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erial Bundled Cables (ABC) consist of several wires that contain numerous layers of 
thermal insulation, which reduces the risk of theft. Nonetheless, there have been regular 
reports of rapid degeneration of such cables in coastal areas, resulting in multiple 

unplanned breakdowns. This study employs the data, collected from field-based nondestructive 
assessment techniques such as ultrasonic listening and thermal imaging. There is a pressing need 
for advanced tools to estimate the remaining lifespan of ABCs deployed along coastlines. This 
paper presents a novel approach using a particle filter-based fusion of multiple sensors 
framework for estimating the Remaining Useful Life (RUL) of in-service ABCs in a severe 
coastal atmosphere. The use of multi-sensor measurement data improves the accuracy and 
reliability of the RUL estimation. This will allow electric power distribution companies to plan 
maintenance and replacement activities well in time. In the reported research work, the f-step 
prediction scheme under the framework of the Particle filter algorithm is implemented to predict 
the posterior density function of degradation growth in the cable insulation. The Particle Filter 
(PF) method performs effectively with nonlinear state transitions and measurement functions, 
even when addressing non-Gaussian or multidimensional noise variations. The technique also 
contains a step error calculation approach for determining forecast accuracy when measurement 
data is missing. The encouraging outcomes of this strategy illustrate its efficacy. 
Keywords: Particle Filtering, Multisensory Fusion, Predictive Based Maintenance, Degradation 
Growth Rate, and Aerial Bundled Cables (ABCs). 
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Introduction: 
The overhead transmission lines, electric poles, and transformers are the essential parts 

of the electrical supply and power distribution network. The power supply shutdown often 
occurs due to the failures in power distribution lines. Normally, bare conductor cables and 
insulated conductor cables are used in the power distribution network [1], [2]. The insulated 
conductor cables are widely used due to their several advantages including safety and lesser 
chance of short-circuiting in the presence of high wind pressure [1], [2], [3]. Despite these 
advantages, monitoring the health of covered conductors in abrasive and harmful atmospheric 
conditions, especially in coastal regions, is challenging [4].  

Three types of insulated conductor cables are reported in [5]; Covered Conductors 
(CCs), Spacer Cables (SCs), and Aerial Bundled Cables (ABCs). Among these only ABCs are 
multilayered bundled cables and their XLPE insulation makes them useful where chances of 
electricity pilferage through line tapping are high [6], [7].  ABCs have a longer service life in areas 
that are not shoreline, and their performance parameters are not known for coastal areas [2], [8], 
[9]. The authors in [10], [11], and [12], reported that the insulation of ABCs is degraded in the 
presence of high solar radiation and high moisture content under variable load conditions, 
leading to unexpected supply shutdowns which is an undesirable event for the good economic 
growth of any country. Therefore, regular health inspection and future health estimation of 
insulated power transmission lines are highly significant to ensure continuous power supply, 
especially in coastal regions.  

Table 1: List of Notations 

Notation Description Notation Description 

n Discretized Location En,1 One step error for n moments 

xn 
Defects depths at a separate 
position (state) 

En,2 Two-step error for n moments 

zn 
NDE measurement at discretized 
location 

f 
The overall number necessary 
subsequent states (f = 1, 2, 
3,4,5 …, F) 

N 
The overall number of discretized 
or independent locations 

un
i  

The overall number of 

ith stages with corresponding 

weights wn
i  for n instances at n 

instants. 

o Measurement mode wn
i,o

 

Assigned normalized weight 

to xn
i  by oth measurement 

mode 

O 
Total number of measuring 
modes 

NDT Nondestructive Testing 

z̅n 

Measurements at separated 
locations as a result of O 
measuring modes 

IPC Insulation Piercing Connector 

Z⃗  

The overall number of 
measurements corresponds with 
all measuring modes. O for all 
distinct places/positions N 

ABCs Aerial Bundled Cables 

X⃗⃗  Set of states LV Low Voltage 

u∗ State with updated weight HT High voltage Transmission 

û State without updated weight SIR 
Sampling Importance 
Sampling 



                                 International Journal of Innovations in Science & Technology 

June 2024|Vol 6 | Issue 2                                                                      Page |666 

yn 
Measurements at instant n data 
(with additive noise) 

EMD 
Empirical Mode 
Decomposition 

y1:n Previous measurements 1 to n PF Particle Filter 

p(un|y1:n) Posterior density RUL Remaining Useful Life 

p(yn|un) Likelihood density UT Ultrasonic Testing 

p(un|yn

− 1) 
Prior density HHT Hilbert Huang Transform 

xn
i  

ith sample (particle) at n discrete 
location 

ROI Region of Interest 

wn
i  

Assigned normalized weight 

to xn
i  at location n 

SMC Sequential Monte Carlo 

Ns Total number of samples PDFs Probability Density Functions 

Sp Signal Power XLPE Cross-Linked Polyethylene 

Np Additional noise power RMSE Root Mean Square Error 

σ Amplitude of computed signal AWGN 
Additive White Gaussian 
Noise 

Nrms 
Amplitude of additional noise in 
RMS form 

CDF 
Cumulative Distribution 
Functions 

En,f 

Difference between the true 
states (with modified weights) 
and the estimated states (without 
performing weight update step) at 
time k. 

FD Fused Data 

EDR Energy Density Ratio TI Thermal Imaging 

The authors in [13] presented a Super-Heterodyne ultrasonic listening-based health 
inspection scheme for live ABC cables in the existence of extreme, acidic environmental factors 
in the coastlines. The proposed method makes an essential contribution to the health inspection 
of ABC cables, but it is not appropriate for estimating the deterioration growth rate. The authors 
in [14], proposed a prognostic framework for determining the possible future deterioration 
development rate of functioning ABCs thermal insulation set up at shoreline regions via 
historical Super-Heterodyne ultrasonic listening information/data. Although this framework 
effectively predicts deterioration rates, the remaining useful life of operational ABC cables in 
coastal areas is not addressed in the current literature. 

The RUL estimation of power distribution lines is essentially a key factor for planning 
maintenance and replacement activities in a timely manner before the actual failure. This study, 
for the first time, proposes the use of a multi-sensor inspection-based data fusion scheme to 
estimate the RUL of operational low-voltage ABC cables installed at coastal regions, improving 
the accuracy of the estimated results. In the reported research work, to implement a multi-sensor 
data fusion scheme the Super-Heterodyne Ultrasonic listening data presented in [13] is used 
along with the Thermal equipment-based Non-Destructive Testing (NDT) data for analysis of 
functional ABCs [15]. The thermal degradation of ABCs insulation as reported in [10], [11], [12], 
enables the use of the infrared thermography-based NDT method to acquire more data on 
Thermal damage in the insulation of operational ABCs set up along the coastline. 

