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thermal insulation, which reduces the risk of theft. Nonetheless, there have been regular

reports of rapid degeneration of such cables in coastal areas, resulting in multiple
unplanned breakdowns. This study employs the data, collected from field-based nondestructive
assessment techniques such as ultrasonic listening and thermal imaging. There is a pressing need
for advanced tools to estimate the remaining lifespan of ABCs deployed along coastlines. This
paper presents a novel approach using a particle filter-based fusion of multiple sensors
framework for estimating the Remaining Useful Life (RUL) of in-service ABCs in a severe
coastal atmosphere. The use of multi-sensor measurement data improves the accuracy and
reliability of the RUL estimation. This will allow electric power distribution companies to plan
maintenance and replacement activities well in time. In the reported research work, the f-step
prediction scheme under the framework of the Particle filter algorithm is implemented to predict
the posterior density function of degradation growth in the cable insulation. The Particle Filter
(PF) method performs effectively with nonlinear state transitions and measurement functions,
even when addressing non-Gaussian or multidimensional noise variations. The technique also
contains a step error calculation approach for determining forecast accuracy when measurement
data is missing. The encouraging outcomes of this strategy illustrate its efficacy.
Keywords: Particle Filtering, Multisensory Fusion, Predictive Based Maintenance, Degradation
Growth Rate, and Aerial Bundled Cables (ABCs).

ﬁ. erial Bundled Cables (ABC) consist of several wires that contain numerous layers of
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Introduction:
The overhead transmission lines, electric poles, and transformers are the essential parts
of the electrical supply and power distribution network. The power supply shutdown often
occurs due to the failures in power distribution lines. Normally, bare conductor cables and
insulated conductor cables are used in the power distribution network [1], [2]. The insulated
conductor cables are widely used due to their several advantages including safety and lesser
chance of short-circuiting in the presence of high wind pressure [1], [2], [3]. Despite these
advantages, monitoring the health of covered conductors in abrasive and harmful atmospheric
conditions, especially in coastal regions, is challenging [4].
Three types of insulated conductor cables are reported in [5]; Covered Conductors
(CCs), Spacer Cables (SCs), and Aerial Bundled Cables (ABCs). Among these only ABCs are
multilayered bundled cables and their XLLPE insulation makes them useful where chances of
electricity pilferage through line tapping are high [0], [7]. ABCs have a longer service life in areas
that are not shoreline, and their performance parameters are not known for coastal areas [2], [8],
[9]. The authors in [10], [11], and [12], reported that the insulation of ABCs is degraded in the
presence of high solar radiation and high moisture content under variable load conditions,
leading to unexpected supply shutdowns which is an undesirable event for the good economic
growth of any country. Therefore, regular health inspection and future health estimation of
insulated power transmission lines are highly significant to ensure continuous power supply,
especially in coastal regions.
Table 1: List of Notations
Notation Description Notation Description
n Discretized Location Enq1 One step error for n moments
Defects depths at a separate

X e E Two-step error for N moments
n position (state) n.2 P
. ) The overall number necessar
NDE measurement at discretized _ Y
Zn . f subsequent states (f = 1, 2,
location
34,5 ...,F
The overall number of
N The overall number of discretized ul ith stages with corresponding
or independent locations n weights wy, for ninstances ath
instants.
Assigned normalized weight
0 Measurement mode W;O to X4 by o" measurement
mode
Total number of measurin ) .
0 g NDT Nondestructive Testing
modes
Measurements  at  separated
Zn locations as a result of O IPC Insulation Piercing Connector
measuring modes
The overall number of
- measurements corresponds with )
7 . p ABCs  Aerial Bundled Cables
all measuring modes. O for all
distinct places/positions N
X Set of states LV Low Voltage
u” State with updated weight HT High voltage Transmission
~ ) ) Samplin Importance
u State without updated weight SIR PIng P
Sampling
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Measurements at instant n data Empirical Mode
Yn . iy . EMD .
(with additive noise) Decomposition
Vi:n Previous measurements 1 to n PF Particle Filter
p(u,|y1.m) Posterior density RUL Remaining Useful Life
p(ynlu,) Likelihood density UT Ultrasonic Testing
p(11131 [¥n Prior density HHT  Hilbert Huang Transform
xi jth sa.mple (particle) at n discrete ROI Region of Interest
location
wh A551ig ned gormahzed weight SMC Sequential Monte Carlo
to Xy at location n
Ny Total number of samples PDFs  Probability Density Functions
Sp Signal Power XLPE  Cross-Linked Polyethylene
N, Additional noise power RMSE  Root Mean Square Error
o Amplitude of computed signal AWGN ﬁi?slsve White  Gaussian
N Amplitude of additional noise in CDF Cumulative Distribution
rms RMS form Functions
Difference between the true
states (with modified weights)
En¢ and the estimated states (without FD Fused Data
performing weight update step) at
time k.
EDR Energy Density Ratio TI Thermal Imaging

The authors in [13] presented a Super-Heterodyne ultrasonic listening-based health
inspection scheme for live ABC cables in the existence of extreme, acidic environmental factors
in the coastlines. The proposed method makes an essential contribution to the health inspection
of ABC cables, but it is not appropriate for estimating the deterioration growth rate. The authors
in [14], proposed a prognostic framework for determining the possible future deterioration
development rate of functioning ABCs thermal insulation set up at shoreline regions via
historical Super-Heterodyne ultrasonic listening information/data. Although this framework
effectively predicts deterioration rates, the remaining useful life of operational ABC cables in
coastal areas is not addressed in the current literature.

The RUL estimation of power distribution lines is essentially a key factor for planning
maintenance and replacement activities in a timely manner before the actual failure. This study,
for the first time, proposes the use of a multi-sensor inspection-based data fusion scheme to
estimate the RUL of operational low-voltage ABC cables installed at coastal regions, improving
the accuracy of the estimated results. In the reported research work, to implement a multi-sensor
data fusion scheme the Super-Heterodyne Ultrasonic listening data presented in [13] is used
along with the Thermal equipment-based Non-Destructive Testing (NDT) data for analysis of
functional ABCs [15]. The thermal degradation of ABCs insulation as reported in [10], [11], [12],
enables the use of the infrared thermography-based NDT method to acquire more data on
Thermal damage in the insulation of operational ABCs set up along the coastline.

