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icro hydropower plants must effectively manage demand response to preserve 
operational firmness and prevent system breakdowns. This research focuses on 
accomplishing a fine balance while predicting consumption and production, which is 

significant for upholding system integrity. The study delves into predictive modeling methods 
to forecast patterns in the production and consumption of electricity over an array of time 
horizons. We adopted a custom sliding window mechanism, in which actual and predicted values 
are used to predict the next hour of electricity. We set a baseline to resolve this and examined 
various algorithms, focusing on RNN-LSTM and CGP-LSTM. The CGP-LSTM forecasting 
output sequences with different time horizons precisely outperform the RNN-LSTM. The 
dataset utilized is downloaded from the Kaggle website. 50% of the data is used to train the 
models, and the rest is used to test the models. This work deals with the complex fluctuations 
in the demand response system and provides electricity production and consumption 
predictions. CGP-LSTM model gave a training MAPE of 6.67 (Accuracy of 93.33%) and a 
testing MAPE of 6.68 (accuracy of 93.32%) for the next three hours; on the other hand, LSTM 
gave a training MAPE of 6.53 (accuracy of 93.47%) and testing MAPE of 7.46 (accuracy of 
92.54%) for the next three hours. The results offer a base for further developments and 
improvements in the field, drawing attention to more effective and reliable energy management 
capabilities in micro hydropower plants. 
Keywords: Artificial Intelligence; Micro-Hydropower Plant; Time Series Forecasting; LSTM; 
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Introduction: 
The power production capacity of micro-hydropower stations is significantly affected by 

seasonal changes in water inflow, leading to electricity shortages and inconstant electricity 
supply. The Jungle-Inn Micro-Hydro Power Plant located at Swat, Kalam region is an example 
of such a case, where lower water intake during the winter time results in lower power output 
and persistent power production issues. To tackle this problem, the present load management 
exercises at Jungle-Inn MHP involve the temporary disconnection of one of the three-phase 
connections in case of decreased water inflow. And in case of excessive production, they switch 
on the water heaters to manage extra energy. However, these local practices prove neither safe 
nor optimal for stable and efficient power distribution systems. Voltage unevenness can result 
from a failure to forecast consumption changes or excess production, which could cause harm 
to the electrical infrastructure. The Jungle-Inn micro hydropower station case shows the issues 
encountered with handling surplus energy, where traditional approaches such as switching on 
heaters or sometimes diversion of water flow are insufficient. Precise prediction of production 
and consumption will allow more reliable and efficient load management practices.  

Precise electrical consumption forecasting models are requirements because of certain 
driving motives, the most obvious and serious being climate change. With information being 
published, carbon dioxide emissions are one of the prime reasons for climate change [1]. The 
significance of electrical power in everyday life means that forecasting its consumption is 
increasing in importance. Because of their universal application, a range of articles, study papers, 
blogs, and videos are accessible. Referring to Weron's [2] prediction techniques, he examines 
several methods to handle the electrical energy forecast issue, including reduced form, statistical, 
and artificial intelligence, ML methodologies. It has been observed that Machine learning models 
frequently surpass many traditional approaches. It can still be split into different computational 
methods (ML models); one uses deep learning models based on neural networks to explore time-
variant data, and the other contains time series models focused on regression techniques [3]. 
The auto-regressive moving average is one of the regression techniques (ARMA) [4], and the 
moving average model that is integrated auto-regressive (ARIMA) [5] such models needs to have 
highly reliable data [3] which might not always be attainable. 

Electric company's planning operations rely on accurate models for forecasting electric 
power consumption. An electric company may use consumption forecasting to assist in making 
important choices about the production and consumption of electricity, load switching, and 
industry development. Accurately forecasting consumption requirements is an electric power 
utility's main task. Energy is considered fundamental to the modern world and a core aspect of 
economic sustainability. A renewable energy resource supply is essential for economic growth. 
Most renewable energy sources, including wind, solar radiation, geothermal heat, hydropower, 
etc., are long-term sustainable. For instance, the hydroelectric turbine systems of large-scale 
traditional hydroelectric stations, or dams, with water reservoirs offer varying electricity 
production in response to variations in energy consumption. Atmospheric factors like 
precipitation and temperature influence small and micro hydropower plants' ability to generate 
energy. Due to the previously mentioned, the energy produced by these systems varies and must 
be predicted [6]. Lately, the usefulness of artificial intelligence techniques has overtaken that of 
traditional approaches, in particular in the domain of electricity consumption forecasting. 
Notably, ANNs have acquired significant prevalence and have been extensively used in this field 
[7][8]. 