In [16], [17], [18], [19], and [20], various model-based methods for inspecting the thermal 
degradation process in insulated power cables are reported. These methods are finite element 
numerical model, Neural Network, Principal Component Analysis (PCA), mid-infrared 
spectroscopy, Standard Deviation Multi-Resolution Analysis (STD-MRA) representation based 
on Discrete Wavelet Transformers (DWT), emissivity parameter from infrared thermography. 
However, these approaches are not best suited for harsh and corrosive environmental 
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conditions, as the results are obtained through lab experiments using these models. Creating 
physical models that replicate these tough environmental conditions is also challenging. To 
address this issue, data-driven approaches are employed, utilizing actual thermal imaging-based 
NDT data that records all degradation-triggering factors in real-time. This method ensures a 
more accurate inspection of the thermal degradation process in the insulation of operational 
power cables.  

The use of multiple sensors-based inspection modes is common in various 
Nondestructive Evaluation (NDE) applications [21]. The available information from multiple 
inspection modes can inspect the degradation trend accurately due to the information contained 
in multiple sensors. To effectively utilize data from multiple sensors, the development of a 
computationally efficient data fusion scheme is required for estimating the degradation trend 
when multiple measurement data is available. In [22], [23], [24], [25], [26], different data fusion 
schemes are reported, including neural networks, Bayesian analysis-based Dempster-Shafer 
evidence theory, wavelet and multi-resolution algorithms, image fusion in the time and frequency 
domain, and Q-transform-based techniques. All these fusion algorithms use signal processing 
and image processing approaches without considering the nature of a measurement process [21]. 
Additionally, these schemes struggle to deal with non-linear state transitions and non-Gaussian 
noise distributions efficiently due to their relatively high computational cost [21]. To address 
these issues, the authors in [21] have proposed a Sequential Monte Carlo (SMC) based Particle 
Filter scheme to fuse the multi-sensor NDE data using multiple NDE measurement modes.  

In this paper, the authors proposed SMC SMC-based PF data fusion algorithm using 

multiple measurement modes “O" to estimate the RUL of live LV-ABC-Cables set up at the 
coastline region. This scheme is applied to fuse the actual thermal imaging and Ultrasonic 
testing-based NDT measurements attributing to a novel contribution in the literature. Moreover, 
the use of multiple sensor data improves the RUL estimation of active insulated power 
distribution lines mounted at the shoreline. Furthermore, the f-step prognostic framework based 
on PF algorithm is developed to predict the degradation trend in the operational low voltage 
ABC cables connected at beach areas. This approach will help power company owners perform 
timely maintenance and replacement activities, reducing maintenance costs and improving the 
reliability of power distribution networks, especially in coastal areas.  
Objectives: 

The goals of this research study are:  

• To enhance the accuracy of estimating the future degradation growth rate in the 
insulation of ABC cables,  

• To integrate various sensor measurement data to accurately estimate the remaining 
useful life of ABC cables, and  

• To assess the effectiveness of the proposed algorithm in the absence of measurement 
data by incorporating the f-step prediction scheme with the PF algorithm. 
The remaining paper is divided into five subsections. The subsequent part discusses 

challenges related to the problem declaration or statement, which are then addressed in the next 
section of the research methodology. In the research methodology portion, initially, problem 
formulation for an NDE-based health diagnosis scheme in terms of an iterative setup within the 
presence of measurement information obtained via various measuring modes will be explored. 
The development of a particle filter-based data fusion scheme with the assumption that the 
NDE measurement modes are not correlated to each other is also presented in this section. The 
implementation of Principal Component Analysis (PCA) to legalize our assumptions of 
independence of measurement modes is then discussed in the same section. In the end, an 
overview of the findings and conclusions is covered. 
  



                                 International Journal of Innovations in Science & Technology 

June 2024|Vol 6 | Issue 2                                                                      Page |668 

Research Methodology: 
In this section, we described the problem formulation of RUL estimation in terms of 

Bayesian estimation problem. Moreover, the historical databases in terms of percentage 
degradation in the insulation of energized ABCs installed in coastal areas using two different 
NDT schemes are presented. We also discussed the application of PF algorithm for multi-sensor 
data fusion. Finally, the execution procedure for the PF-based f-step forecasting approach as 
well as the step error evaluation technique are demonstrated. 
Problem Formulation: 

The problem formulation applies to RUL estimation of in-service power distribution 
lines with multiple measurement modes O. The problem of RUL estimation in live power cable 
is similar to the defect growth in cable insulation in the context of percentage degradation w.r.t 
intervals (i.e. the total number of weeks). In this case, the time interval is divided into N 
locations. The information about the defect growth is unknown at each discrete location. The 

defect growth in cable insulation is expressed in terms of  𝐗⃗⃗ = {𝐱𝟏, 𝐱𝟐, 𝐱𝟑,…, 𝐱𝐧}, where each 

element 𝐱𝐧 of the set is stated (degradation growth) at the discrete location 𝐧(𝟏 ≤ 𝐧 ≤ 𝐍). We 

assumed that measurements 𝐳̅𝐧 = {𝐳𝐧
𝟏,  𝐳𝐧

𝟐,  .  .  .  ,  𝐳𝐧
𝐨,  .  .  .  ,  𝐳𝐧

𝐎} =  { 𝐳𝐧
𝐨|𝐨 = 𝟏 : 𝐎} from O 

measurement modes are known at each position index 𝐧 (𝟏 ≤ 𝐧 ≤ 𝐍) [27]. Due to 
degradation, including fractures in cable insulation, and the unavoidable noise in nondestructive 
testing (NDT) measurements are stochastic, a statistical framework methodology is used to 
estimate defect growth with Bayesian approaches [28]. This Bayesian estimation problem can be 
reformulated as a statistical estimation challenge, as described in references [21], [29]. In this 

section, X⃗⃗  is a series of states (unidentified parameters), as well as 𝐙⃗ =

{𝐳𝟏
𝟏,  𝐳𝟏

𝟐,  .  .  .  ,  𝐳𝟏
𝐎,  𝐳𝟐

𝟏, .  .  .  𝐳𝐧
𝐨, .  .  . 𝐳𝐧

𝐎} represents the associated precise measurements. The 

posterior PDF 𝐩(𝐗⃗⃗ |𝐙⃗ ) could be represented as a Bayesian evaluation issue. for 

every𝐨𝐭𝐡 measuring mode along with  X⃗⃗  states. Also, 𝐗⃗⃗  states can be determined via the posterior 

PDF 𝐩(𝐗⃗⃗ |𝐙⃗ ) ∝ 𝐩(𝐙⃗ |𝐗⃗⃗ )𝐩(𝐗⃗⃗ ), in which 𝐩(𝐙⃗ |𝐗⃗⃗ )  indicates a likelihood function and 

then 𝐩(𝐗⃗⃗ ) is a previously acquired knowledge of 𝐗⃗⃗  states. Estimating the likelihood function has 

been costly in terms of computation. To solve this issue, generate the posterior PDF in a series 

of values at every position over 𝑛 places. This will decrease both computational expenses as well 
as complexity [30]. The exponential density is used as a prior density 

p(xn|xj|jϵNn

j≠n

) = e−∑
‖xj−xn‖

i

ijϵNn ,   

Where i must be selected around 1 to reduce the variability in xn state within 

the Nn neighborhood, and xj|jϵNn

j≠n

 are the states in Nn of ′n′ location. 