In[16], [17], [18], [19], and [20], various model-based methods for inspecting the thermal
degradation process in insulated power cables are reported. These methods are finite element
numerical model, Neural Network, Principal Component Analysis (PCA), mid-infrared
spectroscopy, Standard Deviation Multi-Resolution Analysis (STD-MRA) representation based
on Discrete Wavelet Transformers (DWT), emissivity parameter from infrared thermography.
However, these approaches are not best suited for harsh and corrosive environmental
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conditions, as the results are obtained through lab experiments using these models. Creating
physical models that replicate these tough environmental conditions is also challenging. To
address this issue, data-driven approaches are employed, utilizing actual thermal imaging-based
NDT data that records all degradation-triggering factors in real-time. This method ensures a
more accurate inspection of the thermal degradation process in the insulation of operational
power cables.

The use of multiple sensors-based inspection modes is common in various
Nondestructive Evaluation (NDE) applications [21]. The available information from multiple
inspection modes can inspect the degradation trend accurately due to the information contained
in multiple sensors. To effectively utilize data from multiple sensors, the development of a
computationally efficient data fusion scheme is required for estimating the degradation trend
when multiple measurement data is available. In [22], [23], [24], [25], [20], different data fusion
schemes are reported, including neural networks, Bayesian analysis-based Dempster-Shafer
evidence theory, wavelet and multi-resolution algorithms, image fusion in the time and frequency
domain, and Q-transform-based techniques. All these fusion algorithms use signal processing
and image processing approaches without considering the nature of a measurement process [21].
Additionally, these schemes struggle to deal with non-linear state transitions and non-Gaussian
noise distributions efficiently due to their relatively high computational cost [21]. To address
these issues, the authors in [21] have proposed a Sequential Monte Carlo (SMC) based Particle
Filter scheme to fuse the multi-sensor NDE data using multiple NDE measurement modes.

In this paper, the authors proposed SMC SMC-based PF data fusion algorithm using
multiple measurement modes “O" to estimate the RUL of live LV-ABC-Cables set up at the
coastline region. This scheme is applied to fuse the actual thermal imaging and Ultrasonic
testing-based NDT measurements attributing to a novel contribution in the literature. Moreover,
the use of multiple sensor data improves the RUL estimation of active insulated power
distribution lines mounted at the shoreline. Furthermore, the f-step prognostic framework based
on PF algorithm is developed to predict the degradation trend in the operational low voltage
ABC cables connected at beach areas. This approach will help power company owners perform
timely maintenance and replacement activities, reducing maintenance costs and improving the
reliability of power distribution networks, especially in coastal areas.

Objectives:
The goals of this research study are:

. To enhance the accuracy of estimating the future degradation growth rate in the
insulation of ABC cables,

. To integrate various sensor measurement data to accurately estimate the remaining
useful life of ABC cables, and

. To assess the effectiveness of the proposed algorithm in the absence of measurement

data by incorporating the f-step prediction scheme with the PF algorithm.

The remaining paper is divided into five subsections. The subsequent part discusses
challenges related to the problem declaration or statement, which are then addressed in the next
section of the research methodology. In the research methodology portion, initially, problem
formulation for an NDE-based health diagnosis scheme in terms of an iterative setup within the
presence of measurement information obtained via various measuring modes will be explored.
The development of a particle filter-based data fusion scheme with the assumption that the
NDE measurement modes are not correlated to each other is also presented in this section. The
implementation of Principal Component Analysis (PCA) to legalize our assumptions of
independence of measurement modes is then discussed in the same section. In the end, an
overview of the findings and conclusions is covered.
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Research Methodology:
In this section, we described the problem formulation of RUL estimation in terms of
Bayesian estimation problem. Moreover, the historical databases in terms of percentage
degradation in the insulation of energized ABCs installed in coastal areas using two different
NDT schemes are presented. We also discussed the application of PF algorithm for multi-sensor
data fusion. Finally, the execution procedure for the PF-based f-step forecasting approach as
well as the step error evaluation technique are demonstrated.
Problem Formulation:

The problem formulation applies to RUL estimation of in-service power distribution
lines with multiple measurement modes O. The problem of RUL estimation in live power cable
is similar to the defect growth in cable insulation in the context of percentage degradation w.r.t
intervals (i.e. the total number of weeks). In this case, the time interval is divided into N
locations. The information about the defect growth is unknown at each discrete location. The

defect growth in cable insulation is expressed in terms of X= {xX1, X2, X3,..., X3}, where each
element X, of the set is stated (degradation growth) at the discrete location n(1 < n < N). We
assumed that measurements Z, = {z}, z2, ..., 2%, ...,29} = {z8lo =1:0} from O
measurement modes are known at each position indexn (1 <n <N) [27]. Due to
degradation, including fractures in cable insulation, and the unavoidable noise in nondestructive
testing (NDT) measurements are stochastic, a statistical framework methodology is used to
estimate defect growth with Bayesian approaches [28]. This Bayesian estimation problem can be
reformulated as a statistical estimation challenge, as described in references [21], [29]. In this

— —
section,Xis a series of states (unidentified parameters), as well asZ =

{Z}, Z%, C e, zf, Z%,. AT .Zl?} represents the associated precise measurements. The

posterior PDF p(ili) could be represented as a Bayesian evaluation issue. for

— —
everyo'h measuring mode along with X states. Also, X states can be determined via the posterior

PDF p(ili) x p(Zli)p(i), in which p(il)_()) indicates a likelihood function and
then p()_()) is a previously acquired knowledge of X states. Estimating the likelihood function has
been costly in terms of computation. To solve this issue, generate the posterior PDF in a series

of values at every position over n places. This will decrease both computational expenses as well
as complexity [30]. The exponential density is used as a prior density

i
g byonl
P(XnX;ljen,) = e HMn i,
j#n
Where i must be selected around 1 to reduce the variability in X, state within
the Nj, neighborhood, and Xjljen,, are the states in N, of 'n’ location.
j#n
In this section, we have discussed the Bayesian estimation problem as a tracking problem. The
Bayesian estimation problem [28] can be represented by the state transition equation to model
the state X, at each 'n’location: Xp = fi,(Xjljeny » Vn) © P(XnlXjljen,), and measurement
j#n j#n
model to relate the z, to the X, states: Z, = hQ(Xp, U5) < p(Zy|Xn), where f, is the state
transition process, hp is the measurement process, vy is the process noise, and pj is the
measurement noise. To connect the X, and Z, measurements, we took into account a

polynomial-based measurement framework similar to the one described in reference [27] to

relate X, with z, measurement: Z, = 2{2 cpxP, where: 'c’ represent a polynomial figure

extracted via a measurement repository or database. The above model has a minimal
computational complexity of B order. Both the state transition as well as measurement
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framework illustrate a tracking (or chasing) problem or issue [31]. In the context of tracking of

the target scenarios [31], the function: f, (Xjljen, , Vn) computes the target's movement from
J#n

the Xj location, while hy (xp, u7) identifies the target location. The most effective approaches

for chasing (or tracking) issues are currently Kalman-filtering and particle-filtering [30], [32]

(which are described more thoroughly in the subsection).

