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tress prediction is a crucial aspect of mental health monitoring, with consequences for both 
psychological well- being and productivity. This work presents a unique way for stress 
prediction that uses binary and multiclass classification models. Through extensive 

experimentations with different durations and frequencies of Electrocardiogram Signal (ECG) 
signals, we identified a 5-second dataset sampled at 200Hz as the optimal configuration for our 
model. Moreover, we introduced an innovative feature i.e., the prediction of stress scores 
ranging from 0 to 100, providing nuanced insights into stress levels, where 0 represents no stress 
and 100 indicates high stress levels. The model obtains 95.04% accuracy, 95.27% precision, 
94.95% F1 score, 86.69% sensitivity, and 99.44% specificity for the binary classification. With 
"Fun" added to the list of stress categories in addition to "Base" and "TSST," the model 
continues to perform well in the multiclass classification scenario, with accuracy of 88.10%, 
precision of 87.60%, F1 score of 87.35%, sensitivity of 95.97%, and specificity of 79.23%. These 
findings highlight how well this applied strategy predicts stress levels, providing important 
information for mental health and stress management strategies. 
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Introduction: 
People become increasingly stressed as societies expand because of the increased 

competition. This stress can have negative consequences for work, relationships, and safety. 
Our rapid and demanding society has made mental stress a widespread problem that has an 
impact on people's productivity and general well-being. Uncontrolled chronic stress can cause 
a variety of health issues, such as cardiovascular disease, depression, and anxiety [1]. Long- term 
stress can lead to depression, addiction, and heart and brain disorders [2]. Emotional stress is 
currently a major issue for both physical and mental health. Thus, creating efficient techniques 
for stress evaluation and management is essential to preserving public health. Stress is a 
physiological reaction to challenging events. It is distinguished by a sequence of physical and 
emotional changes, such as elevated heart rate, muscle tension, and anxiety. While acute stress 
can help mobilize resources to deal with urgent dangers, chronic stress, when extended, can be 
harmful to both physical and mental health. The neurological system in our bodies responds 
differently when we are under stress. Stress stimulates the sympathetic nervous system (SNS), 
which regulates heart rate and breathing. After stress, the parasympathetic nervous system 
(PNS) takes over to calm things down. We can detect stress by observing changes in parameters 
such as heart rate. Researchers have been looking into how electrocardiogram (ECG) signals, 
which assess heart activity, can help detect stress. Traditionally, they used five minutes of ECG 
data, which is too long for real-time monitoring [3]. Some studies have successfully detected 
stress using only one minute of ECG data, but this is still not ideal because it requires wearing 
uncomfortable equipment and is too slow for real-time monitoring. 

Healthcare is one of the many industries that artificial intelligence (AI) has changed. AI 
has shown great promise in the field of stress assessment as a means of detecting stress patterns 
and forecasting stress levels. Complex patterns can be extracted and analyzed from a variety of 
data sources, such as physiological signals, behavioral data, and self-reported assessments, by 
AI models, especially deep learning algorithms. Because ECG signals are constant, freely 
accessible, and non-invasive, they have become more important in AI-based stress evaluation. 
ECG signals are the electrical activity of the heart [4]. Rich information on physiological 
changes linked to stress can be found in ECG signals, including heart rate variability (HRV), 
heart rate (HR), and signal complexity. These minute variations in ECG signals can be examined 
by AI models to precisely identify and categorize stress levels. Traditional approaches for 
assessing stress from ECG signals typically rely on hand- crafted time or frequency domain 
features [5]. These approaches, however, may be limited in their ability to capture complex 
patterns and correlations within ECG signals 

We've developed a new method for detecting mental stress and predicting stress scores 
based on a Convolutional Neural Networks (CNN) architecture. Our method entails obtaining 
ECG signals, cleaning them using a bandpass filter to reduce noise, and altering the frequency 
from 700Hz to 100Hz. These preprocessed signals are then sent into a CNN, which extracts 
unique stress patterns from the temporal data of ECG signals. We trained two models: one for 
binary classification, which distinguishes between stressed and non-stressed individuals, and 
another for multiclass stress prediction. The binary classification technique has produced 
ground- breaking results in predicting stress levels. We use the obtained information to reliably 
diagnose stress levels and predict stress scores. 
Literature Review: 