In this section, we have discussed the Bayesian estimation problem as a tracking problem. The 
Bayesian estimation problem [28] can be represented by the state transition equation to model 

the state xn at each ′n′ location: xn = fn(xj|jϵNn

j≠n

 , vn) ↔ p(xn|xj|jϵNn

j≠n

), and measurement 

model to relate the zn to the xn states: zn = hn
o(xn, μn

o) ↔ p(zn|xn), where fn is the state 

transition process, hn
o  is the measurement process, vn is the process noise, and μn

o is the 

measurement noise. To connect the xn and zn measurements, we took into account a 
polynomial-based measurement framework similar to the one described in reference [27] to 

relate xn with zn measurement: zn = ∑ cbxn
bB

b , where: ′c′ represent a polynomial figure 
extracted via a measurement repository or database. The above model has a minimal 

computational complexity of Bth order. Both the state transition as well as measurement 
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framework illustrate a tracking (or chasing) problem or issue [31]. In the context of tracking of 

the target scenarios [31], the function: fn(xj|jϵNn

j≠n

 ,  vn) computes the target′s movement from 

the xj location, while hn
o(xn, μn

o) identifies the target location. The most effective approaches 

for chasing (or tracking) issues are currently Kalman-filtering and particle-filtering [30], [32] 
(which are described more thoroughly in the subsection). 
Super-Heterodyne Ultrasonic Listening-Based Historical NDT Data Base: 

The authors in [33], presented a detailed description of capturing the progressive damage 
within the thermal insulation of installed ABCs via field-acquired Ultrasonic listening based 
NDT data using Hilbert Huang Transform (HHT). Briefly, HHT scheme performs two steps 
including Empirical Mode Decomposition (EMD), and Hilbert Huang Transform (HHT). The 
EMD scheme breaks the non-linear and non-stationary signals into high to low-frequency 
components called Intrinsic Mode Functions (IMFs). The major information of the original 
signal is present in the first three IMFs [34], [35]. The HHT was applied on the first three IMFs 
to obtain the Hilbert or energy graph/spectrum. Figure 1 depicts the energy graph also known 
as Hilbert-Spectrums of working and failed cables set up at different sites of metropolis Karachi 
[33]. The two Regions of Interest (ROI) are selected in HHT spectrums as shown in Figure 1. 
The Average Energy Density Ratios (Avg. EDR) for ROI A and ROI B were calculated in [13]. 
In this study, the delta EDR (ROI A – ROI B) is used to make the Ultrasonic listening-based 
historical database in terms of percentage degradation to estimate the RUL of live ABC cables. 

 
Figure 1: HHT Spectrum Evaluation of Active and Defective Cables [1] 

Table 2: Degradation Rate of Live ABC cable using ΔEDRnew 

Cable Status Date ΔEDR 
ΔEDRnew = 
(1- ΔEDR) 

Degradation 
(%) 

Healthy (Used), Site-I 

13-Jul-2018 0.363 0.637 13.58641359 
7-Aug-2018 0.322 0.678 17.68231768 
20-Oct-2018 0.29 0.71 20.87912088 
4-Nov-2018 0.271 0.729 22.77722278 

01- Dec-2019 0.26 0.74 23.87612388 
08-Jan-2019 0.241 0.759 25.77422577 
19-Mar-2019 0.141 0.859 35.76423576 
25-Apr-2019 0.106 0.894 39.26073926 
5-Jun-2020 -0.189 1.189 68.73126873 

Healthy (New), Site-II 25-Jan-2019 0.499 0.501 0 
Faulty, Site-III 23-Oct-2018 -0.502 1.502 100 

In Table 2, the delta EDR presented in [13] is tabulated in column three. The delta 
EDRnew is obtained by subtracting the delta EDR from 1. The percentage degradation is 
calculated using (1) 

Degradation (%) =  
∆EDRnew

current − ∆EMDnew
min

∆EMDnew
max − ∆EMDnew

min
 (1) 
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Where ∆EMDnew
current is the present value of delta EDRnew,  ∆EMDnew

min  is the minimum 
value of delta EDRnew with zero percentage degradation when new ABC cable was installed on 

25th Jan 2019, and ∆EMDnew
max is the maximum value of delta EDRnew with 100% degradation in 

faulty cable on 23rd Oct 2018.  
Data Collection Using Ultrasonic Probe Testing Gun: 

The field-acquired data was collected from July 2018 to June 2020 (a total of 730 days). 
The data is estimated up to 1200 Days over 7 days via the Cubic-Spline-Interpolation (CSI) 
based approach. The obtained database is used for the RUL estimation of ABCs. These results 
are shown in Figure. 6 and are discussed in detail in section 3. 
Infrared Thermography-Based Historical NDT Data Base: 

This section involves the application of different procedures to identify the damage to 
the ABCs insulation under harsh corrosive environmental conditions using thermography. 
These include infrared thermography, image segmentation, data normalization, histogram 
computation, cumulative distribution function, and 90 % CDF value of maximum temperature. 
Infrared thermography is widely used in the diagnosis and predictive-based maintenance of 
active and operational electrical equipment [36], [37], [38], [39]. 

The health and condition of the equipment were inspected with the help of pixel 
intensity present in the thermal image. In this study, a thermal imaging scheme was considered 
to measure the change in the temperature distribution in the insulation of live ABCs. In Figure 
2, a thermal image of active low-voltage ABC is depicted. In [40], the authors reported that 
background data is not required in the thermal image analysis. 

 
Figure 1: Energized ABC Thermal Image  

There are different segmentation categories including region-based, threshold-based, 
and edge detection-based segmentation [41], [42]. The most widely used segmentation scheme 
is thresholding segmentation, which contains two subcategories including local thresholding and 
global thresholding. In threshold-based segmentation, all the pixels are divided into groups 
based on fixed threshold selection criteria. In this study, global thresholding segmentation was 
used to select the ROI from the field-acquired thermal imaging data of energized ABCs. This 
was achieved by assigning a value of 1 to all pixels that exist in the ROI and have high-
temperature readings. All the pixels outside the ROI are set to zero. The Eq. (2) is used to 
convert the thermal images of ABCs into binary configuration [40], [41]. 

w(u, v) =  {
1,   ji(u, v) > tOtsu′s

0,   ji(u, v) < tOtsu′s
 (2) 

Where w(u, v) is obtained segmented image matrix, ji(u, v) is the ith pixel in the 

thermal image matrix j(u, v), and tOtsu′s is the Otsu’s threshold level according to which pixels 
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are selected. The Otsu’s thresholding technique is used to optimize the threshold value 

tOtsu′s using the variance between the clusters [41]. Figure 3 illustrates the process of selecting 
the required ROI using global thresholding segmentation [15]. Figure 3(a) shows the original 
raw image of an active LV-ABC-cable. Figure 3(b) is the segmented image, where the white 
region is the required ROI and the black area is the background. Figure 3(c) is the final obtained 
segmented image of energized ABCs using Eq. (3) 

b(ui, vi) =  j(ui, vi) × w(ui, vi) (3) 

Where b(ui, vi) is the final segmented image matrix with required pixels exist in the 

