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his paper aims to develop the foundational knowledge about the Unity game development 
engine embedded with AI for the development of a hyper-casual game that has intelligent 
NPCs, which operate strategically in the environment. The targeted audience comes in 

the class of those who are pursuing their career in the niche of AI game development and 
enhancing the gaming experience for single-player game users. Using Unity Engine and Python, 
Curriculum learning and self-learning experiments were conducted to test the AI game. 
Moreover, in this paper, different reinforcement learning methods have been discussed, which 
have been implemented in the game that produces the optimal results for the behavior of NPCs. 
Hence, this paper tends to represent a glimpse into the future perspective of the gaming industry 
in hyper-casual gaming platforms. 
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Introduction: 
In traditional games, the behavior of NPCs (Non-Player Characters) follows a scripted, 

generic standard flow, leading them to perform actions in a predictable manner. Consequently, 
users disengage from such games after a while since they anticipate the patterns of the NPCs’ 
movements. However, this paper tends to introduce AI to the platforms of hyper-casual games, 
since AI is mostly found in high-level games such as Red Dead Redemption 2. Our paper aims to 
develop a hypercausal game, which is a lightweight game with fewer mechanics that would have 
intelligent NPCs, using Unity Engine. 

Unity is a cross-platform game engine, used for 2D and 3D games. It supports a variety 
of platforms such as desktops and mobiles. Furthermore, Unity is one of the most popular 
engines among the other game development engines due to its flexibility, efficiency, and 
convenience. The gaming engine comprises various tools that are convenient tools for 
modifying your project. The feature of real-time play mode with smart previews allows you to 
monitor the modifications instantly [1]. Unity engine supports the deployment of its projects on 
different operating systems such as Mac, Linux, and Windows, along with artist-friendly tools by 
allowing developers to develop efficient games [2]. Additionally, the navigation system in Unity 
enables NPCs to logically move around the environment of the game [3]. However, this feature 
only limits the movement of the NPCs or agents to make decisions in terms of movement 
around obstacles in the environment. On the scripting aspect of the Unity engine, it supports 
C#, which is an object-oriented programming language developed by Microsoft. There are two 
ways to design C# scripts in the Unity engine. The first one is object-oriented design, which is 
referred to as the traditional approach and is used by the majority of developers. The second is 
data-oriented design, which is also supported by Unity [4]. AI games have been on the rise since 
1960 when games such as “SpaceWars” introduced AI in the field of game development. In 
contemporary times, games like Red Dead Redemption 2 and Grand Theft Auto 6 have been 
found to be popular due to their AI-trained NPCs. 

The paper has been divided into four sections. Section 1 elaborates on the introduction, 
where the problem statement, literature review, recent advancements, and objectives of the 
research have been elaborated. Section 2 covers the methodology and experiments implemented 
for the research. Section 3 covers the Results and Discussion to present the result of the RL 
algorithm and discuss the objectives of the research. Section 4 covers the conclusion. 
Research Paper Objectives: 

• To study Unity and AI for the development of innovative AI hypercasual games. 

• To examine the best optimal Reinforcement Learning methods for the agents. 

• To outline the integration of AI with Unity 
This paper tends to represent a glimpse into the future perspective of the gaming 

industry in hyper-casual gaming platforms. 
Methodology: 

The following methodology is adopted in this paper in which data is gathered from 
different sources, which relates to the domain of this paper. The collection of data for this work 
has been gathered from the following tools: 

• Unity Engine 

• C# 

• Python (Anaconda Software) 
Training Environment: 

The environment was created for the hyper-casual game to test the reinforcement 
methods. The environment is based on a football game where two teams play against each other 
by scoring the ball into the located goals. The important feature used in the game is “ray cast” 
which collects data. Ray cast is used to detect the object from a distance by the agent to make 



