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Introduction/Importance of Study: The Workspace is the area around the robot where a 
robot can freely move with possible input variations of different joint angles.  
Novelty statement: Conventionally iterative simulation methods are used to find robotic 
workspace. Which are computationally slow and difficult to model. Our approach utilizes 
machine-learning algorithms to predict the workspace and position of an end effector.  
Material and Method: Multiple Linear Regression (MLR), Decision-Tree Regression, and 
Artificial Neural Network (ANN) algorithms trained for prediction. The dataset, which is 
collected and used as train and test data, is further for the validation step. 
Result and Discussion: By simulating the robot with the Denavit-Hartenberg (D-H) approach 
in MATLAB. The results findings show the accuracy of Machine learning algorithms specifically 
Artificial Neural Networks (ANN) perform better than conventional mathematical methods 
Concluding Remarks: Artificial Neural Network (ANN) outperformed other machine 
learning methods.  
Keywords: Robotics; Artificial Neural Network (ANN); Denavit-Hartenberg (D-H); Prediction 
and Machine Learning. 
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Introduction: 
In many crucial cases, it is very difficult, if not impossible, to analytically predict the 

behavior of physical systems. The necessity to build a physical system prototype drives 
modeling, which in turn reveals strong motivations to investigate and analyze a system's 
operation. Modeling of robots is usually carried out through kinematics study. That deals with a 
model of the robot without any influence of force. The kinematics of a robot deals with the 
geometric and time-based properties under motion and in particular how various links of a robot 
move with respect to one another with variation of time. Which is the analytical way of 
explaining the relation between different joint variables. Kinematics modeling is divided into 
two types forward and inverse kinematics, The first one gives the position and orientation when 
joint angles and joint positions are known. While inverse kinematics deals with a set of complex 
equations computed by vector and analytical algebra to compute the joint angles once, the end 
effector position is given [1]. 

The robot is the heart of the automation industry used in manufacturing and assembly 
applications and many applications that require robots to move objects from one place to 
another using mechanically designed grippers these robots need to be precise in terms of 
placement of objects. To achieve the precise pick and place robot application it needs to be 
modeled with the least error. Intense research is carried out in the analytical modeling of robot 
systems, which are based on line and point transformation. Campos-Macías [2] proposed a 
geometric model to calculate and find the relation between input angles and output position 
unknown joint angles required for autonomous positioning of a robotic system. In [3] author 
Bayro-Corrochano uses a new algebraic method called quaternion for modeling different 
physical systems system. Popovic et al. [4] computed a method to model the upper extremity 
movement of the arm of a multi-leg moving robot inspired by an animal’s movement. An 
analytical model-based approach to compute the kinematics of a humanoid robot was discussed 
in [5]. In [6] author presented an inverse kinematics model to calculate all the joint variables of 
a serial arm manipulator. Applications of machine learning in different robots are discussed in 
[7]. 

 
Figure 1: Kinematic Model Representation of 4-Degree-of-Freedom Robot. 

Figure 1 shows the kinematic model’s simplified view of the robotic arm in an inverted 
‘L’ pose. The first joint S1 is used to move the arm claw to pick objects, and the joints S2 and 
S3 are the elbow and shoulder joint respectively to move the arm to the desired position. The 
S3 joint is the base joint to rotate the robot arm. The forward kinematic model of the 4 DOF 
Robot is presented in Section II Section III presents the discussion on forward kinematics using 
machine learning algorithms on MATLAB Section IV gives the result and Discussion of 
machine learning algorithms and Section V gives the final Conclusions.  
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The second last paragraph of the introduction section should explain the hierarchy/flow 
of research. The last paragraph should explain the objectives of the research and Novelty 
statement. This paper aims to focus on using machine-learning algorithms to estimate the end 
effector position in a three-dimensional robotic workspace. Specifically, the paper's objectives 
are as follows; 

• Dataset: Generating dataset in MATLAB that contains values of joint angles (θ) and the 
corresponding end effector positions. 

• Model Training: Using the dataset to train machine learning models MLR (Multiple 
Linear Regression), DTR (Decision-Tree Regression), and ANN (Artificial Neural 
Network) for estimating end effector position. 