In this article [6], the author investigated the analysis of ECG Raw Signal and 
Spectrogram pictures, using a dual method combining Raw ECG with 1D CNN and 
Spectrograms with ResNet-18 architecture. Their analysis produced complex results, with an 
accuracy of 66.6%, precision of 67.6%, and recall of 66.6% across three unique categories: 
neutral, tension, and amusement. This extensive study combined Leave-One-Subject-Out 
(LOSO) methods with chest-worn ECG data. Furthermore, the study expanded its 
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investigation to the RML dataset, where deep learning models showed notable performance 
measures, including an accuracy of 72.7%, precision of 76.6%, and recall of 72.7%. Notably, 
this study used datasets from LESO, RML, and WESAD, allowing for both binary and three-
class classification. In [5] emphasis is on the use of raw ECG signal data, which was analyzed 
using CNN and Bidirectional Long Short-Term Memory (BiLSTM) architecture. The results 
of this investigation were positive, with an overall accuracy of 86.5% and a specificity of 92.8%. 
Furthermore, the study carefully classified stress levels into three categories: low (91.3%), 
moderate (89.4%), and high (79.8%). These conclusions are based on locally acquired data, 
demonstrating the study's relevance and applicability. Article [7] analyzed ECG and HRV data 
using CNN for categorization purposes. Their investigation produced remarkable performance 
measures, including 97% accuracy, precision, recall, and F1-Score. Notably, the study got its 
data locally, which ensured the dataset's validity and dependability. Furthermore, the 
categorization assignment had three unique classes, which provided insights into subtle changes 
in the dataset. In the [8] raw ECG data is used, which was classified using CNN and VGG-
inspired architectures. The study produced strong results, with claimed accuracies of 83.55% 
for three classes and 93.77% for two classes. Notable is the use of the Drive DB and 
Arachnophobia datasets, using a VGG-inspired architecture for binary classification and a 1D 
CNN for categorization into three classes. This strategic approach demonstrated the flexibility 
and versatility of the approaches used across a variety of datasets. The [9] performed a detailed 
investigation of ECG and HRV features using K-Nearest Neighbors (KNN) and Probabilistic 
Neural Network (PNN) classifiers. The study found impressive accuracies of 91.66% (ECG) 
and 94.66% (HRV), along with thorough specificity and sensitivity data for both modalities. 
The use of locally obtained data is significant since it increases the study's relevance and 
application to real-world circumstances. Furthermore, the study's emphasis on binary 
categorization highlighted its practical applications in the healthcare domain. The study 
described in [10] included the integration of ECG and EEG data using a Radial Basis Function 
Support Vector Machine (RBF-SVM) and KNN classifiers. The results showed significant 
accuracies ranging from 86.13% to 87.75% across various stress characteristics, as defined in 
the Kaggle dataset. This extensive research enabled binary categorization scenarios, revealing 
light on different stress levels and their physiological manifestations. The study's thorough 
approach to feature integration and categorization has shown its importance in the field of 
stress detection and management. 

In [11], the authors conducted a thorough study of ECG plot pictures, investigating 
both time and frequency domains using CNN and Long Short-Term Memory (LSTM) 
architectures. The study revealed appealing performance data, including accuracies of 94.8% 
in the time domain and 98.3% in the frequency domain. Notable is the precise characterization 
of accuracy, sensitivity, and specificity measurements for each domain, which provides insight 
into the efficacy of the approaches used. The study's focus on binary classification tasks, which 
used the ST Change and WESAD datasets [12], emphasized its practical applications in 
healthcare and diagnostic contexts. 

Within the scope of [13], the study focused on raw ECG data and used the CNN 
architecture for classification purposes. The research produced respectable findings, with a 
stated accuracy of 88.4% and an F1-score of 0.90. Notably, the study used data from the 
PhysioNet and SWELL databases, which allowed for categorization into three unique groups. 
This thorough technique demonstrated the resilience and usefulness of the used methodology 
in detecting small alterations within the dataset. 

The study [14] investigated HRV features using Artificial Neural Network (ANN) and 
Naive Bayes (NB) classifiers. The study revealed impressive performance metrics, including an 
accuracy of 95.75% on the WESAD and SWELL-KW datasets for binary classification tasks. 
The full study of HRV characteristics is noteworthy, as it takes advantage of a synergistic 
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method that combines the strengths of both ANN and NB classifiers. This intentional 
combination highlighted the study's effectiveness in detecting subtle patterns within the dataset, 
increasing its usefulness in therapeutic and diagnostic contexts. The research conducted [15] 
focused on the analysis of HRV features using a Support Vector Machine (SVM) classifier. The 
study provided insights into the dataset, with a reported accuracy of 72.82% on the SWELL-
KW dataset [16] for binary classification tasks. Notably, the study's emphasis on HRV 
characteristics highlighted their importance in detecting minor alterations within the dataset, 
hence increasing its usefulness in therapeutic and diagnostic situations. Using CNN 
architecture, a thorough study of HRV Features was initiated in the [17]. On the Spider Fear 
dataset, the study produced impressive performance metrics: 83.29% accuracy, 85% precision, 
and 82% recall for classifying the data into three different categories. Of particular note is the 
careful characterization of the accuracy, recall, and sensitivity measures, which sheds light on 
how well the used algorithm distinguishes minute differences in the dataset. This thorough 
analysis highlighted how important the study was in clarifying subtle patterns in the dataset, 
which increased its use in diagnostic and clinical contexts. 
Methodology: 