                                 International Journal of Innovations in Science & Technology 

April 2024|Vol 6 | Issue 2                                                                  Page |76  

intelligent decisions based on the values collected. The agent receives the reward after 
completing their desired objective of scoring a goal. 
Reinforcement Learning Methods: 

Multiple RL methods exist in this case for the purpose of training these agents, whereas 
the following RL methods were implemented in order to attain the aim of leading it to an AI game 
where the agents or NPCs operate intelligently. Furthermore, the training of the neural network 
was implemented parallel to enhance the training process. 
The following methods were utilized for the agents: 

• Proximal Policy Optimization (PPO) 

• Random network distillation 

• Behavior Cloning (BC) 

• Curiosity-driven exploration by self-supervised prediction 

• Generative Adversarial Imitation Learning (GAIL) 

 
Figure 1: Training Environment (Soccer field) 

Collecting Training Data: 
Statistics were collected from the feature of ray-cast, which is a component in Unity that 

detects objects from a distance when it is implemented on an object. It retains information about 
an object through an invisible laser, which is visible in the editor mode of Unity Engine. 
Agent’s Behavior Parameters: 

In this game, the NPCs or agents were assigned various ray-cast lasers for detecting 
various objects. Agent or NPCs, for observation space, have been assigned with 11 ray-casts 
forward and 3 ray-casts backward in order to collect data for the training model in order to make 
intelligent decisions through reinforcement learning. 
Experiments: 

• Curriculum Learning: 
In this experiment, the AI agents are trained using a curriculum approach, where they start 

by learning from simpler scenarios and gradually progress to more complex ones. Initially, the AI 
agents may compete against each other in basic soccer scenarios, with the difficulty level increasing 
over time. In general, it is a player versus an AI agent. 

• Self-Learning: 
This experiment focuses on training AI agents to play soccer against each other. All 

players in the game are controlled by AI algorithms, which learn from their interactions and 
experiences within the simulated environment. In general, it is an AI agent versus an AI agent. 
Result and Discussion: 
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In this section of the proposed paper, the research objectives have been discussed. Clear 
themes have been identified to assist in discussing the research goals effectively in order to attain 
the main aim of the proposed paper. 
To Study Unity and AI for the Development of Innovative AI Hyper Casual Games: 

Unity 3D offers several features, which has not been discussed yet. Unity supports asset 
tracking, scripting, processing, and physics which eases the development time for developers for 
their projects. According to a paper [5], the Unity engine supports 27 diverse platforms and 
devices in an environment that is user-friendly development. Regarding AI in the game industry, 
it is a broad topic. AI comprises machine learning and decision-making abilities specifically for 
the behavior of agents in the game. It is a significant aspect of contemporary game development. 
Developing an AI game can have an immersive impact on gameplay [6]. 

The first AI game, called the “Spacewar!”, was developed at MIT in the early 1960s [6]. It 
was a multiplayer space combat genre game that had AI-controlled opponents. Nevertheless, AI 
games evolved over the years since then for the purpose of enhancing the gaming experience. 
During those days, PCs did not exist as large mainframes or computers were mostly found in 
institutions. In recent times, large gaming organizations have started to implement AI into their 
games such as Red Dead Redemption 2, which is a popular game. But it must be taken into 
notice that such games are mostly high-level and require specific consoles or upgraded PCs. 

In this case, hypercasual games, such as Candy Crush game or Subway Surfers are known 
for their simple features and mechanics, convenient gameplay, and minimum design, enabling 
them to be accessible to a broad audience of the gaming genre. To convey AI games to a broad 
audience of such genres, hypercasual games are mostly played by people. By introducing AI to the 
platform of such games, it can uplift the gaming industry to a greater extent. 
To Examine the Best Optimal Reinforcement Learning Methods for the Agents: 