• Prediction Analysis: Using the values from the dataset to validate the trained models 
and access their RMSE (root Mean Squared Error) for prediction. 
Model Comparison: Evaluate the trained MLR, DTR, and ANN models on the basis of 

computational time and RMSE 
Material and Methods: 
Forward Kinematics 4 Degree Robot: 

The position and orientation of the end effector calculation of a robotic arm or 
mechanism based on the joint angles or displacement. The forward kinematics of a 4 Degree-
of-Freedom robot usually has four rotational joints that can be calculated by imposing a 
sequence of transformations from the base frame to the end effector frame. A distinct 
coordinate system is introduced by every joint; the overall transformation of the end effector 
from the base can be calculated. This process can be implemented using a programming 
language such as Python and C++ in MATLAB in just a short code. The code will comprise 
parameters for each point for the Denavit-Hartenberg approach, resulting in transformation 
matrices and performing a multiplication process on matrices to calculate the overall 
transformation. Meanwhile, the implementation of the obtained transformation to the end 
effector's original location, the orientation, and the final position of the end effector in space 
can be calculated. This seemed to serve as the essential and indispensable tool for the robot's 
controlling and movement planning respectively. 
Denavit-Hartenberg Parameters: 

Denavit-Hartenberg parameters are employed commonly for the characterization of the 
robot’s structure. These parameters typically serve as the foundation for the conduction of robot 
kinematics and analysis. There are four DH parameters listed below in Table 1 to describe the 
orientation and position of a link.  Each parameter for attaching reference frames to robots’ 
assembly link is linked to a specific convention. This standardization of coordinate frames across 
spatial linkages ensures consistency and facilitates analysis. 

The Denavit-Hartenberg (D-H) decided to use the homogeneous transformation matrix 
instead. This matrix represents the end effector orientation and position of the robots with 
respect to the joint angles. Nonetheless, it does not specify the arm arrangement needed to reach 
this position. Figure 2 depicts the diagram of the link coordinate system which is created using 
DH parameters 

Table 1: D.H Parameters Definition and symbols 

Symbol DH Parameters Description Symbol 

𝒅𝒊 Joint Offset 
Intersections Length of the joint axis to 
common normal 

𝒅𝒊 

𝜽𝒊 Joint Angles 
Angle in between the normal plane to the 
joint axis and orthogonal projections 

𝜽𝒊 

L Link Lengths Axis to the common normal distance L 

𝜶𝒊−𝟏 Twist Angle 
Orthogonal projections of joint axis on the 
normal plane to common plane Angle. 

𝜶𝒊−𝟏 
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𝒂𝒊−𝟏 = Translation 𝑥1 𝑎𝑥𝑖𝑠 

𝒂𝒊−𝟏 = Rotation around 𝑥𝑖 𝑎𝑥𝑖𝑠 

𝒅𝒊 = Translation around 𝑧𝑖−1 𝑎𝑥𝑖𝑠 

𝜽𝒊 = Rotation around 𝑧𝑖−1 𝑎𝑥𝑖𝑠 

 
Figure 2: Denavit-Hartenberg Parameters Labeling of 4-Degree-of-Freedom Robot. 

Denavit-Hartenberg (D-H) parameters are a collection of four parameters as depicted 
in Figure 2 for a 4 DOF robot that plays a crucial role in the robot kinematics. With the use of 
D-H representation, a systematic way to express relationships between consecutive links in a 
robotic serial manipulator is provided. Hence, this method provides a mathematical foundation, 
which is adaptable to a numerous robotic design. It also essentially defines the position and 
orientation of each link in relation to the other link that comes before this link [2]. 
Model of Forward Kinematics: 

The 4-Degree-of-Freedom Forward kinematic model uses the Denavit-Hartenberg 
(DH) parameters in determining the end effector position and orientation based on joint angles 
for the robot. On an initial level, the DH parameters define each joint geometry including the 
link length, Joint angles, Joint offset, and Twist angles. With the help of these settings in place 
the transformation matrix for each joint explaining the transition between adjacent links as the 
robot moves is generated. A single transformation matrix indicating the total effect of each joint 
movement to the end effector frame from the base frame is generated via the multiplication of 
matrices. This transformation matrix provides a solution to the problems of forward kinematics 
by extracting the end effector orientation and location. The matrix for joint numbers 1 to ith 
can be calculated as shown in equation (1). 

𝐴𝑖−1
′  =   [ 

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1
    

0
0
0 

   0              0        0     1

] [ 

1 0 0
0 1 0
0 0 1

    
𝛼
0
𝑑 

0    0    0     1

] [ 

1 0 0
0 𝑐𝑜𝑠 𝛼 −𝑠𝑖𝑛 𝛼
0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼

    
0
0
0 

0        0               0        1

] 

 

𝐴𝑖−1
′  =   [ 

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃. 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃. 𝑠𝑖𝑛 𝛼
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 . 𝑐𝑜𝑠 𝛼 −𝑐𝑜𝑠 𝜃. 𝑠𝑖𝑛 𝛼

0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼
    

𝑎. 𝑐𝑜𝑠 𝛼
𝑎. 𝑠𝑖𝑛 𝜃

𝑑 
0                    0                        0                        1 

]       (1) 

By multiplication of matrices as depicted in equation (2) gives the transformation 
matric. 

