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ur paper presents some creative advancements in the image in-painting techniques for 
small, simple images for example from the CIFAR10 dataset. This study primarily 
targeted on improving the performance of the context encoders through the utilization 

of several major training methods on Generative Adversarial Networks (GANs). To achieve 
this, we upscaled the network Wasserstein GAN (WGAN) and compared the discriminators 
and encoders with the current state-of-the-art models, alongside standard Convolutional Neural 
Network (CNN) architectures. Side by side to this, we also explored methods of Latent Variable 
Models and developed several different models, namely Pixel CNN, Row Long Short Term 
Memory (LSTM), and Diagonal Bidirectional Long Short-Term Memory (BiLSTM). Moreover, 
we proposed a model based on the Pixel CNN architectures and developed a faster yet easy 
approach called Row-wise Flat Pixel LSTM. Our experiments demonstrate that the proposed 
models generate high-quality images on CIFAR10 while conforming the L2 loss and visual 
quality measurement. 
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Introduction: 
Image in-painting involves reconstructing damaged or missing parts within an image, 

commonly applied in the restoration of old photos or paintings and image editing tasks. Notably, 
tools like Photoshop feature a robust completion tool that doubles as a removal tool. Despite 
Convolutional Neural Networks (CNNs) surpassing human classification accuracy on ImageNet 
[1], in-painting outcomes still fall short of human predictions. The challenge lies in the vast 

number of possible ways to fill an  8 × 8 × 3 section, around 50,000 possible ways, while 

ImageNet has only 32,000 classes. Interestingly, humans effortlessly mentally reconstruct 
missing image sections by comparing context with their knowledge of the world, enabling scene 
and object recognition, as well as extrapolating missing elements from memory. Artificial and 
computer-based methods leverage similar principles in their approach. 

There exist two categories of approaches: local methods [2][3] solely rely on contextual 
information, such as color or texture, and aim to extend and blend these details seamlessly. 
These techniques demand minimal previous perception and training. For instance, if there are 
no eyes on the head part, a local method might replace it with a patch of skin-textured pixels. 
However, these methods face limitations in scenarios where larger patches are absent, excelling 
primarily in tasks like watermark removal. On the other hand, more advanced methods adopt a 
global, context-based, and semantic approach [4][5][6]. These methods identify patterns within 
images, like a door or a cabin, which leverage this understanding to infuse the empty spots. 
Unlike local techniques, they hold the importance of specific elements, such as the necessity of 
a nose in a particular facial position, constructing a fitting replacement based on their broader 
knowledge of the context. 

An attractive aspect of such problems lies in the effortless generation of extensive 
datasets for training. Some datasets of images like ImageNet and CIFAR10 [7], which we used 
for our convenience, can be readily pre-processed by introducing alterations to the images. This 
approach allows the generation of hundreds of millions of training examples, enabling the 
training of larger deep networks. 
The Problem: 

Every image is divided into two segments: the portion that is absent and under 
reconstruction, and the contextual part. To enhance simplicity, we suppose that the section 

which is missing, is a square of dimension  n × n. However, it is worth mentioning that the 
functionality of the network remains consistent even when dealing with arbitrary removals. See 
figure 1. 

 
Original Image   Input Images   Output Images 

Figure 1: Image In-Painting 
The concept of image in-painting is commonly presented as a constrained image 

generation challenge. The network is tasked with receiving a contextual input and generating an 
image with identical dimensions as the absent patch. The ultimate assessment hinges on the 

average element-wise L2 [8], the distance between the original missing section Y ∈ Rn×n×3 and 
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the predicted counterpart Ŷ ∈ Rn×n×3. In our illustrative instance using CIFAR10,  n = 8. For 

a given sample  i, the loss is calculated as follows: 

L =  
1

n2
 ∑

p,q,r

(Y(i)
p,q,r  −  Ŷ (i)

p,q,r )
2

 

 

We introduce an evaluation metric termed approximate exact-match (AEM), which is 
solely used for assessment purposes. We observe that a slight move of one or two elements in 
the value of the pixel channel has minimal visible impression, the effect can be seen in figure 2. 

Therefore, if a calculated pixel value falls from the accurate image value in the range of ±5 at 
each channel, this qualifies as the same and or equal. We present the mean-AEM, denoted as 

MAEM, where a value of 100% implies that the visual impression of the image is almost 
identical to the original image, a simpler version of Generated Image Quality Assessment 
(GIQA) [9]. 