According to a paper, there are various training tools for the evaluation of reinforcement 
learning algorithms [1]. There is a reinforcement learning algorithm known as the NEAT or 
Neuro Evolution of Augmenting Topologies. NEAT has various applications in several 
domains, including game development. However, the shortcoming of NEAT, which is 
compared to the reinforcement learning methods implemented in this paper, is that it does not 
inherit a memory system. It focuses on evolving the structure and linkage of neural networks 
instead of having a mechanism for remembering information over the period. However, in this 
paper as mentioned above, the following reinforcement learning methods have been utilized for 
the training agents in the game environment: 
Proximal Policy Optimization (PPO): 

The default core method is the Proximal Policy Optimization (PPO) reinforcement 

algorithm, which was first presented by [7]. By limiting policy updates to a limited range of [1 − 𝜀, 

1 + 𝜀], PPO is renowned for its stable and user-friendly architecture. This prevents huge policy 
changes from gradient ascent, which can be damaging. Deviations of rt (θ) from 1 in policy 
changes are penalized by the objective function. Mathematically, the function of PPO is 
represented by; 

LCLIP (𝜃) = Êt [(𝑟𝑡 (𝜃)Ât, , 𝑐𝑙𝑖𝑝(rt (𝜃), 1 −ɛ, 1+ ɛ) Ât] 

• ε is a hyperparameter, (usually 0.1 or 0.2). 

• Êt is the expectation over timesteps. 

• rt is the probability ratio of new and old policies. 

• Ât is the estimated advantage at time t. 

• θ is the policy parameter. 
The Proximal Policy Optimization (PPO) reinforcement algorithm is a stable and user-

friendly method that is ideal for training agents in-game environments since it makes use of the 
clipped objective function. 
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Figure 2: Generative Adversarial Imitation Learning 

Generative Adversarial Imitation Learning (GAIL): 
Among model-free imitation algorithms, Generative Adversarial Imitation Learning 

(GAIL) is unique in that it performs better than previous model-free techniques, particularly in 
complex contexts [8]. This approach depends more on learning from the environment and 
requires more contact with it than model-based approaches because it is model-free. The method 
is ad hoc action exploration to find out which activities lead to a policy shift in favor of the expert's 
policy. 

With GAIL, agents can learn behavior without explicitly knowing the reinforcement 
signal by watching the expert's activities. The expert records and saves its actions in a 
demonstration file with associated states and actions. With this framework, behavior may be 
directly extracted from the given example. 
Curiosity-Driven Exploration by Self-Supervised Prediction: 

According to [9], the reports have observed that in real-world settings, rewards are 
frequently insufficient or nonexistent. In such situations, agents might be encouraged to explore 
their surroundings and learn new abilities that are necessary to accomplish their goals by using their 
curiosity as a motivator. Here, the agent's curiosity is defined as its ability to predict the results of 
its actions. 

According to [9], the reports have explained that curiosity-driven exploration encourages 
agents to explore more effectively, lowering the requirement for significant contact with the 
environment to accomplish objectives. This method also allows the agent to forecast how its 
actions will turn out in scenarios that haven't been witnessed before. One notable benefit of 
curiosity-driven exploration is its capacity to motivate agents to discover new places in games. 
Behavior Cloning (BC): 

The need to accurately mimic human behavior in intelligent entities is addressed by 
behavior cloning, a concept Hussein [10] introduced. This method allows behavior-cloned 
agents to mimic human behavior in similar circumstances. Autonomous vehicles, helper robots, 
and computer-human communication are just a few of the domains in which it finds use. As a 
basic aspect of behavior cloning, imitation learning depends on insights from the environment and 
the agent's actions. 

Imitation learning has intrinsic limitations, despite its usefulness. It is contingent upon 
the availability of expert demonstrations of a high caliber, and the agent's competence is limited to 
what people can demonstrate. Cloning behavior is very useful for agents that need to closely 
mimic the examples given. One disadvantage of such agents is that they are not able to improvise 
when choosing what to do. 