𝑇4 
0 =  𝐴1 . 𝐴2 

1  . 𝐴3. 
2  𝐴4 

3
 

0   (2) 
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The model of the robot's forward kinematics was validated using MATLAB. A brief 
understanding of the kinematic behavior of the robot was obtained with the use of numerical 
analysis and also visualization in the MATLAB environment.  

Table 2: D.H Parameters Description 

Joint 
Angles θ 

Symbol 

𝒂𝒊−𝟏 𝒅𝒊 𝒂𝒊−𝟏 𝜽𝒊 
S1 0 0 0 0 
S2 10 10 -90 0 
S3 10 10 0 0 
S4 10 10 0 0 

For example, with a joint angle configuration of [S1 S2 S3 S4] for the values in Table 3, 
the transformation matrix is given below in Equation 3, and the visual representation is depicted 
in Figure 2 

T =   [ 

1.0000 0.0000 −0.0000
−0.0000 −0.4481 −0.8940
−0.0000 0.8940 −0.4481

    
−0.0000

−13.3992
−7.9014 

    0.0000       0.0000        0.0000         1.0000 

]       (3) 

Results: 
Problems related to machine learning can be classified into three main types; regression, 

classification, and clustering. In the context of predicting claw positions in mapping with non-
linear input poses, the problem at hand falls under regression. An intelligent approach is 
employed, utilizing machine learning algorithms for obtaining forward kinematics solutions. 
This Section focuses on predicting the claw position of a 4 Degree-of-Freedom Robot using 
Multiple Linear Regression (MLR), Artificial Neural Network (ANN), and Decision-Tree 
Regression Techniques. The algorithms of machine learning are trained and implemented in the 
MATLAB environment. The performance of these three models is being evaluated on the root 
mean squared error and R squared value basis. The predicted result is then compared with the 
actual value of the claw position. The result is basically the end effector position on the basis of 
joint angles.  
Dataset For Training Machine Learning Model: 

The dataset is generated through the code in MATLAB through initializing arrays to 
store workspace points and link points. The code iterates for all the combinations of joint angles 
within the specified limits of theta range (θ) for calculating forward kinematics using DH 
parameters. For every combination, the end effector position (x, y, z) is calculated and both 
workspace and the link point are stored. Finally, the dataset is populated with joint angles (θ) 
and the corresponding end effector positions. Figure 3 shows the robot workspace with links 
and Table 3 shows the dataset with values of joint angles and the end effector position. 

Table 3: Data set Values 

 𝐒𝟏(𝛉𝟏) 𝐒𝟐(𝛉𝟐) 𝐒𝟑(𝛉𝟑) 𝐒𝟒(𝛉𝟒) 𝐗 𝐘 𝐙 
1 -1.5708 -1.5708 -1.5708 -1.5708 -0.6031 -1.5708 -1.5708 
2 -1.5708 -1.5708 -1.5708 -1.2217 -2.3396 -1.5708 -1.5708 
3 -1.5708 -1.5708 -1.5708 0.8727 -5.0000 -1.5708 -1.5708 
4 -1.5708 -1.5708 -1.5708 -0.5236 -8.2635 -1.5708 -1.5708 
5 -1.5708 -1.5708 -1.5708 -0.1745 -1.7363 -1.5708 -1.5708 
6 -1.5708 -1.5708 -1.5708 -0.1745 -5.0000 -1.5708 -1.5708 
7 -1.5708 -1.5708 -1.5708 0.5236 -7.6604 -1.5708 -1.5708 
8 -1.5708 -1.5708 -1.5708 0.8727 -193969 -1.5708 -1.5708 

10000 -2.3701 -3.3498 -1.2217 -3.7892 -3.8495 -4.6590 4.8908 

Columns 1 to column 4 show the values of joint angles (S1, S2, S3, S4), and columns 5, 
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6, and 7 show the corresponding end effector position variable values (x, y, z). The dataset as 
shown in Table 3 has 10,000 values. This dataset is used later for the training of machine 
learning algorithms. 
Machine Learning Algorithms: 