 
Figure 2: On the left is ground truth example and on the right is a ±5 randomly added to each 

pixel channel 
In-painting comes in two forms: blind [10][11], where the network lacks information 

about the position and shape of the missing area. On the other hand, in the non-blind [12], such 
details are provided within the inputs. Extensive research indicates that blind in-painting poses 
a hard challenge. While non-blind in-painting is more extensively documented, there remains 
considerable scope for enhancement. Consequently, our emphasis is placed on the latter, 
reflecting a deliberate choice to concentrate efforts on non-blind in-painting, recognizing its 
potential for further advancements. 

Our primary goal is to make use of the latest computer vision methodologies to develop 
a resilient and well run in-painter. Here we aimed to attain satisfactory outputs in the form of 

mean square error or L2 loss, benchmarked against current models. Initial results and the 
existing methods indicate minimal empirical distinctions between utilizing a square-shaped mask 
and employing randomly selected rectangular shape masks in the middle of given images. 
Therefore, for implementation simplicity, our focus primarily revolves around centered square-
shaped cover ups of a consistent size. Specifically, on dataset like CIFAR10, this involves the 

removal of a patch from every image at the center of size 8 × 8. 
Related Work: 

Various researchers have investigated a diverse range of methods to tackle such 
challenges. A notable work by Pathak et al. [13], from where our initial inspiration took root. 
They adapted the conventional Generative Adversarial Network (GAN) [14] model by 
incorporating contextual information of image, rather than using stochastic noise, for predicting 
the incomplete section. Highlighting the importance of Leaky ReLU as detailed in [15] within 
the discriminator, and exclusion of pooling layers, they implemented compression and 

decompression operations with strides differing from 1. Their model training involved a 

combination of L2 loss and adversarial loss, measuring the success of the generator in deceiving 
the discriminator. However, our study revealed that this increased the risk of overfitting by 
utilizing fully connected layers in several instances. On the other hand, they have used relatively 
simple CNN model architecture as for encoders and decoders. In our work, our aim was to not 
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only explore this but also investigate modern methodologies renowned for state-of-the-art 
results in domains like VGG [16], Inception [17], and others similar. 

In a publication [18], their proposed approach revolves around modeling images as the 
conditional probability product distribution. Here the objective was to calculate the image pixels 
in sequential order, such as to the bottom-right point from the top-left. These functions which 
calculate conditional probability are shaped to either capture the contextual information of pixels 
within the upper rows with the help of recurrent networks or by employing CNNs to operate 
on local pixels (Pixel CNN [18]). Although originally designed for image generation, this method 
proves adaptable for our objective of optimizing the probability of the reconstructed image by 
providing pixel data. 

Yang et al. [19] present a technique aimed at addressing the in-painting of large sections 
within extensive images. Traditional models encounter challenges in producing sharp results for 
such tasks, often resulting in blurry outputs with noticeable edges between the contextual 
information and the reconstructed region. The authors reduce this issue by incorporating 
hierarchical approaches to introduce fine-grained features above the regenerated spots, 
enhancing the resolution of in-paintings. Their approach involves training two distinct networks; 
first is a feature extractor that is assessed using a content-based loss same as in [13], second is 
texture-based network which employs minimizing the texture-based local loss. The 
incorporation of perceptual equivalence ensures that the patterns within the generated spots 
closely align with the context of local texture. This strategy significantly improves visual 
sharpness, it may be considered unnecessary in our case, given the context of working with 
smaller images. 

The structure and process of our work represent a substantial adaptation of the 
CIFAR10 classification pipeline, originally derived from resources. The only retained elements 
are the queuing system and monitoring session. It is noteworthy that the autoencoders, GANs, 
and Wasserstein GANs (WGAN) [20] utilized in our study are also publicly available through 
standard sources. Moreover, there are adaptations of [13] in existence, their inefficiency and 
non-functionality led us to avoid their use. In the exploration of advanced models such as VGG, 
Inception, and ResNet [21], we adapted them from model repositories, and made adjustments 
to tailor them to CIFAR10 specifications.  
Methods: 
Dataset: 

Our primary dataset is CIFAR10, comprising images of dimensions 32 × 32 ×  32. It 

consists of around 50 thousand training and about 10 thousand test samples. Notably, the 
CIFAR10 has been taken from the Tiny Images dataset [22]. When our model achieves stability, 
we extend our training efforts to leverage this larger dataset. The inclusion of a more extensive 
variety of images from the larger dataset proves helpful, particularly given that CIFAR10 is 

limited to only 10 classes. The substantial number of samples in the larger dataset serves as an 
efficient countermeasure against overfitting. Our model facilitates seamless scaling for training 
on this expanded dataset, resulting in high training performance. 