ROI, j(ui, vi) is the original image matrix, and w(ui, vi) is the segmented matrix obtained using 
Eq. (2). The ABC insulation is thermally degraded over time due to which the temperature 
measurements in each acquired thermal image vary concerning time. This variation was removed 
by applying the min-max normalization technique to the obtained segmented matrix 

b(u, v) [43]. The Eq. (4) is used to apply the min-max normalization method. 

b′(ui, vi) =  
b(ui, vi) −  min (b(u, v))

max (b(u, v)) −  min (b(u, v))
 (4) 

Where b′(ui, vi) is the ith pixel in the normalized segmented image matrix b′(u, v), and 

b(u, v) is the segmented matrix with variation in the pixel value. To analyze the change in the 
thermal energy distribution of ABC insulations, histogram computation using the normalized 
segmented thermal data is presented in the reported work. The total energy under each 
histogram is normalized to 1. To measure and quantify the shift in the energy distributions of 
thermal data, various statistical parameters including mean, standard deviation, coefficient of 
variation, entropy, skewness, and kurtosis are examined. However, the trend of statistical 
parameters was not suitable for the analysis. Similarly, Cumulative Distribution Functions 
(CDFs) are used to make the historical database of field-acquired thermal images of energized 
ABCs in the presented work. An esteemed trend was observed in the normalized thermal energy 
values at 0.9 CDF. In Table 3, normalized thermal energies of operational ABCs installed in 
coastal area at 0.9 CDF are tabulated. 

 
(a)                                     (b)                                                (c) 

Figure 2: Global thresholding segmentation of energized ABCs 

 
Figure 4: Histogram and CDF Computation 
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The percentage degradation is calculated using Eq. (5) and is tabulated in Table 3. Figure 
4 shows the key steps of all procedures [15]. 

Degradation (%) =  
0.9 CDFcurrent − 0.9 CDFmin

0.9 CDFmax − 0.9 CDFmin
 (5) 

Where 0.9 CDFcurrent is the current value of normalized thermal energy of pixels at 

90% CDF,  0.9 CDFmin is the minimum value of normalized thermal energy of pixels at 90% 
CDF with zero percentage degradation when the new ABC cable was installed on 25th Jan 2019, 

and 0.9 CDFmax is the maximum value of normalized thermal energy of pixels at 90% CDF 
with 100% degradation in faulty cable on 23rd Oct 2018.  
Data Collection Using Thermal Imaging Camera: 

The field-acquired data was collected from July 2018 to June 2020 (a total of 730 days). 
The data is estimated up to 1200 Days with an interval of 7 Days using the CSI technique. The 
obtained database is used for the RUL estimation of ABCs. These results are shown in Figure. 
6 and are discussed in detail in section 3. 

Table 3: Degradation Rate of Live ABC cable Using 0.9 CDF 

Cable Status Date 0.9 CDF Degradation (%) 

Healthy (Used), Site-I 

13-Jul-2018 0.6615 14.08765653 
7-Aug-2018 0.6874 25.67084079 
20-Oct-2018 0.7034 32.82647585 
4-Nov-2018 0.7067 34.30232558 

01- Dec-2019 0.7331 46.10912343 
08-Jan-2019 0.7412 49.73166369 
19-Mar-2019 0.7438 50.89445438 
25-Apr-2019 0.7452 51.52057245 
5-Jun-2020 0.82 84.97316637 

Healthy (New), Site-II 25-Jan-2019 0.63 0 
Faulty, Site-III 23-Oct-2018 0.8536 100 

In the next sections, two different types of databases in terms of percentage degradation 
growth rate, are formed. These databases are fused, using PF based multi-sensor data fusion 
scheme, which is described in the upcoming section. 
Application of Particle Filters Using Multiple Mode Measurement Data: 

The authors in [30], and [32] reported that the optimal solution to the tracking problem 
is the Kalman filtering, but it is only applicable when the state transition function and 
measurement functions are linear with Gaussian noise distributions. On the other 
hand, deficiencies development in tiny structures constitute an irregular behavior, and 
noise variations may be non-Gaussian (multidimensional). Sequential Monte Carlo (SMC) based 
Particle Filtering methods are applied to solve Bayesian estimation problems with non-linear 
state transition models and non-Gaussian noise distributions [27].  
Theory of Particle Filters: 

In SMC-based Particle Filters, the probability densities are represented in terms of 
particles. This type of representation applies to any state-space model [29], [31]. In this scheme, 
the posterior pdf is recursively obtained based on all available information. Now, a brief working 
of PF algorithm is presented next. A specific measurement mode known as a single-

measurement-mode (i.e., O = 1) has been chosen for ease of use, and  zn = {zn
o |O = 1}  ≡

 zn  are the measurements obtained via a single measurement. This selection will be removed in 
the next section, where the PF framework will be extended to integrate the multimodal 

measurements. Within a single evaluation or measurement setting, a PDF of the state xn  
conditioned on every data from measurements to the value p(xn, z1:n) and involving zn  might 
be witnessed gradually within 2 stages: forecasting along with weight revision step. The state 
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transition model is employed to forecast the Probability Density Function (PDF) from the 
current measurement location to the subsequent location. The state transition model connects 
states within a neighborhood. Consider the n-1 separate location has the specified 

PDF p(xn|z1:n−1). As already stated, the system model is employed to forecast the PDF of the 

state xn employing the Chapman-Kolmogorov equation [30], which is presented as  

p(xn|z1:n−1) =  ∫p(xn|xn−1)p(xn−1|z1:n−1) dxn−1 (6) 

We could adopt the Markov mechanism of order one, then the posterior PDF of the 

state xn will become  p(xn|xn−1,   z1:n−1) = p(xn|xn−1). Because of the unidentified 
disruptions, the state is expressed as random noise. The probability density function is distorted 
and weakened during the particle filter technique's forecasting step. The updating step uses the 
most recent information to estimate the PDF. In the weight revision step, Bayes' theorem is 
applied in the following manner: 

p(xn|zn) =  
p(zn|xn)p(xn| z1:n−1)

p(zn| z1:n−1)
 (7) 

The desired posterior likelihood density on every nth place is stated as samples and 
weights. At this point, we′ll go over the fundamentals of the technique in depth. We took into 

consideration the random measure{xn
i , wn

i }|1:Ns
 for defining the subsequent pdf at n distinct 

locations. Whereas xn
i  , wn

i  is an array of supporting points as well as their corresponding 

measurements, we have determined the total quantity of samples as i = 1: Ns . Weight 

adjustment has been defined as ∑ wn
iNs

i=1  . So at n positions, the pdf could be identified as [28] 

p(xn|zn) ≈ ∑wn
i δ(xn − xn

i )

Ns

i=1

 (8) 

Adjusted weights are determined using the importance sampling principle [29]. This rule 

can be expressed using a PDF such that p(x) ∝ π(x) where it is difficult to obtain elements (or 

data points), but  π(x)  can be accurately calculated and elements can be produced via π(x). 