Super-Heterodyne Ultrasonic Listening-Based Historical NDT Data Base:

The authors in [33], presented a detailed description of capturing the progressive damage
within the thermal insulation of installed ABCs via field-acquired Ultrasonic listening based
NDT data using Hilbert Huang Transform (HHT). Briefly, HHT scheme performs two steps
including Empirical Mode Decomposition (EMD), and Hilbert Huang Transform (HHT). The
EMD scheme breaks the non-linear and non-stationary signals into high to low-frequency
components called Intrinsic Mode Functions (IMFs). The major information of the original
signal is present in the first three IMFs [34], [35]. The HHT was applied on the first three IMFs
to obtain the Hilbert or energy graph/spectrum. Figure 1 depicts the energy graph also known
as Hilbert-Spectrums of working and failed cables set up at different sites of metropolis Karachi
[33]. The two Regions of Interest (ROI) are selected in HHT spectrums as shown in Figure 1.
The Average Energy Density Ratios (Avg. EDR) for ROI A and ROI B were calculated in [13].
In this study, the delta EDR (ROI A — ROI B) is used to make the Ultrasonic listening-based
historical database in terms of percentage degradation to estimate the RUL of live ABC cables.

Hilbert-Huang spectrum Hilbert-Huang Spectrum
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Figure 1: HHT Spectrum Evaluation of Active and Defective Cables [1]
Table 2: Degradation Rate of Live ABC cable using AEDR ey

Cable Status Date AEDR AEDR...= Degradation

(1- AEDR) (%)
13-Jul-2018  0.363 0.637 13.58641359
7-Aug-2018  0.322 0.678 17.68231768
20-Oct-2018  0.29 0.71 20.87912088
4-Nov-2018 0271 0.729 22.77722278
Healthy (Used), Site-I ~ 01- Dec-2019  0.26 0.74 23.87612388
08-Jan-2019  0.241 0.759 25.77422577
19-Mar-2019  0.141 0.859 3576423576
25-Apr-2019  0.106 0.894 39.26073926
5-Jun-2020  -0.189 1.189 68.73126873
Healthy (New), Site-Il ~ 25-Jan-2019 .49 0.501 0
Faulty, Site-111 23-Oct-2018  -0.502 1.502 100

In Table 2, the delta EDR presented in [13] is tabulated in column three. The delta
EDR..v is obtained by subtracting the delta EDR from 1. The percentage degradation is
calculated using (1)

AEDRGSNE™ — AEMDjaw
AEMDJEX — AEMDRin,

Degradation (%) = @

June 2024 | Vol 6 | Issue 2 Page | 669



fr‘}
OPEN ,i?‘x,Accsss

=/ International Journal of Innovations in Science & Technology

Where AEMDSYITeNt is the present value of delta EDRye,, AEMDTIR s the minimum
value of delta EDR... with zero percentage degradation when new ABC cable was installed on
25" Jan 2019, and AEMDy&y is the maximum value of delta EDRuev with 100% degradation in
faulty cable on 23" Oct 2018.

Data Collection Using Ultrasonic Probe Testing Gun:

The field-acquired data was collected from July 2018 to June 2020 (a total of 730 days).
The data is estimated up to 1200 Days over 7 days via the Cubic-Spline-Interpolation (CSI)
based approach. The obtained database is used for the RUL estimation of ABCs. These results
are shown in Figure. 6 and are discussed in detail in section 3.

Infrared Thermography-Based Historical NDT Data Base:

This section involves the application of different procedures to identify the damage to
the ABCs insulation under harsh corrosive environmental conditions using thermography.
These include infrared thermography, image segmentation, data normalization, histogram
computation, cumulative distribution function, and 90 % CDF value of maximum temperature.
Infrared thermography is widely used in the diagnosis and predictive-based maintenance of
active and operational electrical equipment [36], [37], [38], [39].

The health and condition of the equipment were inspected with the help of pixel
intensity present in the thermal image. In this study, a thermal imaging scheme was considered
to measure the change in the temperature distribution in the insulation of live ABCs. In Figure
2, a thermal image of active low-voltage ABC is depicted. In [40], the authors reported that
background data is not required in the thermal image analysis.

Figure 1: Energized ABC Thermal Image
There are different segmentation categories including region-based, threshold-based,
and edge detection-based segmentation [41], [42]. The most widely used segmentation scheme
is thresholding segmentation, which contains two subcategories including local thresholding and
global thresholding. In threshold-based segmentation, all the pixels are divided into groups
based on fixed threshold selection criteria. In this study, global thresholding segmentation was
used to select the ROI from the field-acquired thermal imaging data of energized ABCs. This
was achieved by assigning a value of 1 to all pixels that exist in the ROI and have high-
temperature readings. All the pixels outside the ROI are set to zero. The Eq. (2) is used to
convert the thermal images of ABCs into binary configuration [40], [41].
1, ji(u: V) > totsws
W(u, V) {O, ji(u, V) < totsws (2)
Where w(u,V)is obtained segmented image matrix, jj(u,v)is the i pixel in the
thermal image matrix j(u, V), and togsuss is the Otsu’s threshold level according to which pixels
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are selected. The Otsu’s thresholding technique is used to optimize the threshold value
totswss using the variance between the clusters [41]. Figure 3 illustrates the process of selecting
the required ROI using global thresholding segmentation [15]. Figure 3(a) shows the original
raw image of an active LV-ABC-cable. Figure 3(b) is the segmented image, where the white
region is the required ROI and the black area is the background. Figure 3(c) is the final obtained

segmented image of energized ABCs using Eq. (3)

b(uj, vi) = j(uy, vi) X w(uy, v;) 3
Where b(uy, v;) is the final segmented image matrix with required pixels exist in the
ROYJ, j(uj, v;) is the original image matrix, and w(uj, v;) is the segmented matrix obtained using
Eq. (2). The ABC insulation is thermally degraded over time due to which the temperature
measurements in each acquired thermal image vary concerning time. This variation was removed
by applying the min-max normalization technique to the obtained segmented matrix
b(u, v) [43]. The Eq. (4) is used to apply the min-max normalization method.
b(u, v,) = b(u;,v;) — min gb(u, v)) @
max (b(u,v)) — min (b(u,v))