Additionally, in the middle we also incorporate data augmentation steps on our 
CIFAR10 that helps in amplifying the dataset further enhancing the adaptability of this model 
for minor variations effectively. This involves introducing small, random adjustments to hue, 
saturation, contrast, and applying random Gaussian blur to the images. Also we put zeros in 

place of the middle 8 × 8 × 3 crop. 
Autoencoders: 

In-painting constitutes a subset of a broader category of image generation problems 
involving the creation or modification of pixels. Tasks like deblurring, denoising, and small-scale 
blind in-painting, such as text removal, are commonly addressed using autoencoders. 
Autoencoders typically consist of two main components, an encoder and a decoder. Initially, an 



                                  International Journal of Innovations in Science & Technology 

ICTIS|May 2024|Special Issue                                                                Page |169 

image is encoded in a latent feature space, or embedding. On the other hand, the decoder 
reconstructs the original image based on this embedding. The training process involves jointly 
optimizing both networks to decrease the input-output disparity. This architectural 
configuration requires the encoder to maximize the information encoded into the embedding. 
The encoder must learn the abstract intelligent features to compress the information in least 
possible loss, that too within the limited size of this latent space. In CIFAR10 experiments, 
where input images consist of vectors with a length of 3072, it has been found that employing a 
bottleneck size of 512 and or 1024 produces satisfactory results. Larger bottlenecks do not 
provide any attraction to autoencoders to discover accurate representations but keeping raw 
sections of pixels proves to be sufficient. On the other hand, using smaller bottlenecks lack 
sufficient capacity to encode the input information. This can be seen in figure 3.  

 
Figure 3: Autoencoder architecture of our model 

The typical ratio between the image and latent space dimension in the existing literature 

often exceeds than what we employ, ranging from 3 to 6. Empirically, our choice stems from 
working with small images, introducing a challenge in identifying unified entities and 

components in the target image. Achieving improved encoding ratios, as seen in ImageNet; 12 
or more, for instance, is more feasible because it is comparatively easier to isolate high-level 
features in larger images like those in ImageNet. 

To establish a baseline, we initially constructed a straightforward CNN architecture. The 

input dimension is 32 × 32 × 3, and the output dimension is 8 × 8 × 3. Guidance from the 
literature advocates for the use of several small filters rather than larger ones. The rationale 
behind this approach lies in the ability to achieve an equivalent receptive field with deeper 

networks. Throughout, we utilized filters of size 3 exclusively. While filters of size 5 and 7 were 

tested on multiple occasions, their performance consistently lagged behind that of size 3 filters. 

Our experimentation involved a [Conv −  Conv −  Pool2] × 3 architecture, followed 

by either 2 fully connected layers or 2 convolutional layers. This architecture closely resembles 
a well-performing design on CIFAR10, featuring smooth dimension reduction coupled with an 

increment in the number of filters, initiating at 32 or 64 and doubling at each pooling step. 
Subsequently, we opted to eliminate max pooling by entirely substituting it with convolutional 

layers of stride 2, maintaining the same filter progression. Transitioning from the 4 × 4 × 256 

convolutions to the bottleneck can be conceptualized as a stride 4 operation with 1024 filters. 
Across all scenarios, ReLU activation consistently outperformed alternatives. The incorporation 
of Batch Normalization on each layer given substantial performance improvements, 

approximately around ±15%, with comparable execution times.  
In terms of qualitative assessment, as previously mentioned, a prominent issue is 

blurriness: while colors are generally accurate, details and textures tend to be lost, resulting in 
predicted sections that often resemble indistinct dots, failing to seamlessly blend into the image. 
To address this challenge, our objective is to diminish visible continuity errors between the 
predicted section and the context. We aim to achieve this by predicting a patch that slightly 
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overlaps with the context and imposing a robust penalty on the loss specifically within this 
overlap region. 
Generative Adversarial Networks (GANs): 

The first figured-out method demonstrated notable L2 loss. Nevertheless, the generated 
output images consistently exhibited blurriness and a lack of intricate details, as illustrated in 

figure 4. The inherent nature of L2 loss encourages the network to adopt a risk-averse approach, 
generating safe predictions characterized by a lack of sharp shapes and substantial changes across 
the patch. The inclination to generate blurred, average-color images derived from context 
minimizes the occurrence of substantial errors. Consequently, while the model excels in terms 

of the L2 norm, the generated outputs fall short of realism when evaluated by a human eye. 