The methodology includes custom data collection and preprocessing, selection of 
model architecture, and concluded results as shown in Figure 1. 
Data Collection: 

The dataset employed in this research comprises raw sensor data recorded using a 
chest-worn device (RespiBAN) and a wrist-worn device (Empatica E4). Synchronization of 
these devices was achieved by having subjects perform a double tapping gesture on their chest, 
creating a characteristic pattern in the acceleration signal. The synchronized raw sensor data 
and labels were stored in files labeled SX.pkl. The dataset includes various physiological 
modalities such as ACC (acceleration), ECG, EDA (electrodermal activity), EMG 
(electromyography), RESP (respiration), TEMP (temperature), and BVP (blood volume pulse). 
Labels were assigned to different study protocol conditions, with 0 = not defined / transient, 
1 = baseline, 2 = stress, 3 = amusement, 4 = meditation, and 5/6/7 = disregarded conditions. 
Ground truth information was available in SX_quest.csv. 

 
Figure 1: Block Diagram of the used methodology 

Data Preprocessing: 
Data Extraction: 

From ECG recordings the data for binary classification focusing on stress and baseline 
conditions, and for multiclass classification stress, baseline, and amusement conditions were 
extracted from the dataset. There are different duration signals for each class then the signal 
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was chunked to specific time durations of 30 seconds, 20 seconds, 15 seconds, 10 seconds, 5 
seconds, and 3 seconds, these all are used for creating different datasets of different duration 
and finding the best time for stress prediction. The WESAD dataset ECG signal frequency is 
700Hz this is used as one dataset and then different sampling frequencies 350Hz, 250Hz, 
200Hz, and 100Hz were experimented with to find the optimal configuration, and best model 
using these all datasets. 
Removing Noise from Signals: 

We implemented a bandpass filter to increase the quality of the ECG data. As shown 
in Figure 2, this filter was designed to allow frequencies ranging from 0.5Hz to 50Hz while 
rejecting others. We effectively reduced high-frequency noise from the data, retaining only the 
desired frequency range for further analysis. 
Normalizing Data: 

The clean and preprocessed data are then normalized using the following mathematical 
formula (1) bring the data in the range of 0 to 1 here. 

 

 
Figure 2: Raw and Filtered ECG signals 

Where min and max are the minimum and maximum values in the dataset. This 
normalized dataset is used as input to the model. 
Model Architectures and Selection: 

Several neural network architectures were explored, including CNN, Long Short-Term 
Memory (LSTM) [18], and combinations like ANN with LSTM [19] and CNN with LSTM, 
Resnet34, and ResNet50 [20]. Each of these models was trained on all datasets, as after 
preprocessing we get datasets 30 seconds dataset with 700Hz, 350Hz, 250Hz, 200Hz, and 
100Hz and the same for 15 seconds, 10 seconds 5 seconds, and 3-second datasets. We have a 
total of 25 datasets and we applied each model on each dataset to get the best dataset duration 
and frequency and the best model that is less computational and accurate. And then we have the 
same datasets for multiclass classification. 
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For binary classification the selected CNN architecture shown in Figure 3 exhibited 
superior performance, achieving a training accuracy of 96.07%, a validation accuracy of 95.04%, 
and a test accuracy of 94.59%. while for multiclass classification the same CNN architecture 
shown in Figure 4 exhibits the best result 93.38% on training data, 88.67% on validation data, 
and 87.60% on test data. The complexity of the model depends on the size of the fed input 
sample size, this 5-second size and 200 Hz frequency selection methodology is 7 times more 
computationally efficient than the existing methodologies. For stress score prediction the binary 
model was used as the sigmoid activation function in the output layer was employed to predict 
stress scores in the range of 0 to 1, then it’s multiplied by 100 to ensure a range from 0 to 100. 
A stress score of 100 means high stress and 0 means no stress. 
Result and Discussion: 