Where b’ (uj, v;) is the i™h pixel in the normalized segmented image matrix b’(u, v), and
b(u, V) is the segmented matrix with variation in the pixel value. To analyze the change in the
thermal energy distribution of ABC insulations, histogram computation using the normalized
segmented thermal data is presented in the reported work. The total energy under each
histogram is normalized to 1. To measure and quantify the shift in the energy distributions of
thermal data, various statistical parameters including mean, standard deviation, coefficient of
variation, entropy, skewness, and kurtosis are examined. However, the trend of statistical
parameters was not suitable for the analysis. Similarly, Cumulative Distribution Functions
(CDFs) are used to make the historical database of field-acquired thermal images of energized
ABC:s in the presented work. An esteemed trend was observed in the normalized thermal energy
values at 0.9 CDF. In Table 3, normalized thermal energies of operational ABCs installed in

(2) (b) (©
Figure 2: Global thresholding segmentation of energized ABCs

Image Histogram CDF
Segmentation Computation Computation

Figure 4: Histogram and CDF Computation
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The percentage degradation is calculated using Eq. (5) and is tabulated in Table 3. Figure
4 shows the key steps of all procedures [15].
. 0.9 CDF yrrent — 0.9 CDFpin
[v) j—
Degradation (%) = =55 —— 09 CDF, ®)
Where 0.9 CDF yrent is the current value of normalized thermal energy of pixels at
90% CDF, 0.9 CDF ), is the minimum value of normalized thermal energy of pixels at 90%
CDF with zero percentage degradation when the new ABC cable was installed on 25" Jan 2019,
and 0.9 CDF,,,4 is the maximum value of normalized thermal energy of pixels at 90% CDF
with 100% degradation in faulty cable on 23" Oct 2018.
Data Collection Using Thermal Imaging Camera:
The field-acquired data was collected from July 2018 to June 2020 (a total of 730 days).
The data is estimated up to 1200 Days with an interval of 7 Days using the CSI technique. The
obtained database is used for the RUL estimation of ABCs. These results are shown in Figure.
6 and are discussed in detail in section 3.
Table 3: Degradation Rate of Live ABC cable Using 0.9 CDF

Cable Status Date 0.9 CDF Degradation (%)
13-Jul-2018 0.6615 14.08765653
7-Aug-2018 0.6874 25.67084079
20-Oct-2018 0.7034 32.82647585
4-Nov-2018 0.7067 34.30232558
Healthy (Used), Site-1 01- Dec-2019 0.7331 46.10912343
08-Jan-2019 0.7412 49.73166369
19-Mar-2019 0.7438 50.89445438
25-Apr-2019 0.7452 51.52057245
5-Jun-2020 0.82 84.97316637
Healthy (New), Site-1I 25-Jan-2019 0.63 0
Faulty, Site-111 23-Oct-2018 0.8536 100

In the next sections, two different types of databases in terms of percentage degradation
growth rate, are formed. These databases are fused, using PF based multi-sensor data fusion
scheme, which is described in the upcoming section.

Application of Particle Filters Using Multiple Mode Measurement Data:

The authors in [30], and [32] reported that the optimal solution to the tracking problem
is the Kalman filtering, but it is only applicable when the state transition function and
measurement functions are linear with Gaussian noise distributions. On the other
hand, deficiencies development in tiny structures constitute an irregular behavior, and
noise variations may be non-Gaussian (multidimensional). Sequential Monte Carlo (SMC) based
Particle Filtering methods are applied to solve Bayesian estimation problems with non-linear
state transition models and non-Gaussian noise distributions [27].

Theory of Particle Filters:

In SMC-based Particle Filters, the probability densities are represented in terms of
particles. This type of representation applies to any state-space model [29], [31]. In this scheme,
the posterior pdf is recursively obtained based on all available information. Now, a brief working
of PF algorithm is presented next. A specific measurement mode known as a single-
measurement-mode (i.e., O = 1) has been chosen for ease of use, and z, = {z9 |0 = 1} =
Z, are the measurements obtained via a single measurement. This selection will be removed in
the next section, where the PF framework will be extended to integrate the multimodal
measurements. Within a single evaluation or measurement setting, a PDF of the state Xy
conditioned on every data from measurements to the value p(Xy, Z1.) and involving z, might
be witnessed gradually within 2 stages: forecasting along with weight revision step. The state
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transition model is employed to forecast the Probability Density Function (PDF) from the
current measurement location to the subsequent location. The state transition model connects
states within a neighborhood. Consider the n-1 separate location has the specified
PDF p(Xy|Z1.n—1). As already stated, the system model is employed to forecast the PDF of the
state X, employing the Chapman-Kolmogorov equation [30], which is presented as

pGtal71n-1) = [ DOl )P 01 24n2) ©
We could adopt the Markov mechanism of order one, then the posterior PDF of the
state X, will become p(Xy|Xn-1, Zin—1) = P(XnlXn—1). Because of the unidentified
disruptions, the state is expressed as random noise. The probability density function is distorted
and weakened during the particle filter technique's forecasting step. The updating step uses the
most recent information to estimate the PDF. In the weight revision step, Bayes' theorem is
applied in the following manner:

P(Zn X)) P(Xnl Z1:n-1)
™)
P(Zn| Z1:n-1)
The desired postetior likelihood density on every n'® place is stated as samples and
weights. At this point, we'll go over the fundamentals of the technique in depth. We took into

p(anzn) =

consideration the random measure{xh, Wh}|1:NS for defining the subsequent pdf at n distinct
locations. Whereas Xy , Wy, is an array of supporting points as well as their corresponding
measurements, we have determined the total quantity of samples asi = 1:Ng. Weight

adjustment has been defined as 2&1 wl . Soatn positions, the pdf could be identified as [28]

Ns
p(xnlzn) = z wid(x, — xi) ®)
i=1

Adjusted weights are determined using the importance sampling principle [29]. This rule
can be expressed using a PDF such that p(x) o 1t(x) where it is difficult to obtain elements (or
data points), but T(X) can be accurately calculated and elements can be produced via Tt(X).
Comparably we can suppose x! to be sampling data that are likely to be quickly produced via
proposal density q(.), referred to as importance density. Weights of density p(x) can be

approximated from Z:\I:Sl wis(x — x1). Where w! o¢ (1(x!)/q(x!)) is the normalized weight

of the it particle. After accepting the measurement z, at n™®
p pung n

separate location, we aim to
estimate P(X1.n| Z1.n) using an entirely novel particle group. In a similar way the set of
weights Wy _q are supplied to positionn — 1, and can be determined via the weight (or
measurement) updated equation. The measurement updated equation is obtained from the
principle of importance sampling in the following manner:
1 1 1
W;l o Wlil_l p(znlxni)pl\ils (anxn—l) (9)
q(Xn |Xn—1' Zn)
The Sampling Importance Replication procedure was first described in references [28],
[30], consequently the importance density associated with the SIR technique can
be q(XHXL_l,Zn) = p(x}|x! _;) Therefore, from w! o (1(x})/q(x")) and (9), the following
is derived,

Wli1 (o' p(zn|xil) (10)
The SIR variant of PF uses the preceding density p(Xp|zy —1) to determine the
importance of density [27]. The preceding density described in Equation (11) is assumed to
follow an exponential distribution [44]. In the currently available research, multiple distributions
including lognormal, Weibull, and exponential have been utilized for modelling life distributions
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[45], [46], [47]. As the profile variable 3 comes towards 1, the Weibull distribution merges to an
exponential distribution with an unvarying failure/hazard quantity. As a result, it was used in the
present investigation to more accurately forecast degradation rates [45], [47].