 
Figure 4: Results from normal CNN architecture 

Deep Convolutional GANs (DCGANs): 
To encourage our network to take more risks and generate realistic outputs, we opted 

to explore GANs. Here the underlying objective is the emulation of visual and perceptual 
evaluation and assessment. For instance, if a model predicts a human head without eyes or 
mouth, this is considered superior to generating an image with a black spot at the center. The 
rationale is that an averagely blurry image will never appear realistic to a human observer. 

In the realm of GANs, the key concept involves training a discriminator network (𝐷) 

concurrently with a generator network (𝐺). The discriminator learns to assess the authenticity 
of an image, distinguishing between real and or generated spots and dots. Normally they are on 
both real and generated examples with distinct labels for each. The generator faces a penalty 
with an increased loss if the output image is viewed as generated by the discriminator. To 
outsmart the discriminator, our generator aims to create natural looking and visually clear 
images. As the discriminator improves, both networks benefit from the feedback loop, driving 
mutual enhancement. 

The introduction of adversarial networks may not necessarily lead to an improvement in 

𝐿2 loss, as the generator could throw significant errors. Although, the primary objective is to 
enhance the realism of the generated images. In the end, the crucial aspect is whether the 
predicted human eye, for example, appears authentic within the context of the image. Even if 

the 𝐿2 loss indicates a substantial difference from the ground truth; it constitutes an acceptable 
result, if the predicted sections are admissible in the context of the human head. Here the focus 
shifts from minimizing pixel-wise differences to creating outputs that are visually convincing 
and contextually appropriate. 

Now, loss 𝐿 =  𝛼 𝐿𝑟𝑒𝑐 + (1 − 𝛼) 𝐿𝑑𝑖𝑐𝑠 , here 𝐿𝑟𝑒𝑐 is the same mean square error, while 

𝐿𝑑𝑖𝑠𝑐 known as the probabilistic output from the discriminator for the generated images. This 

also can be called sigmoid cross entropy. Given that 𝛼 changes the scale of the loss, using the 
loss itself for the optimization of this crucial hyperparameter is impractical. This challenge is to 

intricately linked to the observation that a lower 𝐿2 loss should not automatically correlate with 

script and visually better output. The choice of 𝛼 is aimed at optimizing the results of our output 
samples and ensuring. Overall, this can be calculated as:  

𝐿𝑑𝑖𝑠𝑐 =  − ∑

𝑖

 𝑙𝑜𝑔(𝑝𝑖)  =  − ∑

𝑖

𝑙𝑜𝑔(𝐷 (�̂� (𝑖))) 
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The discriminator, in our setup, is a network consisting of six convolutional layers, 

having a stride value of 2. After this, there is a final convolutional layer that reduces the depth 

value to 1, resulting in a normal value output. Conceptually, a typical classification task is 
addressed by our discriminator. Therefore, various recent methods can allow them to function 
as a typical generator network. We leveraged pre-trained models, including VGG, Inception, 
and ResNet, to enhance our discriminator. Since these models are designed for larger inputs like 
ImageNet, we attempted to pad our images, but the results were unsatisfactory. As a solution, 
we adjusted these techniques to operate on our smaller inputs. This involved removing the first 

layers with dimensions higher than 32 × 32 and injecting our input into the initial smaller layers. 
To prevent overfitting and improve execution time, we also reduced the depth and the number 
of filters in consideration of the fact that our input contains less information. The same 
adaptation strategy was applied to the encoder, where we experimented with a variety of high-
performing models. 
Learning Tricks: 

As usual we encountered challenges in effectively training a GAN. Visual inspection of 
the predicted images revealed the presence of colored artifacts, as illustrated in figure 5. Upon 
closer inspection, it became apparent that shapes and color gradients aligned with the context, 
but the colors were distorted, particularly noticeable in the case of the plane. Due to difficulties 

in achieving satisfactory convergence with GANs, the 𝐿2 loss was higher compared to vanilla 
autoencoders. The current architecture exhibits a sensitivity to randomness, where the exact 
same method may result in convergence or divergence under different circumstances. 

