQN 135.25 71.29 

PPO 83.21 88.67 

PPOwRNN 94.55 84.69 

2 [50 50 50], 
[900 900 50] 

DDQN 147.16 75.42 

PPO 128.05 48.58 

PPOwRNN 112.56 49.80 

3 [50 50 50], 
[250 150 50], 
[500 500 50] 

DDQN 109.49 94.06 

PPO 125.11 44.99 

PPOwRNN 161.94 53.05 

As clear from Table 4, the PPO agent with a single RIS provides more propulsion energy 
savings and the DDQN agent with 3 RIS outperforms other agents in EE. Among all the RL 
agents used for our experiments, installing multiple RIS has benefitted the DDQN agent the 
most, while there is either little or no improvement in the performances of the PPO agent and 
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the PPOwRNN in the presence of multiple RISs. The DDQN agent with 3 RIS surpasses the 
PPO agent, which is the best available RL agent to date [11].  

The computational complexity of the 3 agents is estimated in terms of the average 
training and evaluation time taken by them on Intel Core i5, 2.81 GHz CPU for multiple RIS 
units. On average, the DDQN agent takes 4 min and 30 s, the PPO 10h, 20 min, and 50 s, while 
the PPOwRNN requires 15h, 40 min, and 20s for convergence. Although the PPO and 
PPOwRNN agents save more propulsion energy in single and double RIS cases, they are far 
more complex than the DDQN agents. 
Conclusion: 

To collect data from a widely spread IoT network, one solution is to use multiple UAVs, 
to provide coverage to a large area, as in [8], but owing to the cost of fuel, it would be an 
expensive option. RIS on the other hand is a low-powered, easy-to-install, and lightweight 
device, which can be easily installed on buildings without posing any danger to the public as is 
caused by the huge antenna structures in case of bad weather conditions or earthquakes. So, we 
have tested different RL agents for the IoT data collection in the presence of multiple RISs and 
found that the presence of additional RIS units supports the otherwise weak agents (e.g. DDQN) 
more than the strong ones (e.g. PPO), which although does not require more RIS units, are 
computationally more expensive. It is shown in [6] that the continuous RL agents perform better 
than the discrete ones. So, in the future, these agents must also be tested with multiple RIS units. 
Also, more bandwidth-efficient access methods e.g. Orthogonal Frequency Division Multiple 
Access (OFDMA); must be implemented to estimate the maximum potential of the proposed 
algorithm.  
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