_lxn—xp-4112
p(XplXg_y) =€ a (D

The parameter a is a single value that regulates the variability in the predicted results
(states Xp). The measurement model establishes a connection between states and measurements,
essential for computing the chance or likelihood of the specimens generated by using the prior
or previous density. We handled the rate of deterioration development as an obvious occurrence
of state variables X, with random noise n, being the sole source of ambiguity. Measurements
are obtained immediately based on true states, as in [29],

Yn = f(Xn, 01p) (12)
The measurement model can be represented in the form of D™ order polynomial, as

illustrated here:
D

Yn = 2 cqx? (13)

d=1

The d™ order coefficient cq associated with the polynomial could be established by using the
present states X9 from the database as well as the related measurements [44]. Weight assignment
and revision are done via the likelithood of the probability density function (PDF), as illustrated
in Equation (9). This probability is determined by the distinction between real measurement
information and the estimated information employing samples (particles) and the measurement
model, which is then utilized for assigning weights to the specimens. Since future state
measurement data is unavailable, updates are restricted to the existing states, allowing only the
Particle Filter's prediction step to be executed. The absence of the update step results in an error
in computing the posterior PDF. The magnitude of this error is directly influenced by the
duration (number of days) without the update step.
Particle Filtering for Multi-Sensor Data Fusion:

When there are multiple measurement modes, the likelihood probability density
functions (PDFs) for each mode must be taken into account when assigning weights to the

samples. Let wy,° represent the weight of sample i at position index 1 assigned by the individual
measurement mode 0. For each sample at every position index, O weights are computed using

the respective likelihood PDFs. The likelihood function for the o™ measurement mode is
defined by Equation (10) and the following:

i,0 i
wy® o< p(zf|xh) a4
We assumed that the measurement processes are independent, for that the joint

likelihood for measurement modes 0 = 1,2,...,0 is the product of the likelihood for each
measurement mode, as follows:

p(zalxh) = p(zhxh), p(zi[xh). - P (2R [xh) (15)
Therefore, from (14) and (15), we get the following:
wl « p(zlll|xin), p(zlzl|xin), e, p(zl?lx}l) (16)

Using (10) and (16), the final weight assigned to sample i at position index n is as follows:
i i1 Q2 10
Wy X Wy, WL, Wy (17)
As mentioned earlier, it's assumed that the measurement processes are independent.

However, there might be correlations among them, invalidating this assumption. To address
this, Principal Component Analysis (PCA) is employed on data from different measurement
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modes. PCA is a mathematical technique that transforms data into a new coordinate system in
an orthogonal manner [48], [49]. It can be applied to data from multiple measurement modes.

For each position index n, measurements Z]-1 :OleMn within its neighborhood from all

measurement modes (1: Q) are considered. These multidimensional data then undergo PCA.
The following steps outline the evaluation of the principal components:
. The multi-sensor measurements Z]-1 :OleMn are stored as vector V°|,-1.9, Where each
measurement mode is assumed to be one component of the vector.
e  The data vector is adjusted by subtracting out its mean given by:

v°? = v° —mean(v®) (18)
e  The adjusted data vectors are arranged as rows of a matrix. This newly formed matrix
will be called the “adjusted data matrix,” given as
v=[v},v?...,vO] (19)
° The covariance matrix of the “adjusted data matrix” is computed as follows:
c° = cov(v®) (20)
° Eigenvectors A° of the covariance matrix are then evaluated as follows:
A° = eig(o0°) (21)
° The computed eigenvectors are organized as rows in a new matrix. This matrix is termed
the "feature matrix" as follows:
A°=242%,...,2° (22)
o Finally, the “feature matrix” is multiplied by the “adjusted data matrix”
Y =Av (23)

The rows of the resulting matrix ¢ represent the principal (uncorrelated) components in
the data as follows:

Y= [ Y., O] 24)
The resulting components Y@ have no relationship with one another. The PCA
methodology produces separate data having O dimensions. These distinct components are
subsequently interpreted as data from different measurement modes.
Implementation:
The process for evaluating the posterior probability density function (pdf) of the state
(flaw depth) is illustrated in Figure 5 and summarized as follows:

o Initialization: Ng samples are drawn at each position index from the prior pdf, as
defined in Equation (11).

e  Weight Assignment: Weights are assigned using the likelihood pdf, as described in
Equation (9). This pdf is determined by the error between the computed measurement
using the measurement model and the actual measurement. If the difference between
computed and actual measurements for a sample is small, the sample's weight is high,
and vice versa.

. The Measurement Model: This model establishes the relationship between the state
and measurements. It is derived from a training database of known states and
corresponding nondestructive evaluation (NDE) measurements, as given in Equation
(13). The coefficients of the polynomial ¢4 are determined from this training database.
During resampling, particle filters often encounter a problem known as degeneracy [50].

This occurs when, after a few iterations, only one particle retains significant weight, rendering
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the others negligible. The resampling process aims to address this issue by discarding particles
with small weights and focusing on those with larger weights. This ensures that the posterior
probability density functions (pdfs) are estimated at all locations. The estimated samples are
assembled with uniform weights to determine a posterior PDF of a single position (for n = 1).

Keep doing the steps for computing the posterior PDF p()_() |2) at all positions (such as, for all
‘n’ values. The assumption of independence among measurement modes forms the basis of the
proposed particle-filter-based data fusion technique. Since the output of the PCA technique
consists of uncorrelated components, this transformation reinforces the validity of assuming
independence among measurement data.