 
Figure 5: Results from DCGAN architecture 

Training GANs poses inherent challenges as they are often unstable and highly sensitive 
to network architectures and parameters setting. Finding the right hyperparameters and 
architecture details can be a tedious task. Another common issue encountered is the imbalance 
between the discriminator and the generator, where one may exceed and overwhelm the other. 
As an example, if out network’s discriminator becomes excessively robust, then our generator 
will struggle to deceive it, leading to a scenario where the adversarial loss sharply rises at high 

values, increasing the 𝐿2 loss. Conversely, if the generator becomes too dominant, it can 
successfully outsmart the discriminator, causing it to halt learning and assign identical 
probabilistic values to both fake and real samples. Then, it is symmetrical to have no adversarial 
loss. To address these challenges, we experimented with a few learning tricks aimed at mitigating 
these issues. 
Separate Batches: 

We provided two distinct batches: one containing solely real samples and the other 
composed entirely of fake samples. This approach facilitates clearer and more direct updates for 
each batch, allowing the network to focus distinctly on improving its understanding of real 
examples and enhancing the detection of fake ones. 
Soft and Noisy Labels: 

Soft and noisy labels were employed following the approach outlined in [23]. True 

images were assigned random labels between 0.9 and 1.1, while fake images received labels 

ranging from 0 to 0.2. Additionally, labels were occasionally flipped randomly between classes. 
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These strategies introduce noise and enhance the robustness of the discriminator, contributing 
to improved training stability. 
Maximizing log D Instead of Minimizing log (1 − D): 

Rather than minimizing 𝑙𝑜𝑔(1 − 𝐷), we chose to maximize 𝑙𝑜𝑔𝐷. Here 𝐷 represents 
the discriminator’s output. While these formulations are equivalent in this context, the latter 
avoids the issue of vanishing gradients early in the training process, enhancing the stability and 
effectiveness of the learning procedure. 
WGANs: 

To address the challenges in training GANs, as discussed above, WGANs [20] have also 
been explored as an alternative to traditional GANs, relying on the Earth-Mover distance [24] 
for learning distributions. WGANs minimize the Earth-Mover distance, allowing for the 
estimation of this metric during training, which correlates well with visual quality. WGANs also 
eliminate the need for a realness probability from the discriminator, using an unbounded score, 
and enforce Lipschitz continuity through gradient clipping. Importantly, WGANs do not require 

a delicate balance between the generator (𝐺) and discriminator (𝐷), allowing for training the 
discriminator to convergence at each step. In practice, we train the discriminator 10 times at 
each iteration for stability and convergence. 
Reducing Continuity Errors: 

The adoption of WGANs marked a significant improvement in training a robust 
adversarial network. However, a noticeable issue persisted; the distinct visibility of the border 
between the context and the reconstructed region. Despite the challenge in visually explaining 
this clear border appearance, a detailed analysis revealed the absence of an organized color 
correction with pixels was highly noticeable, but a random error tended to blend more 
seamlessly, refer to figure 2. This border problem remained even in instances with otherwise 
accurate predictions. 

To address this issue, we implemented a clever trick: predicting a 16 × 16 center square 

that encompasses the original 8 × 8 target along with a an each side overlap of 4-pixels. While 
we penalized our reconstruction loss more than 20 times, it is relatively simple for the model to 
accurately calculate and predict it. Here this strategic approach significantly enhances the quality 
of border merging. By ensuring that there are no major discontinuities within the output, this 
effectively reduced gaps between the input and prediction. It is important to note that, for 

visualization purposes, we retain and display only the 8 × 8 target in the final results. 
Prior to using this strategic trick, feeding the entire image to the discriminator posed 

challenges, as the obvious border served as a key indicator for determining the authenticity of 
the image. However, with the introduction of the overlap and the subsequent reduction in the 
visibility of borders, we successfully transitioned to providing the complete image to the 
discriminator. In this improved setting, the discriminator could assess the entire image as a 

cohesive unit. Notably, an 8 × 8 square, either from a real or fake image, typically lacks sufficient 
meaningful information on its own, making it challenging for the discriminator to make a 
decisive meaning. In contrast, evaluating the entire image facilitates a clear and more 
straightforward return for the discriminator. Overall the results can be seen in figure 6. 