As reported by Weron [2], Several prediction methodologies, including reduced-form, 
statistical, and computational intelligence methods like Machine Learning (ML), have been 
explored to address the electrical power forecasting challenges. ML models have performed 
better than conventional approaches in different circumstances. This finding is by the results 
drawn by Pallabi Paik et al.'s research [9], Which concentrates on stock price prediction; 
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nevertheless, the research context is separate, and the resemblances between the data trend, data 
types, and setup in stock price prediction and electricity energy prediction suggest similar 
methods. Both domains concentrate on time series as the key element. The survey by Pallabi 
Paik et al. reveals that data-capturing technologies oftentimes outperform traditional techniques 
in multiple cases. These findings highlight the ability of machine learning approaches, including 
data mining, to offer more precise and firm predictions for complicated time series data like 
electricity energy consumption, outperforming the capabilities of conventional methods. 

Deep learning models have shown better performance while operating on sequential 
data that show fickleness and volatility compared to traditional regression approaches. Notably, 
real-world data is frequently subject to dynamic alterations and instability. By means of 
experience-based data, research states the performance of artificial neural network models, 
namely the Long Short-Term Memory model, surpasses regression methods in such schemes. 
[3][10][11], These results highlight the importance of deploying deep learning approaches, such 
as LSTM, to achieve more precise and reliable forecasting when dealing with diverse and non-
stationary time series data. The approach used in this study is implemented using a typical 
machine learning project workflow [12] as depicted below (Figure 1). 

 
Figure 1: Research methodology adopted for this project [12] 

The objectives of this research are to establish predictive models to precisely predict 
both electricity consumption and production for micro hydropower stations, enabling proactive 
management strategies to prevent unexpected alterations that could cause the system to fail. To 
continue to improve the effectiveness of load management strategies, it is vital to focus on the 
necessity of accurate predictions in light of rising electricity consumption and shifting dynamics 
in the environment surrounding the production of electricity. 

 
Figure 2: Sliding window mechanism used in this project 

We used a novel algorithm CGP-LSTM and adopted a custom sliding window 
mechanism, our approach entails leveraging the preceding 12 hours of electricity consumption 
to predict the subsequent 3 hours. We used actual and predicted values in the input sequence. 
This iterative process involves predicting one hour at a time, with each predicted value being 

Dummy Train Data 6352 6116 5873 5682 5557 5525 5513 5524 5510 5617 5643 5743 5737 5776

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Prediction Actual

Core Model 6352 6116 5873 5682 5557 5525 5513 5524 5510 5617 5643 5743 Y1 X13

Update core model 6116 5873 5682 5557 5525 5513 5524 5510 5617 5643 5743 Y1 Y2 X14

Update core model 5873 5682 5557 5525 5513 5524 5510 5617 5643 5743 Y1 Y2 Y3 X15

Update core model 6116 5873 5682 5557 5525 5513 5524 5510 5617 5643 5743 5737 Y4 X14

Update core model 5873 5682 5557 5525 5513 5524 5510 5617 5643 5743 5737 Y4 Y5 X15

Update core model 5682 5557 5525 5513 5524 5510 5617 5643 5743 5737 Y4 Y5 Y6 X16

Update core model 5873 5682 5557 5525 5513 5524 5510 5617 5643 5743 5737 5776 Y7 X15

Update core model 5682 5557 5525 5513 5524 5510 5617 5643 5743 5737 5776 Y7 Y8 X16

Update core model 5557 5525 5513 5524 5510 5617 5643 5743 5737 5776 Y7 Y8 Y9 X17

Train Data
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appended to the input sequence for the subsequent prediction. Subsequently, upon completing 
a prediction cycle, the window of observed values is shifted by unit size, and the process is 
reiterated until the model is sufficiently trained. 
Material and Methods: 

The study's methodology follows a stepwise approach, using artificial intelligence 
algorithms to forecast the consumption and production of micro hydropower plants. The initial 
phase of research included finding a dataset that has the hourly-based consumption and 
production of electricity historical data. First, I went to Dare Noor an MHP located in 
Nangarhar province, Afghanistan the data that I acquired for Dare Noor was insufficient to 
conduct a successful training. The data for Jungle-Inn was not available at first so I looked it up 
on the Internet Finally, I downloaded a dataset named “Hourly Electricity Consumption and 
Production” [13] from the Kaggle website. The dataset has hourly time series of electricity 
consumption and production data in Romania spanning over four years. All values are in Mega 
Watts.  