Initialization: n = 0

State Transition Model

i
Xn+1
v

Measurement
Models for O
different Modes

NDT Data
(Multiple
Measurement

LT 111 (Product of weights) |

Figure 5: Particle filter-based multi-sensor data fusion scheme
Particle Filter-Based f-Step Prediction Schemes:

The f-step prediction schemes reported in [14], and [46] are also proposed in this study
to perform the future degradation growth rate estimation. This scheme is implemented on the
historical database obtained from all the reported methods in this study, including ultrasonic
listening-based NDT, thermal imaging-based NDT, and PF algorithm-based multi-sensor
fusion. In this paper, only 1-step to 2-step predictions are performed.

o 1-Step: At this stage, f is equal to 1, which means the prediction step for the 2™
sample/state is petrformed using all the information of the 1% sample/state. In the
subsequent phase, the weight of the second state has been modified and all of the
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information obtained from the second state will be utilized to forecast the number three

state.

. 2-Step: At this phase, f equals 2, which means the prediction step for 3" sample/state
is performed using all the information of 1% sample/state. In the subsequent phase, the
weight of the second state has been upgraded, and all the information gathered from the
second state/sample will be utilized to predict the number of fourth states.

The new results are generated using PF-based 1 to 2-step forecasting schemes and are
used to compare the actual and predicted states. This difference is used to identify the weight of
the small particle and forecast the next sample/state. The approach sequentially strengthens
itself during each subsequent iteration.

Step Error Analysis:

The inaccurate predictions were caused by lacking a revision step within the state
transition framework, as stated in reference [46]. To address this issue, the algorithm computes
the distinction between estimated and true states. This is done by calculating the error Ej ¢
until its present level n [49], whereas f symbolizes the entite amount of essential future
suggested states (f = 1,2,3,4,5...,F). The step error estimation technique adopts the
following steps:

. Step 1: Predict the total of F states for the very initial time moment (each moment
represents roughly seven days).

. Step 2: Modify the weight of the forecasted state.

. At the very initial moment, employ appropriate measured values to determine the
upcoming F states (overall states: 1 + F) via the forecasting step.

. While at the subsequent moments or time instant, apply the collected precise
measurements to determine the subsequent states (overall states: 2 + F).

. Continue this process for N days (up to the accessible measurement information) and
forecast future outcomes F states (overall states: N + F).

The method described previously offers state information at all N moments either using
the revised weight (u*) and along with a revised weight ({i). The distinction among both of
these two states delivers an incorrect value for "n" moments via "f" varying between 1 to F.
The margin for error could be determined as follows:

En,f = (u:1+f - ﬁn+f) |?‘=1 |E=1 (25)

Equation (25) is further detailed in equations (26) to (27). While exploring the approach
used for calculating the f-step error evaluation approach, whenever the initial state is modified
(n = 1), the error rate can be calculated as the distinction among the expected 1+ fiy, state and
the updated fy, state (f steps ahead). Furthermore, when the subsequent state (i.e., n = 2) is
modified, the margin of error is the difference among the predicted 2+ fyy, state and the
modified/updated 2+ fi, state, and it continues. The etror rates in the forecasting results
(detetioration development rate) have been obtained for values of f which are to 1 or 2, via the
following equation:

En,l = (u;+1 - ﬁn+1) |rl\1]=1 (26)

Enz = (Uhsz = Ont2) IR (27)
Equations (26) to (27) trepresent the series of prediction etrors for “f” steps. The
effectiveness of the prognostic scheme proposed in this study is evaluated in terms of root mean
square error (RMSE). Equation (28) has determined the value of the RMSE for the "f" step
estimation error series framework using the following formula:
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(28)

In Equation (28), S refers to the total number of estimated states applied by the f-step
estimation process (i.e, S is 170 for 1-step estimation and 169 for 2-step estimation).
Ej findicates the distinction between the real and expected states at instant/moment n (such
as f = 1 and f = 2). Inaccuracies in the forecasting steps, expressed as RMSE, were calculated
via Equations (20) to (28), and are presented in Table 5. A detailed analysis of these errors will
be discussed in the third section.

Data Collection and Description:
Super-Heterodyne Ultrasonic Listening Data:

The detailed data description is reported in [13], [33]. The present study uses an
ultrasonic testing gun to capture corona emission signals to identify the insulation rupture of
ABC cables. The test gun is recognized as the UE Systems© Ultra probe® 9000. Subsequently,
this study uses it for listening to super-heterodyned ultrasonic corona discharge signals around
the vicinity of live ABC cables. The Ultra probe® 9000 translated the ultrasonic emissions
from (20 kHz - 100 kHz) into the audible region (i.e., 20 Hz - 20 kHz), making it detectable by
the human ear. The detectable signatures were initially evaluated with noise-reducing headsets.
The received super-heterodyned information is detected in the form of a hissing noise, known
as corona discharge, and then saved on a laptop computer. An ultrasonic signal was recorded
along a 45-meter length of ABCs (i.e., for fixed segments). To reduce the effects of air instability,
a rubber cone was incorporated into the Ultra probe.

The ultrasonic listening data was acquired periodically from operational ABCs installed
at three different locations of metropolis Karachi including South City Hospital, Beach View,
and Al-Shifa Hospital. These locations are categorized as Site-1, II, and III. The first ultrasonic
measurement was recorded on 13" July 2018. The prior service life of the used ABC cable
installed at Site-I was 119 weeks (or 833 days) [13]. The new cable was installed at Site II on 25"
January 2019. Similarly, the faulty ABC cable was reported on 23* October 2018 at Site-I11. The
total service life of faulty cable installed at Site-III was 277 weeks (1939 days or 5.312 years) and
the prior service life of Site-I ABC cable was 190 weeks (833 days or 2.282 years) [13]. In this
study, the total service life of ABC cable installed at Site-1II is used as a reference for the
comparison of total service life achieved using different databases. The comparison of total
service life estimated using ultrasonic probe listening historical database with the actual service
life of faulty ABC cable at Site-III in terms of percentage error is shown in Table 4. The Ry is
the remaining useful life (starting from the date of the first ultrasonic measurement i.e. 13" July
2018) of live ABC cable at Site-1. In Figure 6, the percentage degradation plot of live ABC at
Site-I is shown using a Super-heterodyne NDT measurement-based historical database.
Thermal Imaging Data:

A detailed description of the data is reported in [15]. Briefly, the useful life of ABCs in
coastal areas is less as compared to non-coastal areas. Therefore, coastal belt areas of the
metropolis Karachi including Site-I, II, and I1I are selected to acquire field data. The FLIR E40-
thermal imaging camera is used to capture the temperature-energy distributions produced in the
operational ABCs insulation. A distance of 5 to 6 inches was maintained between the camera
and ABC cable, to reduce the effect of atmospheric conditions. The “Lava” palette mode and a
temperature range from 20 degrees to 120 degrees were selected before each measurement. The
data acquisition was performed at night, to avoid the effect of sunlight. The faulty cable at Site-
IIT was kept energized at the time of data acquisition.