To detect stress levels in real-time, we created a deep neural network and compared its 
performance to more traditional methods that rely on manually built features. We proposed a 
1D-CNN base model that takes the Raw ECG data of 5 seconds and a frequency of 200Hz. We 
implement different models for getting the optimal model for the data, the dataset of 30 seconds 
is used and the ANN model is trained the result of the ANN model for the 30 seconds datasets 
700Hz, 350Hz, 250Hz, 200Hz, and 100Hz has accuracy 67.43%, 68.43%, 66.56%, 71.21% 
and 69.21% respectively. For multiclass classification the accuracy for this dataset of 30 seconds 
with frequencies of 700Hz, 350Hz, 250Hz, 200Hz, and 100Hz having an accuracy of 57.13%, 
59.93%, 61.56%, 62.91%, and 59.01% respectively. All the models were trained in the same way 
CNN model with 9 layers and with batch normalization of each layer used for all the data the 
result is for 30 seconds it had the highest accuracy for 250Hz and the accuracy for this was 
83.34% for binary and 78.67% for multiclass classification. For 15 seconds dataset, the 
CNN has the highest accuracy for 200Hz, 82.23% for binary, and 72.39% for multiclass 
classification, for the dataset of 10 seconds the 200HZ has good results, 90.32% for binary and 
82.32% for multiclass classification, for the dataset of 5 second the model has the accuracy of 
95.04 for binary and 88.67% for multiclass and the frequency for this result was 200Hz and 
this is our selected data and model. We also tried 3 second dataset with all frequencies but its 
result was not good as 5 seconds. The dataset for the 5 seconds contains 6595 examples 
for binary and 7987 examples are used for multiclass classification. As we have an additional 
feature in our method which is stress score prediction for that purpose, we used a binary model 
and the output layer used the sigmoid activation function (2). 

 
This equation gives the value from 0 to 1 range to classify it as no stress or stress the 

threshold is 0.5 and then predicts the stress score from 0 to 100 using that model output 
multiplied by 100. The final training and validation accuracy and loss plots are in Figure 5 for 
binary classification. 

 
Figure 3: 1-D CNN architecture for binary class classification and prediction. 

 
Figure 4: 1-D CNN architecture for multiclass classification and prediction. 



                              International Journal of Innovations in Science & Technology 

ICTIS | May 2024| Special Issue                                                                Page |213 

The performance of the model is determined by the accuracy (3), precision (4), F1 score (5), 
sensitivity (6) and specificity (7). 

 
 True positive (TP) = the number of cases accurately identified as stress. 

 False positive (FP) = the number of cases wrongly diagnosed as stress. 

 True Negative (TN) = the number of instances correctly diagnosed as having no stress. 

 False negative (FN) = the number of cases mistakenly categorized as "no stress." 

 The performance of the binary and multiclass model in terms of accuracy, precision, F1 
score, sensitivity and specificity are mentioned in table 1. 

 The confusion matrix of the binary model is on validation test data is shown in the 
Figure 5. 

 Figure 6 shows the multiclass classification model's confusion matrix based on 
validation and test data. 

  
Figure 5: Performance metrics of the binary classification model on 5 seconds 200Hz dataset 

  
Figure 6: Performance metrics of multiclass classification model on 5 seconds 200Hz dataset. 
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Table 1: Different evaluation metrics of binary and multiclass model. 

Performance Matrices Binary Model Multiclass Model 

Accuracy 95.04% 88.10% 
Precision 95.27% 87.60% 
F1 score 94/95% 87.35% 
Sensitivity 86.69% 95.97% 
Specificity 99.44% 79.23% 
PPV 98.96% 85.55% 
NPV 93.64% 78.97% 

Conclusion: 
In this study, we have developed a deep neural network-based approach for real-time 

stress detection utilizing electrocardiogram (ECG) data. By comparing our proposed 1D-CNN 
model against traditional methods relying on manually engineered features, we demonstrated 
superior performance in stress prediction. Our methodology involved rigorous experimentation 
with different dataset durations and sampling frequencies, aiming to optimize model accuracy 
and computational efficiency. Through extensive model selection and evaluation, we found that 
a Simple 1D Convolutional Neural Network architecture yielded the best results for both binary 
and multiclass stress classification tasks. Specifically, our model achieved notable accuracies 
across various dataset configurations, with the highest accuracy obtained for a 5-second dataset 
sampled at 200Hz, demonstrating the effectiveness of our approach in capturing temporal 
dynamics of stress patterns. 

Additionally, we introduced an innovative aspect to our methodology by incorporating 
stress score prediction, enabling a finer-grained understanding of stress levels ranging from 0 to 
100. Leveraging the sigmoid activation function in the output layer of our binary model, we 
accurately predicted stress scores, further enhancing the utility of our approach for 
comprehensive stress assessment. Our study underscores the importance of leveraging deep 
learning techniques for stress detection, offering valuable insights into individuals' well-being 
and mental health. The ability to predict stress levels in real-time has significant implications for 
personalized stress management interventions and improving overall quality of life. Moving 
forward, further research may explore additional physiological modalities and sensor data fusion 
techniques to enhance the robustness and generalizability of stress detection models in diverse 
real-world settings. 
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