Behavior cloning is a useful method for giving agents human-like behavior, and it has 
applications in many different fields. Although it works well for faithful imitation, it has 
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limitations in terms of the caliber of expert demonstrations and the incapacity of agents to 
perform at levels higher than those of humans. 
Random Network Distillation (RND): 

Burda [11] introduced Random Network Distillation, which modifies the reinforcement 
learning techniques by adding an exploration incentive. The bonus is ascertained by calculating the 
prediction error of a neural network (NN) feature acquired from observations using a fixed, 
randomly initialized NN. This strategy serves as a directed exploration tool with the primary goal 
of addressing the problem of scant rewards. Essentially, the agent is rewarded for discovering new 
things when interacting with the environment or for venturing into locations that haven't been 
explored before. 

Setting itself apart from a lot of curiosity-based approaches, the RND methodology 
shows persistence in the face of obstacles like becoming stuck when subjected to random noise, 
like static on a TV screen. The method's dependence on an exploration bonus instead of an 
absolute prediction error accounts for this robustness. As a result, RND shows great promise 
as an algorithm, especially for agents whose job it is to navigate complicated environments where 
the observation data obtained is highly noisy. 

In reinforcement learning, Random Network Distillation presents a fresh viewpoint on 
exploration and efficiently handles situations with plenty of noise and scant rewards. Because of 
its unique methodology, it is positioned as a viable algorithm for agents exploring complex and 
noisy scenarios. With the training of each algorithm, PPO gave a positive response with higher 
accuracy in terms of reinforcement learning, where the agents strategically operated throughout 
the game. Other algorithms gave a response, while PPO turned out to have a higher accuracy of 
95% as compared to the other RL algorithms, which were less in terms of their accuracy and 
response by the agents in the environment. 

 
Figure 3: Training Behavior of PPO algorithm in the Soccer Game using Anaconda Prompt 

integrated with the Unity Engine’s file project 

 
Figure 4: Cumulative-reward-value graph using the PPO algorithm 
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To examine the Integration of AI with Unity: 
Unity cross-platform has the feature of supporting integration with other applications. 

Although, it has a library of AI that supports the Navigation Mesh, as discussed in the above 
section, which is for agents to move intelligently in the environment by avoiding obstacles. Unity 
contains the API that allows the integration of Python with the agents in the environment by 
assigning them the algorithm depending upon the purpose. 

The Unity Machine Learning API package in Unity enables the developers to integrate 
Python with Unity Editor in order to train the behaviors of agents (See Figure Below) [14]. The 
API package contains the following three components. The components are agent, python API, 
and trainer. The agent is the character model in the game to which the model has been assigned. 
It communicates the training model through the Python API via a communicator in Unity. 
Hence, the agent utilizes the communicator in order to connect with the trainers through the 
Python API. 

 
Figure 5: API Framework Model: 

Conclusion: 
To conclude, the paper seeks to enhance the gaming experience for users by using hyper-

casual game platforms with intelligent NPCs or agents. With the discussed methodology and 
discussion, the algorithm utilized for the game is PPO due to its stability and policy 
improvement. Furthermore, it can be observed that introducing AI to hyper-casual games will not 
only uplift the game industry but encourage other independent developers to enter the domain 
of game development due to its modern perks of introducing AI with optimal reinforcement 
algorithms. Three objectives were formulated to attain these goals such as to study Unity and AI 
for the development of innovative AI hyper-casual games, to examine the best optimal 
Reinforcement Learning methods for the agents, and to outline the integration of AI with Unity. 
Associated with these objectives, three questions were also formulated for the same purpose of 
attaining these goals what are the benefits of AI games? To what extent AI games can shape the 
gaming industry? Which Reinforcement Learning methods are optimal for the game agents to 
operate intelligently in the game? 

Hence, AI games are the future of the gaming industry and it has been rising since the 
1960s with the development of the “Space Wars!” game to contemporary games like Red Dead 
Redemption 2. It will start appearing as a common feature in every game in the future. 
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