Table 3 presents the percentage degradation in active ABC cables using thermal imaging.
Initially, the percentage degradation was recorded for 710 days with a 30-day interval. The CSI
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scheme was employed to interpolate additional data points between the available states within
the database. As a result, data for 1200 days with a 7-day interval is now available, resulting in
171 samples per state from 1 to 1200 days. In Table 4, the estimated service life of ABC cable
at Site-1 using a thermal imaging scheme is presented (1709 days/4.282 years). Similarly, the
percentage error between the total service life estimated using thermal imaging and the actual
total service life of the faulty ABC cable at Site-I1I is presented in Table 4. In Figure 6, the
percentage degradation plot is shown using the thermal imaging NDT historical database.
Table 4: Rul Estimation of Active ABC Installed At Site-I

Datab RUL  Prior Setrvice Life Estimated Total Service Life L i/]‘j Error
AABAE T Ry) in Days (Rp) in Days (Lg = Ry + Rp) “ | x 100

Thermal 876 833 1709 (4.682 years) 13.458

Imaging

PF-Fusion 1072 833 1905 (5.2 years) 1.75

Ultrasonic 833 2033 (5.569 years) 4.623

Listening

The Particle filter-based multi-sensor data fusion scheme using multiple measurement
modes is applied to the actual Ultrasonic listening database and thermal imaging database. A
total of 1000 samples per instant are used to implement the PF-based data fusion algorithm. The
resulting estimated percentage degradation in the insulation of live ABC at Site-I is compared
with the actual percentage degradation. This actual degradation growth in terms of percentage
is obtained from field-acquired data using Ultrasonic probe listening and Thermal Imaging NDT
measurements. In Table 4, the comparison of the actual service life (of faulty ABC at Site-111I)
and the estimated total service life of ABC cable at Site-I using multiple measurement modes is
presented. Figure 6 presents a percentage degradation plot using a pf-based data fusion scheme.
Additionally, the pf-based f-step prediction scheme is applied to estimate the future degradation
growth rate in live ABC cable.

The same number of samples are utilized for implementing the proposed PF-based data
fusion scheme. The second-order polynomial measurement function has been chosen due to its
ease of use and low complexity. To assess the algorithm's effectiveness, we put additive white
Gaussian noise (AWGN) into the sensor measurement data. AWGN models various random
processes [51], to take into consideration the effect of inserted noise, we estimated the Signal-
To-Noise Ratio (SNR), which can be described as the ratio of the derived signal power Sp to the
AWGN power Np:

Sp 0'2

SNR=—=

NP Nlgms

Here, 6 and Ny indicate the magnitudes of both the calculated signal and unwanted

noise in RMS form, subsequently. For our case study, the SNR value is set to 10. In the present

(29)

investigation, we have used 1000 samples (Ng) for each location. Since noise can degrade the
performance of the PF algorithm, f-step error analysis is conducted using the actual and
predicted states, measured in terms of root mean square error (RMSE).

Results and Discussion:

This section presents the evaluation of the performance of the proposed Particle Filter
(PF)-based multi-sensor data fusion scheme for estimating the Remaining Useful Life (RUL) of
live Aerial Bundled Cables (ABCs) in coastal areas such as the metropolis of Karachi.
Discussion:

Figure 6 represents percentage plots for damage increase in the thermal insulation of live
ABC cable placed at Site I. The actual historical databases were made using Ultrasonic listening
and Thermal imaging-based NDT measurements. The actual states using thermal imaging (i.e.
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Actual States TI) were plotted up to 1200 days with an interval of 7 days. The estimated
remaining service life (R{}") of ABC cable at Site-T using Thermal imaging data is 876 days, which
starts from the first thermal imaging-based NDT measurement (i.e. 13™ July 2018), and it is
depicted in Figure 6. In this process, we have estimated the RUL of active ABC installed at Site-
I only. In Table 4, the total prior service life (Rp) of ABC cable at Site-I is given, which is 833

days. The total estimated service life (LE") of ABC using a thermal imaging database is 1709 days
(or 4.682 years). The actual service life of faulty (Lg) ABC cable at Site-I1I is given (1939 days
or 5.312 years). The estimated service life (LE) of the active ABC cable at Site-I, determined
using thermal imaging data, is compared to the actual service life of the faulty ABC cable at Site-
IIT in terms of percentage error. In Table 4, the obtained percentage error is given as 13.458%.
This indicates that the remaining useful life of active ABCs installed in coastal areas, estimated
using thermal imaging-based temperature-energy distributions, has an accuracy of 86.542%.

Similarly, the actual states using Ultrasonic listening-based testing (i.e. Actual States UT) are

plotted up to 1200 days with an interval of 7 days. The estimated remaining service life (RIIJJT) of
ABC cable at Site-I, using UT data is 1200 days, which starts from the first Ultrasonic listening-
based NDT measurement (i.e. 13" July 2018), as depicted in Figure 6. The total estimated service
life (LET) of ABC using the Ultrasonic listening database is 2033 days (or 5.569 years). The
estimated service life (LE") of active ABC at Site-I is compared with the actual service life of
faulty (Lg) ABC cable at Site-IIT in terms of percentage etrot. The obtained percentage error is
4.623% (or 95.377% accuracy) and is tabulated in Table 4.

The plot of degradation growth (in terms of percentage) in the insulation of active ABC at Site-
I using the proposed particle-filter-based multi-sensor data fusion scheme is also shown in
Figure 6. A total 1000 number of samples were used for the implementation of the proposed
scheme. The historical database of Ultrasonic listening and Thermal Imaging measurement
methods were fused using Equations (17), (23), and (24) in the particle-filter implementation. In
Figure 0, the actual states using the proposed PF-fusion scheme (i.e. Fused States) are plotted
up to 1200 days with an interval of 7 days. The estimated remaining service life (Rguswn) of
ABC cable using the PF-fusion scheme is 1072 days, which starts from the first thermal imaging-
based NDT measurement (i.e. 13™ July 2018). In Table 4, the total estimated service life
(LEusiony of ABC using a PF-fusion scheme-based database is given 1905 days (or 5.2 years).
The obtained percentage error using PF-based multi-sensor fusion is 1.75% (or 98.25%
accuracy).