Comparably we can suppose xi to be sampling data that are likely to be quickly produced via 

proposal density q(. ), referred to as importance density. Weights of density p(x) can be 

approximated from ∑ wiδ(x − xn
i )

Ns
i=1 . Where wi ∝ (π(xi)/q(xi))  is the normalized weight 

of the ith particle. After accepting the measurement zn  at nth separate location, we aim to 

estimate  p(x1:n| z1:n)  using an entirely novel particle group. In a similar way the set of 

weights wn−1 are supplied to position n − 1, and can be determined via the weight (or 
measurement) updated equation. The measurement updated equation is obtained from the 
principle of importance sampling in the following manner: 

wn
i ∝ wn−1

i
p(zn|xn

i )pNs
(xn

i |xn−1
i )

q(xn
i |xn−1

i , zn)
 (9) 

The Sampling Importance Replication procedure was first described in references [28], 
[30], consequently the importance density associated with the SIR technique can 

be q(xn
i |xn−1

i , zn) = p(xn
i |xn−1

i ).Therefore, from wi ∝ (π(xi)/q(xi)) and (9), the following 

is derived, 

wn
i ∝ p(zn|xn

i ) (10) 

The SIR variant of PF uses the preceding density p(xn|zn − 1)  to determine the 
importance of density [27]. The preceding density described in Equation (11) is assumed to 
follow an exponential distribution [44]. In the currently available research, multiple distributions 
including lognormal, Weibull, and exponential have been utilized for modelling life distributions 
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[45], [46], [47]. As the profile variable β comes towards 1, the Weibull distribution merges to an 
exponential distribution with an unvarying failure/hazard quantity. As a result, it was used in the 
present investigation to more accurately forecast degradation rates [45], [47]. 

p(xn|xn−1) = e−
‖xn−xn−1‖a

a  (11) 

The parameter a is a single value that regulates the variability in the predicted results 

(states xn). The measurement model establishes a connection between states and measurements, 
essential for computing the chance or likelihood of the specimens generated by using the prior 
or previous density. We handled the rate of deterioration development as an obvious occurrence 

of state variables  xn with random noise nn being the sole source of ambiguity. Measurements 
are obtained immediately based on true states, as in [29],  

yn = f(xn, nn) (12) 

The measurement model can be represented in the form of Dth  order polynomial, as 
illustrated here: 

yn = ∑ cdx
d

D

d=1

 (13) 

The dth order coefficient cd associated with the polynomial could be established by using the 

present states xd from the database as well as the related measurements [44]. Weight assignment 
and revision are done via the likelihood of the probability density function (PDF), as illustrated 
in Equation (9). This probability is determined by the distinction between real measurement 
information and the estimated information employing samples (particles) and the measurement 
model, which is then utilized for assigning weights to the specimens. Since future state 
measurement data is unavailable, updates are restricted to the existing states, allowing only the 
Particle Filter's prediction step to be executed. The absence of the update step results in an error 
in computing the posterior PDF. The magnitude of this error is directly influenced by the 
duration (number of days) without the update step. 
Particle Filtering for Multi-Sensor Data Fusion: 

When there are multiple measurement modes, the likelihood probability density 
functions (PDFs) for each mode must be taken into account when assigning weights to the 

samples. Let wn
i,o

 represent the weight of sample 𝑖 at position index 𝑛 assigned by the individual 

measurement mode 𝑜. For each sample at every position index, 𝑂 weights are computed using 

the respective likelihood PDFs. The likelihood function for the oth measurement mode is 
defined by Equation (10) and the following: 

wn
i,o ∝ p(zn

o|xn
i ) (14) 

We assumed that the measurement processes are independent, for that the joint 

likelihood for measurement modes o =  1, 2, . . . , O is the product of the likelihood for each 
measurement mode, as follows: 

p(zn|xn
i ) = p(zn

1|xn
i ), p(zn

2|xn
i ), . . . , p(zn

O|xn
i ) (15) 

Therefore, from (14) and (15), we get the following: 

wn
i ∝ p(zn

1|xn
i ), p(zn

2|xn
i ), . . . , p(zn

O|xn
i ) (16) 

Using (10) and (16), the final weight assigned to sample i at position index n is as follows: 

wn
i ∝ wn

i,1, wn
i,2, . . . , wn

i,O
 (17) 

As mentioned earlier, it's assumed that the measurement processes are independent. 
However, there might be correlations among them, invalidating this assumption. To address 
this, Principal Component Analysis (PCA) is employed on data from different measurement 
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modes. PCA is a mathematical technique that transforms data into a new coordinate system in 
an orthogonal manner [48], [49]. It can be applied to data from multiple measurement modes. 

For each position index 𝑛, measurements zj
1:O|j∈Mn

 within its neighborhood from all 

measurement modes (1: Q) are considered. These multidimensional data then undergo PCA. 
The following steps outline the evaluation of the principal components: 

• The multi-sensor measurements zj
1:O|j∈Mn

 are stored as vector vo|o=1:O, where each 

measurement mode is assumed to be one component of the vector. 

• The data vector is adjusted by subtracting out its mean given by: 

vo = vo − mean(vo) (18) 

• The adjusted data vectors are arranged as rows of a matrix. This newly formed matrix 
will be called the “adjusted data matrix,” given as 

v = [v1, v2, . . . , vO] (19) 

• The covariance matrix of the “adjusted data matrix” is computed as follows: 

σo = cov(vo) (20) 

• Eigenvectors λo of the covariance matrix are then evaluated as follows: 

λo = eig(σo) (21) 

• The computed eigenvectors are organized as rows in a new matrix. This matrix is termed 
the "feature matrix" as follows: 

λo = λ1, λ2, . . . , λO (22) 

• Finally, the “feature matrix” is multiplied by the “adjusted data matrix” 

ψ = λv (23) 

The rows of the resulting matrix ψ represent the principal (uncorrelated) components in 
the data as follows: 

ψ = [ψ1, ψ2, . . . , ψO] (24) 

The resulting components ψO have no relationship with one another. The PCA 
methodology produces separate data having O dimensions. These distinct components are 
subsequently interpreted as data from different measurement modes. 
Implementation: 

The process for evaluating the posterior probability density function (pdf) of the state 
(flaw depth) is illustrated in Figure 5 and summarized as follows: 

• Initialization: Ns  samples are drawn at each position index from the prior pdf, as 
defined in Equation (11). 

• Weight Assignment: Weights are assigned using the likelihood pdf, as described in 
Equation (9). This pdf is determined by the error between the computed measurement 
using the measurement model and the actual measurement. If the difference between 
computed and actual measurements for a sample is small, the sample's weight is high, 
and vice versa.  

• The Measurement Model: This model establishes the relationship between the state 
and measurements. It is derived from a training database of known states and 
corresponding nondestructive evaluation (NDE) measurements, as given in Equation 

(13). The coefficients of the polynomial cd are determined from this training database. 
During resampling, particle filters often encounter a problem known as degeneracy [50]. 

This occurs when, after a few iterations, only one particle retains significant weight, rendering 
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the others negligible. The resampling process aims to address this issue by discarding particles 
with small weights and focusing on those with larger weights. This ensures that the posterior 
probability density functions (pdfs) are estimated at all locations. The estimated samples are 

assembled with uniform weights to determine a posterior PDF of a single position (for n = 1). 