 
Figure 6: On the left is the result without overlap trick and on the right is with overlap 
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Density Based Models: 
The Idea: 

We opted to implement unsupervised models alongside our supervised methods for 
filling the contextual portion in the center of an image. In this approach, our objective is to 

approximate the function of Probability Mass (PMF), 𝑝 of all images by multiplying conditional 

probabilities. Therefore, for a given image 𝑥 of dimension 𝑛 × 𝑛, where the pixels are denoted 

as {𝑥1, 𝑥2, . . . , 𝑥𝑛2}, the PMF is expressed as: 

𝑝(𝑥)  =  ∏

𝑛2

𝑖=1

𝑝(𝑥 | 𝑥𝑖 , . . . , 𝑥𝑖−1)  

Where 𝑝(𝑥 | 𝑥𝑖 , . . . , 𝑥𝑖−1) denotes the probability of the 𝑖𝑡ℎ pixel or 𝑥𝑖 assuming the 

values 𝑥1, . . . , 𝑥𝑖−1 have been observed in the previous pixels.  

Each pixel is represented by a triplet of integers as: (𝑅, 𝐺, 𝐵)  ∈ {0, 256}3. Now using 

this notation 𝑥𝑖  =  (𝑥𝑖,𝑅 , 𝑥𝑖,𝐺 , 𝑥𝑖,𝐵) and 𝑥 < 𝑖 =  (𝑥1, . . . , 𝑥𝑖−1), the conditional probabilities 

can be written as: 

𝑝(𝑥𝑖 | 𝑥 < 𝑖)  =  𝑝(𝑥𝑖,𝑅 | 𝑥 < 𝑖) × 𝑝(𝑥𝑖,𝐺 | 𝑥 < 𝑖, 𝑥𝑖,𝑅) × 𝑝(𝑥𝑖,𝐵 | 𝑥 < 𝑖, 𝑥𝑖,𝑅 , 𝑥𝑖,𝐺)  

Therefore, the final probability 𝑝(𝑥) is obtained by multiplying 3𝑛2 terms. 
Consequently, while in-painting images, our aim is to populate the space with the pixels by 
maximizing this probability. 

The approach we take is greedy, which means that assuming we have learned the 

characteristics of the function p and are given an image with m missing pixels at positions 𝑖1 <
𝑖2 < . . . <  𝑖𝑚, we will first set the value 𝑥𝑖1,𝑅 given 𝑥 < 𝑖1, then the value of 𝑥𝑖1,𝐺 given (𝑥 <
𝑖1, 𝑥𝑖1,𝑅), and eventually we set 𝑥𝑖𝑚,𝐵 given (𝑥 < 𝑖𝑚, 𝑥𝑖𝑚,𝑅 , 𝑥𝑖𝑚,𝐺). Hence, as this approach is 

easy to implement and is computationally efficient, there is no assurance that our reconstructed 

image maximizes the likelihood 𝑝(𝑥). 
An intuitive approach is to establish an order on the pixels, progressing from the top-

left corner to the bottom-right corner, scanning rows consecutively. Once the order is defined, 
the next step involves selecting the type of conditional probability to be learned. We will 
introduce two distinct methods, drawing inspiration from [18]. The first method involves a Pixel 
CNN, where the conditional probability of a pixel is determined through a convolutional neural 
network operating on pixels in the surrounding neighborhood. The second method is a flattened 
row Long Short-Term Memory (LSTM), changing significantly from the one proposed in [18]. 
In this alternative approach, the probability is computed based on pixels from preceding rows, 
which are then fed into an LSTM network. 
Pixel-CNN: 

In order to calculate the conditional probability 𝑝(𝑥𝑖 | 𝑥 < 𝑖), a convolutional neural 
network is implemented. Various architectures were explored, incorporating combinations of 
convolutional and leaky ReLU layers. The model concludes with three fully connected layers, 

each followed by a softmax layer corresponding to the three-color channels (𝑅, 𝐺, 𝐵). Our 
model applies softmax loss function, computing the estimated probabilities for the true pixel 

values �̂�𝑖,𝑡𝑟𝑢𝑒 in an image with 𝑛2, are computed as:  

𝐿𝑠𝑜𝑓𝑡𝑚𝑎𝑥 =  − ∑

𝑛2

𝑖=1

𝑙𝑜𝑔(�̂�𝑖,𝑡𝑟𝑢𝑒) 

An alternative perspective argues that the SoftMax loss may not be directly applicable, 
considering that the task at hand is not a classification one. In this context, calculating the value 
of 117 rather than 118 could not be as crucial as predicting 117 instead of 245. While it is obvious 

that a low probability �̂�(𝑥𝑖,𝑅 =  120) may not pose a significant issue. If the emphasis on values 
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within the range (112, 124) is sufficiently enough, the softmax loss function has shown 
interesting results, even given the extensive training examples compared to the 256 possible 
values for each channel. The model we came up with finally incorporates a 5x5 section within 
the image for the initial convolutional layer, positioned at the top-left corner of the pixel grid. 
See figure 7. 