For determining the forward kinematics the machine learning algorithms used are 
Multiple Linear Regression (MLR), Artificial Neural Network (ANN), and Decision-Tree (DT) 
Regression techniques. The following machine learning algorithms are trained and implemented 
in Matlab 
Multiple Linear Regression (MLR): 

The Multiple Linear Regression is defined as a straightforward regression technique for 
employing multiple variables in predicting the response or output variable. A connection 
between each joint angle and the end effector position variables is used in this technique. The 
equation general form for Multiple Linear Regression of multiple independent variables and 
single dependent variables is expressed as follows in equation (4). 

y i =  b0i + b1i. x1i + ⋯ + b4i. x4i                        (4) 
Here for our work the “yi” represents the estimated end effector position of the 4 DOF 

robotic claw and x1 to x4 denotes the four joint angles (θ) of the robot S1, S2, S3, and S4. The 
first joint S1 is of arm claw, and the joints S2 and S3 are the elbow and shoulder joints 
respectively to move the arm to the desired position. The S3 joint is the base joint to rotate the 
robot arm. 

 
Figure 3: Workspace with Links demonstration on MATLAB. 

Multiple Linear Regression (MLR): 
The machine-learning algorithm is being used in predicting the target variable value by 

imposing the learning of simple decision rules inferred from the data features. This technique 
works by recursively partitioning the feature values (parent/root node) and then fitting a simple 
model specifically a constant value within each subset (Decision Node). Figure (4) illustrates the 
simple representation of Decision Tree Regression in general for this work with root node, 
Decision node, and leaf nodes. The decision tree regression predicts the continuous target 
variable by taking the average of the target values of all the training instances within each leaf 
node. 
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To illustrate how decision tree regression can be used to predict the end effector position 
(x, y, z) of a 4 DOF robot with 4 joint angles as input, we will train the Decision Tree Regression 

Model where the input features will be the joint angles ((θ1, θ2, θ3, θ4) and the output variable 
is the end effector position (x, y, z). The Decision Tree algorithm will learn to predict the 
position of the end effector based on each joint angle. After that the model performance will be 
evaluated on the root mean squared error (MSE) and R2 (R-squared error) basis. Hence in the 
work, the trained model can be used for the prediction. This prediction capability can be used 
in various robotics applications [8]. 

 
Figure 4: Decision Tree Algorithm 4-Degree-of-Freedom Robot. 

Artificial Neural Network (ANN) 
The ANN can be used to predict the end effector position of a 4-degree-of-freedom 

(DOF) robot based on 4 joint angles. We train the neural network using the training data. During 
the training of an ANN, the network adjusts its biases and weight iteratively to minimize the 
predicted end effector position and the actual positions in the training data. This is typically 
done by using the Gradient Descent algorithm on the backend of all the ML algorithms. Once 
the model is trained, we will evaluate its performance on the ground basis of RMSE (Root Mean 
Squared Error). The capability of ANN for capturing the complex and non-linear relationship 
between the inputs and the outputs makes it suitable for the prediction of the end effector 
position of a 4 DOF robot based on joint angles. Just by adjusting the architecture and training 
parameters of the neural network, the performance for specific predictions can be optimized. 
The ANN technique is widely used in robots. Figure 5 shows the artificial neural network 
topology used in this work. 

During the ANN training, numerous parameters are adjusted, including hidden layer 
counts, neuron quality within each hidden layer, and the activation function choice applied at 
both the hidden and outer layers. The activation functions like sigmoid, tanh, Linear, and the 
(ReLU) Rectified Linear Unit are employed during the training duration. Moreover, optimization 
methods including the Stochastic Gradient Descent (SGD) and (Adam) adaptive moment 
estimation are utilized for refining the weights during the duration of training. The keen and 
careful selection of all these parameters leads to notable enhancement in prediction accuracy. 
The of epochs is set at 1,000 as a maximum number, as empirical evidence shows that the 
accuracy, as measured by metrics like (R2) R-squared and (RMSE) root mean square error, does 
not notably improve beyond this threshold. The result of training ANN in the MATLAB 
environment for our work is depicted in Table 4. 
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Table 4: ANN Model on MATLAB Platform 

Data Division Random 

Performance Mean Squared Error 
Epoch 1000 
Computational Time 0:00:13 
Performance 0.000100 
Gradient 0.266 

Comparison and Discussion: 
The dataset is compiled comprising of 10,000 entries for both inputs (joint angle values) 

and outputs (end predictor values) which were subsequently utilized for training of the Machine 
Learning Algorithms. The end effector position actual value is calculated through an analytical 
approach using the forward kinematics with DH parameters techniques. The predicted value is 
obtained from the machine learning algorithms implemented in the MATLAB environment. 
The performance of these algorithms is accessed by measuring the variance between the 
predicted and the actual value. However, the model's evaluation may vary depending on the 
random selection of samples within the training set, potentially resulting in either 
underestimation or overestimation.  