Keep doing the steps for computing the posterior PDF 𝐩(𝐗⃗⃗ |𝐙⃗ ) at all positions (such as, for all 

‘n’ values. The assumption of independence among measurement modes forms the basis of the 
proposed particle-filter-based data fusion technique. Since the output of the PCA technique 
consists of uncorrelated components, this transformation reinforces the validity of assuming 
independence among measurement data. 

 
Figure 5: Particle filter-based multi-sensor data fusion scheme 

Particle Filter-Based f-Step Prediction Schemes: 
The f-step prediction schemes reported in [14], and [46] are also proposed in this study 

to perform the future degradation growth rate estimation. This scheme is implemented on the 
historical database obtained from all the reported methods in this study, including ultrasonic 
listening-based NDT, thermal imaging-based NDT, and PF algorithm-based multi-sensor 
fusion. In this paper, only 1-step to 2-step predictions are performed.  

• 1-Step: At this stage, f is equal to 1, which means the prediction step for the 2nd 
sample/state is performed using all the information of the 1st sample/state. In the 
subsequent phase, the weight of the second state has been modified and all of the 
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information obtained from the second state will be utilized to forecast the number three 
state.  

• 2-Step: At this phase, f equals 2, which means the prediction step for 3rd sample/state 
is performed using all the information of 1st sample/state. In the subsequent phase, the 
weight of the second state has been upgraded, and all the information gathered from the 
second state/sample will be utilized to predict the number of fourth states.  
The new results are generated using PF-based 1 to 2-step forecasting schemes and are 

used to compare the actual and predicted states. This difference is used to identify the weight of 
the small particle and forecast the next sample/state. The approach sequentially strengthens 
itself during each subsequent iteration. 
Step Error Analysis: 

The inaccurate predictions were caused by lacking a revision step within the state 
transition framework, as stated in reference [46]. To address this issue, the algorithm computes 

the distinction between estimated and true states. This is done by calculating the error En,f 

until its present level 𝑛 [49], whereas 𝑓 symbolizes the entire amount of essential future 

suggested states (f =  1, 2,3, 4, 5… , F). The step error estimation technique adopts the 
following steps: 

• Step 1: Predict the total of 𝐹 states for the very initial time moment (each moment 
represents roughly seven days). 

• Step 2: Modify the weight of the forecasted state. 
• At the very initial moment, employ appropriate measured values to determine the 

upcoming 𝐹 states (overall states: 1 +  F) via the forecasting step. 
• While at the subsequent moments or time instant, apply the collected precise 

measurements to determine the subsequent states (overall states: 2 +  F). 

• Continue this process for 𝑁 days (up to the accessible measurement information) and 

forecast future outcomes 𝐹 states (overall states: N +  F). 

The method described previously offers state information at all 𝑁 moments either using 

the revised weight (u∗) and along with a revised weight (û). The distinction among both of 

these two states delivers an incorrect value for "𝑛" moments via "𝑓" varying between 1 to 𝐹. 
The margin for error could be determined as follows: 

En,f = (un+f
∗ − ûn+f) |f=1

F  |n=1
N  (25) 

Equation (25) is further detailed in equations (26) to (27). While exploring the approach 
used for calculating the f-step error evaluation approach, whenever the initial state is modified 

(n = 1), the error rate can be calculated as the distinction among the expected 1+ fth state and 

the updated fth state (f steps ahead). Furthermore, when the subsequent state (i.e., n = 2) is 

modified, the margin of error is the difference among the predicted 2+ fth state and the 

modified/updated 2+ fth state, and it continues. The error rates in the forecasting results 

(deterioration development rate) have been obtained for values of 𝑓 which are to 1 or 2, via the 
following equation: 

En,1 = (un+1
∗ − ûn+1) |n=1

N  (26) 

En,2 = (un+2
∗ − ûn+2) |n=1

N  (27) 

Equations (26) to (27) represent the series of prediction errors for “f” steps. The 
effectiveness of the prognostic scheme proposed in this study is evaluated in terms of root mean 
square error (RMSE). Equation (28) has determined the value of the RMSE for the "f" step 
estimation error series framework using the following formula: 
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RMSE = √
1

S
∑ En,f

2
S

n=1
 (28) 

In Equation (28), 𝑆 refers to the total number of estimated states applied by the f-step 
estimation process (i.e., S is 170 for 1-step estimation and 169 for 2-step estimation). 

En,f indicates the distinction between the real and expected states at instant/moment n (such 

as f = 1 and f = 2). Inaccuracies in the forecasting steps, expressed as RMSE, were calculated 
via Equations (26) to (28), and are presented in Table 5. A detailed analysis of these errors will 
be discussed in the third section. 
Data Collection and Description: 
Super-Heterodyne Ultrasonic Listening Data: 

The detailed data description is reported in [13], [33]. The present study uses an 
ultrasonic testing gun to capture corona emission signals to identify the insulation rupture of 
ABC cables. The test gun is recognized as the UE Systems© Ultra probe® 9000.  Subsequently, 
this study uses it for listening to super-heterodyned ultrasonic corona discharge signals around 
the vicinity of live ABC cables. The Ultra probe® 9000 translated the ultrasonic emissions 
from (20 kHz - 100 kHz) into the audible region (i.e., 20 Hz - 20 kHz), making it detectable by 
the human ear. The detectable signatures were initially evaluated with noise-reducing headsets. 
The received super-heterodyned information is detected in the form of a hissing noise, known 
as corona discharge, and then saved on a laptop computer. An ultrasonic signal was recorded 
along a 45-meter length of ABCs (i.e., for fixed segments). To reduce the effects of air instability, 
a rubber cone was incorporated into the Ultra probe. 

The ultrasonic listening data was acquired periodically from operational ABCs installed 
at three different locations of metropolis Karachi including South City Hospital, Beach View, 
and Al-Shifa Hospital. These locations are categorized as Site-I, II, and III. The first ultrasonic 
measurement was recorded on 13th July 2018. The prior service life of the used ABC cable 
installed at Site-I was 119 weeks (or 833 days) [13]. The new cable was installed at Site II on 25th 
January 2019. Similarly, the faulty ABC cable was reported on 23rd October 2018 at Site-III. The 
total service life of faulty cable installed at Site-III was 277 weeks (1939 days or 5.312 years) and 
the prior service life of Site-I ABC cable was 190 weeks (833 days or 2.282 years) [13]. In this 
study, the total service life of ABC cable installed at Site-III is used as a reference for the 
comparison of total service life achieved using different databases. The comparison of total 
service life estimated using ultrasonic probe listening historical database with the actual service 

life of faulty ABC cable at Site-III in terms of percentage error is shown in Table 4. The RU is 
the remaining useful life (starting from the date of the first ultrasonic measurement i.e. 13th July 
2018) of live ABC cable at Site-I. In Figure 6, the percentage degradation plot of live ABC at 
Site-I is shown using a Super-heterodyne NDT measurement-based historical database. 
Thermal Imaging Data: 

A detailed description of the data is reported in [15]. Briefly, the useful life of ABCs in 
coastal areas is less as compared to non-coastal areas. Therefore, coastal belt areas of the 
metropolis Karachi including Site-I, II, and III are selected to acquire field data. The FLIR E40-
thermal imaging camera is used to capture the temperature-energy distributions produced in the 
operational ABCs insulation. A distance of 5 to 6 inches was maintained between the camera 
and ABC cable, to reduce the effect of atmospheric conditions. The “Lava” palette mode and a 
temperature range from 20 degrees to 120 degrees were selected before each measurement.  The 
data acquisition was performed at night, to avoid the effect of sunlight. The faulty cable at Site-
III was kept energized at the time of data acquisition. 