 
Figure 7: The red pixels are surrounded by gray dots; these are used for predicting the 
conditional distribution which form the neighborhood. Subsequently, to estimate the 

distribution of the next pixel we the same network, shifted one step to the right 
Our method offers the advantage of utilizing a similar model, not only this but provides 

a similar set of learning parameters to compute the final conditional probabilities for each. The 
complexity remains persistent, irrespective of the image size, as we consistently use the same 

number of pixels; 24 to calculate the distribution of the next pixel. However, in the case of 

resolutions, like 128 × 128 images, this may be necessary to employ a greater relative section 
for more accurate predictions. 

The outcomes obtained with our Pixel CNN model exhibit a slightly lower performance 

compared to GANs when evaluating the 𝐿2 loss. Two factors contribute to this disparity: 

• Our Pixel CNN was trained using a SoftMax loss, which explains the higher 𝐿2 loss 

value of 6.98, as opposed to the results that came from our GANs. 

• Iterating through the image from left to right, the Pixel CNN determines the value of 
each pixel based on its 24 neighbors located at the top-left corner. Consequently, during 
the gap-filling process the pixels at the bottom of the image remain unused. See figure 
8. 

 
Figure 8: On the left is ground truth example and on the right is a reconstructed image from 

the Pixel CNN model 
At the bottom and right portions of the image, clearly, the reconstruction of the bird 

reveals a neglect that is predominantly characterized with colors like light gray and white. This 
omission is particularly noticeable in the reconstructed square, where the discontinuity is more 
apparent at the bottom and right sides. Additionally, the limited number of dark feathers initially 
situated at the top-left corner of the absent section have now expanded to encompass a 
significant portion of the reconstructed square. 

We also recognize the presence of the Row LSTM and Diagonal BiLSTM [25] from the 
same article. We successfully implemented and executed these methods, which yielded 
satisfactory results. While we refrain from providing an exhaustive report on these techniques 
due to their complexity in terms of implementation and performance, we attempted to propose 
a significantly simpler architecture. Despite its simplicity, this alternative architecture 
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demonstrates the capability to deliver relatively good performance on CIFAR10, enabling 
insightful analyses. 
Flattened Row LSTM: 

Finally, we present a model that incorporates data from all preceding rows of the image 
to compute the probability distribution of each pixel. Termed as the Row Flattened LSTM, the 
architecture of this model can be seen in figure 9. 

 
Figure 9: Row Flattened LSTM Architecture 

The entire image is flattened, executing to the bottom-right from the top-left corner. 
Supplied to the LSTM are pixel channels, represented as 256-dimensional one-hot vectors, in 
the prescribed RGB sequence. With a set of 64 hidden dimensions, we proceed to convert these 
hidden vectors into output vectors from a fully connected softmax layer, each comprising 256 
dimensions. Our Flattened Row LSTM reconstructed image example can be seen in figure 10.  

 
Figure 10: On the left is ground truth example and on the right is a reconstructed image from 

our Row-wise Flat Pixel LSTM 
Our obtained result exhibits certain limitations compared to the Pixel CNN model. 

Several factors may contribute to these observations: 

• The model assigns more influence to the pixels immediately on the left of the 
reconstructed pixel the way the LSTM scans. This differs from the Pixel CNN approach, 
where we employed a concentrated region of 24 neighboring pixels located at the top-
left corner of our target pixel. 

• As our current LSTM model may be too simplistic to effectively interpret this 
information, its strength lies in capturing all information from previous rows before 
making predictions. Enhancements, such as incorporating multiple LSTM networks or 
increasing the hidden dimensions, could potentially lead to more accurate predictions. 

Results: 
Autoencoders: 

We used the Adam optimizer for training and conducted cross-validation for the 
learning rate. Learning rate decay proved beneficial across all our tests, striking a balance 
between swift initial learning and a gradual reduction in loss during later stages. However, we 
encountered challenges in cross-validating the decay rate and decay factor due to the intricacies 

involved in this process. Furthermore, we implemented dropout at a rate of 0.5 for every 
activation, and our experiments revealed no substantial changes in accuracy within the 

reasonable range of values for the probability drop from 40% to 80%. Also, we investigated the 
impact of the bottleneck size on our fundamental architecture, recognizing it as one of the most 
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critical parameters. But it is worth noting that the best results, shown in table 1; did not emerge 
from the basic architecture. 