After finding the dataset, the next phase involved data pattern inspection and evaluation. 
By assessing these patterns, we can discover crucial insights about power consumption and 
production in different conditions. This analytical process enabled us to identify anomalies, 
trends, and potential fields of improvement. With the understanding obtained from the analysis 
of the data, we moved on to the development phase. Here, we have utilized different algorithms 
DNN, CNN, RNN, RNN-LSTM, and CGP-LSTM designed for optimal predictions. The 
algorithms are destined to forecast the consumption and production of electricity on the basis 
of historical data. The established models such as DNN, CNN, and RNN are trained, validated, 
and tested. The dataset is divided into three parts, which are 70% of the data selected for training, 
20% of the data chosen for validation, and 10% of the data selected for the testing of the models. 
The training phase uses the data to train the model on different scenarios and predictable 
responses. After the model is trained, then it is validated against a separate set of samples from 
the dataset to ensure its generalization.  

We additionally explore autoregressive methods utilizing RNN-LSTM and CGP-LSTM. 
The models are trained and tested using 50-50 data from the dataset. For the execution of the 
autoregressive approach, the model input includes both observed and predicted values, to 
predict the second and third-hours’ electricity. However, to predict the first hour the models 
only used observed values from the dataset achieved by a custom sliding window approach. 
Eventually, this approach is favored to provide a permanent solution to the issues of load 
management during times of low water intake and excessive energy production thus enhancing 
the reliability and efficiency of the micro hydropower station.  
Result and Discussion: 

The primary goal is to predict power production and consumption for the next three 
hours. To achieve this a sliding window approach is used, where we use observed and predicted 
values as an input for prediction. This approach is practical for real-world applications, especially 
micro-hydro power stations. The dataset that was utilized for this project spans four years, from 
2019 to 2023, and has three columns: “Date Time,” “Consumption,” and “Production” in MWh. 
We use different types of models for this task. Initially, we start with simple models to establish 
a baseline. Then, we explore more models, including Convolutional, DNN, and Recurrent 
Neural Networks. These models make all their predictions in a single shot (all 24 hours 
prediction at a single shot), unlike a sliding window approach where we predict one hour at a 
time and then we make the predicted hour part of an input, the input then have observed and 
predicted values to predict the next hour. In the final phase, we introduce an approach using a 
custom sliding window technique with LSTM and the novel algorithm called CGP-LSTM. We 
use the MAE and MAPE to assess the effectiveness of both forecasting models. 
baseline model, linear model, dense model, CNN model, and RNN models. 
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RNN-LSTM: 
In the experiments to train the LSTM model, we have used standardization as a 

normalization technique, we used 50% of the data to train the model and 50% to test the model 
on it. We used 12 nodes with the ReLU activation function. Here's a summary of the steps in 
the provided code: 

• Import necessary libraries including NumPy, Pandas, and TensorFlow for building and 
training a neural network model. 

• Define a function split-sequence (sequence, n_steps) to split a univariate time series 
sequence into input-output pairs with a specified number of time steps (n_steps). 

• Set the number of time steps (n_steps) for sequence splitting and define a neural network 
model (core model) using Tensor Flow's Kera’s API.  

• Compile the core model with the Adam optimizer and mean squared error loss. 

• Define column names for the result Data Frames for both training and testing. 

• Create empty Data Frames Result Train and Result Test to store the training and testing 
results, respectively. 

• Define a function Model Train (sequence, model) to train the neural network model on 
a given sequence. This function fits the model to the data, makes predictions, and 
appends the predicted value to the sequence. 

• Define a function seq_train (raw) to perform training iteratively. It calls Model Train for 
training the model on subsequences of the training data, appends the results to Result 
Train, and updates the input sequence for the next iteration. 

• Set the number of iterations and the raw data length initial values based on the length.  

• Iterate through the training data, extracting subsequences and applying the seq_train 
function. 

• Extract test data from the remaining portion of the raw data.  
Figures 3 and 4 display the model's training and testing curves for 7000 data points. 

 
Figure 3: The training result of the model for 7k rows 

 
Figure 4: The testing result of the model for 7k rows 



                                International Journal of Innovations in Science & Technology 

ICTIS|May 2024|Special Issue                                                                 Page |130 

The following Figures 5 and 6 show the model performance when trained on 4k data 
samples. 