The performance of every algorithm is evaluated based on RMSE. Table 4 shows the 
values of the end effector determined through (MLR) Multiple Linear Regression, (ANN) 
Artificial Neural Network (ANN) and Decision-Tree (DT) Regression. The actual value is also 
written. The values are found for the joint angle values. The visual representation of the actual 
and predicted end-effector value is shown in Figure (5). The values given for actual and predicted 
end effector position are calculated from joint angles given in equation 5. 

[θ1   θ2   θ3   θ4] = [ 0,   −
pi

2
,    −

pi

2
,    0 ]            (5) 

The dataset is compiled comprising of 10,000 entries for both inputs (joint angle values) 
and outputs (end predictor values) which were subsequently utilized for the training of the 
Machine Learning Algorithms. The actual value of the end effector position is calculated through 
an analytical approach using the forward kinematics with DH parameters techniques. 

Table 5: Actual And predicted positions 

End Effector Position X Y Z 

Actual Value 26.841406 -10.000000 18.918461 
Multiple Linear Regression (MLR) 17.735263 -3.969662 17.148879 
Decision Tree Regression 28.214849 -12.180011 18.782643 
Artificial Neural Network 26.871022 -11.481421 18.872894 

The predicted value is obtained from the machine learning algorithms implemented 
Here's a table summarizing the (R2) R-squared and (RMSE) Root Mean Squared Error values 
for each machine learning algorithm. 

Table 6: Estimated Error 

 Multivariable 
Linear Regression 

Decision Tree 
Regression 

Artificial Neural 
Network 

RMSE(X) 9.105143 5.374741 0.030384 
RMSE(Y) 6.030947 5.399014 1.481579 
RMSE(Z) 0.000000 0.000000 0.045567 

R2 (X) 0.628651 0.868257 0.999999 
R2 (Y) 0.805418 0.840723 0.987424 
R2 (Z) 1.000000 1.000000 0.999938 

Table 5 shows the (RMSE) Root mean squared error and (R2) R-squared error for the 
(MLR) Multiple Linear Regression, (ANN) Artificial Neural Network, and Decision-Tree (DT) 
regression, which is found on MATLAB because of each algorithm. For Multiple Linear 



                                 International Journal of Innovations in Science & Technology 

ICTIS|May 2024|Special Issue                                                                 Page |91 

Regression (MLR) RMSE values are relatively high indicating a noticeable deviation between the 
predicted and actual values. R2 values suggest a moderate to good fit for the X and Y 
coordinates, but an excellent fit for the Z coordinate. Thus, MLR did not satisfy the demand 
and lags in capturing the complex relationships between variables. Hence, it had a higher error 
as compared to the other two algorithms used in this study. 

For the Artificial Neural Network, the root mean squared error is extremely low as 
mentioned earlier in Table 5. So, there is a very small deviation between the actual and predicted 
value which can be easily observed in Figure 5 in comparison with MLR and Decision-Tree 
Regression. R2 values are close to one suggesting an excellent fit for all coordinates. Hence, it 
proves that for this work ANN excels in capturing the complex patterns and non-linear 
relationships, resulting in better performance compared to other algorithms to predict end 
effector position of 4 DOF on the basis of joint angles. 

 
Figure 5: Graphical Comparison of different algorithms. 

In summary, the decision tree regression and artificial neural network models 
outperform multivariable linear regression in accurately predicting the end effector position. The 
decision tree regression model performs exceptionally well, achieving zero error for the Z 
coordinate. The artificial neural network model demonstrates outstanding performance with 
negligible errors across all coordinates, displaying its effectiveness in handling complex data 
patterns for the work 
Conclusion: 

This study explores the machine learning algorithms to predict the operational area of 
the 4-Degree-of-Freedom robot end effector position based on joint angles. The Forward 
Kinematics While Multiple Linear Regression shows moderate performance, Decision Tree 
Regression excels with lower errors. However, Artificial Neural Network emerges as the top 
performer, showcasing remarkable accuracy in predicting end effector positions. These findings 
highlight the potential of machine learning in enhancing robotics autonomy and task planning.  
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