Table 3 presents the percentage degradation in active ABC cables using thermal imaging. 
Initially, the percentage degradation was recorded for 710 days with a 30-day interval. The CSI 
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scheme was employed to interpolate additional data points between the available states within 
the database. As a result, data for 1200 days with a 7-day interval is now available, resulting in 
171 samples per state from 1 to 1200 days. In Table 4, the estimated service life of ABC cable 
at Site-I using a thermal imaging scheme is presented (1709 days/4.282 years). Similarly, the 
percentage error between the total service life estimated using thermal imaging and the actual 
total service life of the faulty ABC cable at Site-III is presented in Table 4. In Figure 6, the 
percentage degradation plot is shown using the thermal imaging NDT historical database. 

Table 4: Rul Estimation of Active ABC Installed At Site-I 

Database 
RUL 

(𝐑𝐔) 

Prior Service Life 

in Days (𝐑𝐏) 

Estimated Total Service Life 

in Days (𝐋𝐄 = 𝐑𝐔 + 𝐑𝐏) 

% Error 

|
𝐋𝐅−𝐋𝐄

𝐋𝐄
| × 𝟏𝟎𝟎 

Thermal 
Imaging 

876 833 1709 (4.682 years) 13.458 

PF-Fusion 1072 833 1905 (5.2 years) 1.75 
Ultrasonic 
Listening 

1200 833 2033 (5.569 years) 4.623 

The Particle filter-based multi-sensor data fusion scheme using multiple measurement 
modes is applied to the actual Ultrasonic listening database and thermal imaging database. A 
total of 1000 samples per instant are used to implement the PF-based data fusion algorithm. The 
resulting estimated percentage degradation in the insulation of live ABC at Site-I is compared 
with the actual percentage degradation. This actual degradation growth in terms of percentage 
is obtained from field-acquired data using Ultrasonic probe listening and Thermal Imaging NDT 
measurements. In Table 4, the comparison of the actual service life (of faulty ABC at Site-III) 
and the estimated total service life of ABC cable at Site-I using multiple measurement modes is 
presented. Figure 6 presents a percentage degradation plot using a pf-based data fusion scheme. 
Additionally, the pf-based f-step prediction scheme is applied to estimate the future degradation 
growth rate in live ABC cable. 

The same number of samples are utilized for implementing the proposed PF-based data 
fusion scheme. The second-order polynomial measurement function has been chosen due to its 
ease of use and low complexity. To assess the algorithm's effectiveness, we put additive white 
Gaussian noise (AWGN) into the sensor measurement data. AWGN models various random 
processes [51], to take into consideration the effect of inserted noise, we estimated the Signal-

To-Noise Ratio (SNR), which can be described as the ratio of the derived signal power SP to the 

AWGN power NP: 

SNR =
SP

NP
=

σ2

Nrms
2

 (29) 

Here, σ and Nrms indicate the magnitudes of both the calculated signal and unwanted 
noise in RMS form, subsequently. For our case study, the SNR value is set to 10. In the present 

investigation, we have used 1000 samples (Ns) for each location. Since noise can degrade the 
performance of the PF algorithm, f-step error analysis is conducted using the actual and 
predicted states, measured in terms of root mean square error (RMSE). 
Results and Discussion: 

This section presents the evaluation of the performance of the proposed Particle Filter 
(PF)-based multi-sensor data fusion scheme for estimating the Remaining Useful Life (RUL) of 
live Aerial Bundled Cables (ABCs) in coastal areas such as the metropolis of Karachi.  
Discussion: 

Figure 6 represents percentage plots for damage increase in the thermal insulation of live 
ABC cable placed at Site I. The actual historical databases were made using Ultrasonic listening 
and Thermal imaging-based NDT measurements. The actual states using thermal imaging (i.e. 
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Actual States TI) were plotted up to 1200 days with an interval of 7 days. The estimated 

remaining service life (RU
TI) of ABC cable at Site-I using Thermal imaging data is 876 days, which 

starts from the first thermal imaging-based NDT measurement (i.e. 13th July 2018), and it is 
depicted in Figure 6. In this process, we have estimated the RUL of active ABC installed at Site-

I only. In Table 4, the total prior service life (RP) of ABC cable at Site-I is given, which is 833 

days. The total estimated service life (LE
TI) of ABC using a thermal imaging database is 1709 days 

(or 4.682 years). The actual service life of faulty (LF) ABC cable at Site-III is given (1939 days 

or 5.312 years). The estimated service life (LE
TI) of the active ABC cable at Site-I, determined 

using thermal imaging data, is compared to the actual service life of the faulty ABC cable at Site-
III in terms of percentage error. In Table 4, the obtained percentage error is given as 13.458%. 
This indicates that the remaining useful life of active ABCs installed in coastal areas, estimated 
using thermal imaging-based temperature-energy distributions, has an accuracy of 86.542%. 
Similarly, the actual states using Ultrasonic listening-based testing (i.e. Actual States UT) are 

plotted up to 1200 days with an interval of 7 days. The estimated remaining service life (RU
UT) of 

ABC cable at Site-I, using UT data is 1200 days, which starts from the first Ultrasonic listening-
based NDT measurement (i.e. 13th July 2018), as depicted in Figure 6. The total estimated service 

life (LE
UT) of ABC using the Ultrasonic listening database is 2033 days (or 5.569 years). The 

estimated service life (LE
UT) of active ABC at Site-I is compared with the actual service life of 

faulty (LF) ABC cable at Site-III in terms of percentage error. The obtained percentage error is 
4.623% (or 95.377% accuracy) and is tabulated in Table 4.  
The plot of degradation growth (in terms of percentage) in the insulation of active ABC at Site-
I using the proposed particle-filter-based multi-sensor data fusion scheme is also shown in 
Figure 6. A total 1000 number of samples were used for the implementation of the proposed 
scheme. The historical database of Ultrasonic listening and Thermal Imaging measurement 
methods were fused using Equations (17), (23), and (24) in the particle-filter implementation. In 
Figure 6, the actual states using the proposed PF-fusion scheme (i.e. Fused States) are plotted 

up to 1200 days with an interval of 7 days. The estimated remaining service life (RU
Fusion) of 

ABC cable using the PF-fusion scheme is 1072 days, which starts from the first thermal imaging-
based NDT measurement (i.e. 13th July 2018). In Table 4, the total estimated service life 

(LE
Fusion) of ABC using a PF-fusion scheme-based database is given 1905 days (or 5.2 years). 

The obtained percentage error using PF-based multi-sensor fusion is 1.75% (or 98.25% 
accuracy).  