Table 1: Train Vs. Val L2 Loss 

Size of a Bottleneck L2 Loss (Training) L2 Loss (Validation) 

256 7.02 7.96 
512 6.36 7.41 
1024 4.89 7.48 
2048 4.23 8.14 

It is apparent that overfitting poses a challenge. Significantly decreasing the size of 
bottleneck, and consequently it reduces the size of fully connected layer. This leads to a 
substantial decrease in the number of parameters, this is because this layer constitutes the 

majority of training parameters of the model. Overfitting diminishes notably from 2048 to 512, 

with 512 appearing to be the optimal choice, while 256 proves to be too small and potentially 
insufficiently expressive. Furthermore, to combat over-fitting more effectively, we plan to 
investigate strategies such as expanding the dataset and employing the data augmentation, 
integrating explicit L2 regularization, and experimenting with techniques like drop-connect, 
which involves randomly dropping connections in CNNs during training. 
WGANs: 

As previously mentioned, unlike our vanilla autoencoder, GANs do not exclusively 

optimize for 𝐿2 loss. Theoretically, 𝐿2 loss results should not be superior for GANs. However, 

we dedicated more time to refining GANs because our best 𝐿2 only architecture gave visually 
poor results; the optimized loss function and visual quality did not align. Consequently, our 
GANs exhibit improved results as a consequence of this experimental bias. 

Due to challenges in training a Deep Convolutional GAN (DCGAN [26]), we 
exclusively present results for our implementation of WGAN, which has proven effective. The 

reported score in the paper was slightly inconsistent, representing a coefficient of 0 for the 
adversarial loss, making it a normal CNN. The most favorable outcomes were achieved with a 
VGG-like architecture. It is important to note that we do not argue that this is the optimal 
architecture, as our exploration of alternative options has been limited. 
Density Methods: 

Our conditional probability function in the Pixel CNN uses several convolutional layers 
with dropout. We opted not to include any pooling layers, as their addition did not appear to 
enhance the quality of our reconstructed images. Given that the parameters of the CNN are 
shared across all pixels, training the Pixel CNN essentially involves a classification task using a 

24-pixel section; 5 × 5 × -1, as explained earlier, as input and an integer within the range 

[0, 256] as the target. For optimization, we utilized the Adam Optimizer with cross-entropy 

loss, and the learning rate was cross-validated. The dropout rate was set at 50%. 

Our Flattened Row LSTM model achieved a quadratic loss of 7.63 on the test set, 

employing the softmax cross-entropy loss. The hidden dimension 64 goes with cross-validation, 
although due to computational constraints, we could not test as many values as desired. With 

the incorporation of several LSTM networks, it is likely that we could have achieved a lower 𝐿2 
loss. 
Comparison: 

The outcomes of the optimal run for each model type on the test set are depicted in 
table 2 below. Additionally, several outcomes from our top-performing run are illustrated in 
figure 11. 

Table 2: Different models’ L2 Loss values 

Model L2 Loss 

Row Flattened LSTM CNN 7.63 
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Pixel CNN 6.98 
Wasserstein GAN 4.26 

CNN 7.49 

 
Figure 11: Results from Out-of-sample example 

Conclusion: 
Our unique CNN-based image in-painter with notable efficiency recognizes the 

significance of adversarial loss, as we incorporated a GAN into our model. Employing various 
tricks, we extended the approach from [13] to incorporate WGANs and utilized well-established 
architectures like VGG, Inception, and ResNet. Additionally, our overlap trick enhances border 
smoothing and also aids the training of discriminators. Our exploration not only delved into 
density-based methods, implementing Pixel CNNs based on [18], and introducing our model, 
Flattened Row LSTM. Through qualitative and quantitative comparisons, we looked to 
comprehend the limitations of these models. Overall, we are highly content with the outcomes 
achieved by our proposed architectures. 

Future improvements involve adapting our models for larger images, offering exciting 
possibilities for handling more complex scenes with larger objects. Despite potential 
performance challenges, scaling up would open directions for addressing intricate scenarios. 
Additionally, refining our Flattened Row LSTM model to enhance symmetry and reinforce its 
generative capabilities stands as another goal for future improvement. 
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