 
Figure 5: The training curves for 4000 rows 

 
Figure 6: Testing curves for 4k rows 
Table 1: RNN-LSTM model results 

Model Training/Testing Input/output MAE MAPE 

4k rows 

Train C 
12 inputs 
1 output 

363.47 4.86 

Test C 324.41 5.04 

Test P 340.91 5.21 

Train C 
12 inputs 
3 outputs 

489.87 6.53 

Test C 450.11 7.46 

Test P 445.65 6.75 

7k rows 

Train C 
12 inputs 
1 output 

279.813 3.92 

Test C 465.18 7.01 

Test P 392.77 6.69 

Train C 
12 inputs 
3 outputs 

382.16 5.36 

Test C 678,81 10.2 

Test P 586.93 9.95 

Table 1 presents a performance comparison of both of the experiments. The models are 
trained and tested on 4k and 7k data samples, providing one- and three-hour predictions into 
the future. The errors are presented in Megawatt hours (MWh). The model is trained and tested 
on both “Consumption” and “Production,” as you can see in the above table 1. The model is 
run on 4k and 7k rows from the dataset. “Train C” represents that the model is trained on 
“Consumption” historical data, “Test C” indicates that the model is tested on “Consumption” 
data, and “Test P” represents that the model is tested on “Production” data. In the experiment 
with 4k data points, we obtained an accuracy of 93.47 % for training and 92.54% for testing to 
predict the next three hours. The best results in the table are shown in bold text. 
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CGP-LSTM: 
The CGP-LSTM training was carried out on the production data, and validation was 

performed on both the training and testing data. Figure 7 shows the actual and predicted values; 
the predicted values curve follows the actual values curve very closely. 

 
Figure 7: Testing result curve with CGP-LSTM algorithm 

Table 2: Results of the CGP-LSTM model 

Model Training/ Testing Input /Output MAE MAPE 

50 Nodes 
Full datasets 

Train- P 

6 input 
6 Output 

0.064384 9.407604 

Test- P 0.062959 9.409408 

Test- C 0.048834 7.790334 

Train- P 

6 input 
3 output 

0.045892 6.679367 

Test- P 0.044945 6.684573 

Test- C 0.035013 5.558505 

Train- P 

6 input 
1 one output 

0.031806 4.589071 

Test- P 0.031083 4.583583 

Test- C 0.024525 3.869808 

CGPLSTM used 50 nodes, although the actual nodes used in the model are fewer. The 
model is trained on the “Production” column from the dataset then it is tested on both 
“Production” and “Consumption”, Train- P (Model trained on “Production”), Test-P (Model 
test on “Production), and Test –C (Model test on “Consumption”). As you see in Table 2, we 
have six inputs and 6 outputs, which means that based on the previous six hours, we are 
predicting the next 6 hours. Then we have three inputs and three outputs, which means that the 
model predicts the next three hours based on the previous six hours which have both observed 
and predicted values as explained in the custom sliding window approach. Finally, we have six 
inputs and one output, which means that we are predicting the next hour based on the previous 
six hours. When the model was first trained and tested on the entire dataset, the outcomes are 
displayed in Table 2. 
Conclusion: 

In conclusion, the various approaches and algorithms employed in this study present 
unique advantages and drawbacks, contributing to a detailed understanding of their applicability. 
Convolutional Neural Networks and Recurrent Neural Networks in the prediction process offer 
a robust foundation for capturing spatial and temporal dependencies in the data. CNNs stand 
out in extracting spatial features, whereas RNNs are adept at modeling temporal patterns. 
However, the dependency on vast training data and the possibility of overfitting are noteworthy 
drawbacks. Moreover, the autoregressive nature of the models presents challenges in precisely 
predicting distant subsequent values. Finding a balance between model complexity and 
forecasting accuracy is a key concern across all approaches. These insights help the continued 
discussion about the optimization of predictive modeling for electricity consumption and 
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production prediction, leading the way for future improvements and refinements in the field. 
On the other hand, with its iterative prediction methodology using RNN-LSTM and CGP-
LSTM, the Custom Sliding Window approach excels in its adaptability in yielding an output of 
varying lengths. This adaptability verifies advantageous in scenarios demanding several output 
predictions. However, the recurrent nature of the approach may present higher computational 
complexity. Comparing the results of these two established models, CGP-LSTM gave good 
results compared to RNN-LSTM. However, it must be mentioned that both models can be 
improved by experimenting with different combinations of hyperparameters. CGP-LSTM gave 
a training MAPE of 6.67 and a testing MAPE of 6.68 for the next three hours; on the other 
hand, RNN-LSTM gave a training MAPE of 6.53 and a testing MAPE of 7.46 for the next three 
hours. We have validated the RNN-LSTM model on the Jungle-Inn dataset, which contains 
hourly data spanning 65 days. The results are promising, and in the future, when more data is 
available, the same method can be extended. 
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