PF Based Multisensor Data Fusion of ABC Cable

120 - T T
* Actual States TI '
100 " Actual States UT 100% Failure !
» Fused States FD 1072 Days '

80 - h 4
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1072 Days
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Figure 6: Remaining service life estimation of operational LV ABCs, at SITE-I
The AWGN is inserted into the measurement data as shown in Eq (29). The obtained
results indicate that the proposed PF-based multi-sensor fusion scheme works well in the
presence of noise. The use of multiple sensor measurement data improves the accuracy and
reliability in RUL estimation of live ABCs installed in coastal areas. The percentage error in RUL
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estimation of active ABC at Site-I is decreased when the data from multiple measurement modes
are used (L.e. fusion of UT and TI-based NDT measurement data).

Figures 7, 8, and 9 display f-step forecasting graphs of damage growth rate in functional
ABC cable insulating material, expressed as percentages, set up at Site-1. These plots utilize data
from PF-fusion, Ultrasonic listening, and Thermal imaging databases, respectively. Figure 7a
demonstrates the one-step estimation plot. The entire process gets started by estimating the
second state (i.e., the eighth day) employing the first state's complete information. The PF-based
sensor fusion method predicts every single future state one step in advance. The graphical
representation of predicted states begins with the second state (8th day), which is the first
estimated state after the first state. The latest data generated by the 1-step prediction operation
are used as a basis to determine the error margin that occurs between predicted and actual values.
Equation (26) generates the particle weight for the subsequent prediction because the technique
continuously improves. Equation (28) estimates the one-step prediction scheme's RMSE (via
FD data), which is 0.0435.

The next figure 7b depicts the two-step forecasting plot. The procedure entails
predicting the second and third states (the eighth and fifteenth days) utilizing the initial day's
state and measurement. The algorithm employs a two-step prediction process to forecast each
pair of two future states. The graphical representation of predicted states begins with the third
state (15th day), that is, the second estimated state compared to the first state. The outcomes
achieved serve as a basis for establishing the margin of error. As the algorithm refines its
predictions, Equation (27) calculates the weight of particles for the next prediction.

The Root-Mean-Square Error (RMSE) of the 2-step forecasting scheme derived from
Equation (28) is 0.3482. Table 5 shows the RMSE scores for 1—to 2-step forecast methods for
the fused database of functional ABC cable set up at Site-I. The outcomes show that when
measurement data is missing or there is less measurement data (without an update step),
prediction results are error-prone. In other words, enhancing the step size of the f-step
prediction-based PF technique results in much greater RMSE values.
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Figure 7: Forecast of damage growth rate in the insulating layer of currently live ABC cable via
fused data to number of days, at SITE-I, (a) 1-step prediction. (b) 2-step prediction.

Figures 8(a) and 8(b) demonstrate f-step estimation plots (1-step to 2-step prediction
graphs) of deterioration increase in working ABC cables thermal insulation, expressed as
percentages, according to genuine SITE-I Ultrasonic listening-based field measurements. The
process mirrors the one discussed in Figure. 7. Briefly, figure 8a shows the one-step estimation
plot, starting with the second state (eighth day) estimated from the first state's complete data.
The PF-based sensor fusion method predicts each future state one step ahead, beginning with
the second (eighth day) state. The latest prediction data determines the error margin between
predicted and actual values.

Table 5: Root Mean Square Error of Actual and Predicted States of ABCs At Site-1
1-Step Prediction 2-Step Prediction

FD Data 0.04345 0.3482

UT Data 0.1162 0.6076

TT Data 0.4345 1.0582
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Figure 8: Forecast of damage growth rate in the insulating layer of currently live ABC cable
via Ultrasonic listening data in relation to number of days, at SITE-I, (a) 1-step prediction. (b)
2-step prediction.

Figure 8b illustrates the two-step forecasting plot, predicting the second and third states
(eighth and fifteenth days) from the initial day's data. The algorithm forecasts each pair of future
states, starting with the third state (fifteenth day). The outcomes obtained through the 1- to 2-
step estimation techniques are utilized to determine the error margin. The weight of particles in
the subsequent estimation is obtained via Equations (26) and (27) for this 1-step and 2-step
estimation procedures, respectively. The RMSE values have been calculated (via UT

information), for both 1-step to 2-step forecasting methods employing Equation (28) are 0.1162
and 0.60706, respectively, and are listed in Table 5.
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Comparably Figures 9(a) and 9(b) show 1- to 2-step forecasting graphs of deterioration
increase in ABC cable insulation utilizing thermal image analysis NDT-acquired field
measurements. The root-mean-square error values (via TI data) for both 1-step and 2-step
estimation methods via Equation (28) are 0.4345 and 1.0582, respectively, as shown in Table 5.
This f-step PF-based estimation method works successfully even when the sensor information
contains noise (SNR = 10 in this study). The outcomes demonstrate that raising the step size
within the f-step prediction-based PF techniques causes more substantial RMSE values. This
suggested PF-based f-step prediction setup can be applied to any kind of sealed electrical

transmission cable to estimate the damage growth rates.
1-Step Prediction of ABC Cable
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Figure 9: Forecast of damage growth rate in the insulating layer of currently live ABC cable
via thermal scanning data to number of days, at SITE-L, (a) 1-step prediction. (b) 2-step
prediction.

Conclusion:

A Particle Filter (PF)-based data fusion scheme was proposed for estimating the
Remaining Useful Life (RUL) of Live ABC cables installed in coastal areas. Results from multiple
databases demonstrate the effectiveness of the proposed RUL estimation scheme. The data
fusion technique assumes statistical independence among measurement processes, with
Principal Component Analysis (PCA) used to validate this assumption. Results indicate
improved accuracy in RUL estimation when data from multiple measurement modes are fused.
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Furthermore, an f-step forecasting program incorporated into the PF-based predictive
technique has been suggested to forecast subsequent deterioration increases in the thermal
insulation of energized overhead electrical cables. The framework changes calculated states via
measurements and forecasts future states utilizing the f-step forecasting approach. The scheme
is validated using historical measurement data from energized ABC cables acquired in coastal
areas, considering noise. The precision of expected outcomes was assessed via Step error
evaluation methods in the form of Root-Mean-Square-Error (RMSE). The RMSEs in predicted
results for SITE-I ranged from 0.0435 to 0.3482 (Fused data), 0.1162 to 0.6076 (UT data), and
0.4345 to 1.0582 (TT data), respectively.

In addition, the suggested method and setup have been fairly helpful for the occurrence
of multiple additional damages in shielded overhead transmission lines that have low tension
(LT) and high tension (HT). This versatility underscores the utility of both schemes. The PF-
based multi-sensor fusion scheme enhances accuracy and reliability in estimating the RUL of
insulated active power cables. Comparably, the PF-based f-step forecasting framework correctly
forecasts subsequent deterioration developments in the thermal insulation of ABC cables while
in service. As a result, both strategies can be utilized for condition-based predictive servicing of
overhead shielded wires.
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