 
Figure 6: Remaining service life estimation of operational LV ABCs, at SITE-I 
The AWGN is inserted into the measurement data as shown in Eq (29). The obtained 

results indicate that the proposed PF-based multi-sensor fusion scheme works well in the 
presence of noise. The use of multiple sensor measurement data improves the accuracy and 
reliability in RUL estimation of live ABCs installed in coastal areas. The percentage error in RUL 
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estimation of active ABC at Site-I is decreased when the data from multiple measurement modes 
are used (i.e. fusion of UT and TI-based NDT measurement data). 

Figures 7, 8, and 9 display f-step forecasting graphs of damage growth rate in functional 
ABC cable insulating material, expressed as percentages, set up at Site-I. These plots utilize data 
from PF-fusion, Ultrasonic listening, and Thermal imaging databases, respectively. Figure 7a 
demonstrates the one-step estimation plot. The entire process gets started by estimating the 
second state (i.e., the eighth day) employing the first state's complete information. The PF-based 
sensor fusion method predicts every single future state one step in advance. The graphical 
representation of predicted states begins with the second state (8th day), which is the first 
estimated state after the first state. The latest data generated by the 1-step prediction operation 
are used as a basis to determine the error margin that occurs between predicted and actual values. 
Equation (26) generates the particle weight for the subsequent prediction because the technique 
continuously improves. Equation (28) estimates the one-step prediction scheme's RMSE (via 
FD data), which is 0.0435. 

The next figure 7b depicts the two-step forecasting plot. The procedure entails 
predicting the second and third states (the eighth and fifteenth days) utilizing the initial day's 
state and measurement. The algorithm employs a two-step prediction process to forecast each 
pair of two future states. The graphical representation of predicted states begins with the third 
state (15th day), that is, the second estimated state compared to the first state. The outcomes 
achieved serve as a basis for establishing the margin of error. As the algorithm refines its 
predictions, Equation (27) calculates the weight of particles for the next prediction.  

The Root-Mean-Square Error (RMSE) of the 2-step forecasting scheme derived from 
Equation (28) is 0.3482. Table 5 shows the RMSE scores for 1—to 2-step forecast methods for 
the fused database of functional ABC cable set up at Site-I. The outcomes show that when 
measurement data is missing or there is less measurement data (without an update step), 
prediction results are error-prone. In other words, enhancing the step size of the f-step 
prediction-based PF technique results in much greater RMSE values. 

 

 
(a) 

 
(b) 
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Figure 7: Forecast of damage growth rate in the insulating layer of currently live ABC cable via 
fused data to number of days, at SITE-I, (a) 1-step prediction. (b) 2-step prediction. 

Figures 8(a) and 8(b) demonstrate f-step estimation plots (1-step to 2-step prediction 
graphs) of deterioration increase in working ABC cables thermal insulation, expressed as 
percentages, according to genuine SITE-I Ultrasonic listening-based field measurements. The 
process mirrors the one discussed in Figure. 7. Briefly, figure 8a shows the one-step estimation 
plot, starting with the second state (eighth day) estimated from the first state's complete data. 
The PF-based sensor fusion method predicts each future state one step ahead, beginning with 
the second (eighth day) state. The latest prediction data determines the error margin between 
predicted and actual values. 

Table 5: Root Mean Square Error of Actual and Predicted States of ABCs At Site-I 

 1-Step Prediction 2-Step Prediction 

FD Data 0.04345 0.3482 
UT Data 0.1162 0.6076 
TI Data 0.4345 1.0582 

 
(a) 

 
(b) 

Figure 8: Forecast of damage growth rate in the insulating layer of currently live ABC cable 
via Ultrasonic listening data in relation to number of days, at SITE-I, (a) 1-step prediction. (b) 

2-step prediction. 
Figure 8b illustrates the two-step forecasting plot, predicting the second and third states 

(eighth and fifteenth days) from the initial day's data. The algorithm forecasts each pair of future 
states, starting with the third state (fifteenth day). The outcomes obtained through the 1- to 2-
step estimation techniques are utilized to determine the error margin. The weight of particles in 
the subsequent estimation is obtained via Equations (26) and (27) for this 1-step and 2-step 
estimation procedures, respectively. The RMSE values have been calculated (via UT 
information), for both 1-step to 2-step forecasting methods employing Equation (28) are 0.1162 
and 0.6076, respectively, and are listed in Table 5. 
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Comparably Figures 9(a) and 9(b) show 1- to 2-step forecasting graphs of deterioration 
increase in ABC cable insulation utilizing thermal image analysis NDT-acquired field 
measurements. The root-mean-square error values (via TI data) for both 1-step and 2-step 
estimation methods via Equation (28) are 0.4345 and 1.0582, respectively, as shown in Table 5. 
This f-step PF-based estimation method works successfully even when the sensor information 
contains noise (SNR = 10 in this study). The outcomes demonstrate that raising the step size 
within the f-step prediction-based PF techniques causes more substantial RMSE values. This 
suggested PF-based f-step prediction setup can be applied to any kind of sealed electrical 
transmission cable to estimate the damage growth rates. 

 
(a) 

 
(b) 

Figure 9: Forecast of damage growth rate in the insulating layer of currently live ABC cable 

via thermal scanning data to number of days, at SITE-I, (a) 1-step prediction. (b) 2-step 

prediction. 

Conclusion: 
A Particle Filter (PF)-based data fusion scheme was proposed for estimating the 

Remaining Useful Life (RUL) of Live ABC cables installed in coastal areas. Results from multiple 
databases demonstrate the effectiveness of the proposed RUL estimation scheme. The data 
fusion technique assumes statistical independence among measurement processes, with 
Principal Component Analysis (PCA) used to validate this assumption. Results indicate 
improved accuracy in RUL estimation when data from multiple measurement modes are fused. 
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Furthermore, an f-step forecasting program incorporated into the PF-based predictive 
technique has been suggested to forecast subsequent deterioration increases in the thermal 
insulation of energized overhead electrical cables. The framework changes calculated states via 
measurements and forecasts future states utilizing the f-step forecasting approach. The scheme 
is validated using historical measurement data from energized ABC cables acquired in coastal 
areas, considering noise. The precision of expected outcomes was assessed via Step error 
evaluation methods in the form of Root-Mean-Square-Error (RMSE). The RMSEs in predicted 
results for SITE-I ranged from 0.0435 to 0.3482 (Fused data), 0.1162 to 0.6076 (UT data), and 
0.4345 to 1.0582 (TI data), respectively. 

In addition, the suggested method and setup have been fairly helpful for the occurrence 
of multiple additional damages in shielded overhead transmission lines that have low tension 
(LT) and high tension (HT). This versatility underscores the utility of both schemes. The PF-
based multi-sensor fusion scheme enhances accuracy and reliability in estimating the RUL of 
insulated active power cables. Comparably, the PF-based f-step forecasting framework correctly 
forecasts subsequent deterioration developments in the thermal insulation of ABC cables while 
in service. As a result, both strategies can be utilized for condition-based predictive servicing of 
overhead shielded wires. 
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