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Introduction/Importance of Study: In three-dimensional seismic interpretation, automatic 
horizon tracking is a critical productivity tool. However, it often fails in areas where horizons 
are not smooth and exhibit sharp discontinuities such as large spatial displacement or changes 
in reflector aliasing, horizon gradients, and signal character. Such failures require manual 
intervention, which increases the interpretation cycle time. 
Novelty Statement: In this research study, an automated horizon tracker is proposed that 
adapts to changes in reflector shape, strength, and geological variation as it traverses through 
the seismic data volume. 
Material and Method: A predefined spatial grid window steers across the horizon surface 
where its orientation changes with the variation in a pre-computed, high-resolution, dip volume. 
The method is further improved to incorporate tracking horizons across discontinuities i.e. 
faults. 
Result and Discussion: The proposed method is tested on three-dimensional seismic data with 
varying geological conditions and has demonstrated successful mapping of horizon surfaces and 
effective matching across major faults. 
Concluding Remarks: Our automatic procedure, by reducing the need for manual intervention 
during interpretation, has the potential to significantly improve productivity. 
Keywords: Horizon Surface, Spectral Decomposition, Fault Displacement, Cosemblance, 
Seismic. 

     

 
 

   

    
 

mailto:maryam.khan@cecos.edu.pk
https://doi.org/10.33411/ijist/202462688697


                                 International Journal of Innovations in Science & Technology 

June 2024|Vol 6 | Issue 2                                                                    Page |689 

Introduction: 
The productivity of 3D seismic interpretation can be enhanced by utilizing horizon 

tracking. However, this tool can encounter challenges at fault edges with large displacements or 
in noisy environments. Conventional tracking processes might only be feasible in areas with 
minimal noise. In such cases, offline editing and tracking are commonly used, but these methods 
are time-consuming and result in inconsistencies among interpreters. Recently, numerous 
studies focused on efficient and accurate tracking of horizons using machine learning and 
optimization techniques that include Artificial Neural Networks (ANN), hop-field networks, 
genetic algorithms, simulated annealing, convolutional neural networks, support vector 
machines, particle swarm optimization, graph-cuts, and local tensor voting algorithm etc 
[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15]. 

Luo et.al in [1] proposed tracking smooth horizons by using images of seismic data in a 
deep neural network. The process required training the deep neural network with known horizon 
surfaces to generate surfaces from unknown seismic data. Whereas, Mirza et al. [2] extracted 
wavelet transform-based features from seismic data and trained a Support Vector Machine 
(SVM). Ghaderi et al. in [3] utilized coherence metrics derived from Continuous Wavelet 
transform and employed dynamic programming to track the top and bottom boundaries of 
horizons across different geological conditions. Whereas Luo et al [4] directly applied dynamic 
programming to the seismic data and used machine learning to track horizons. Researchers 
employing the use of machine learning are required to label and train horizons across different 
geology, resulting in increased computational costs and are reliant on the resolution of the 
seismic data. 

Traversal based on horizon peaks were proposed in many research studies 
[10][11][12][13][14][15]. Huang et.al [10] used Hopfield networks to optimize the detection of 
horizon peaks. Hopfield networks are recurrent networks and incorporate previous seismic 
amplitudes while predicting the next horizon peak. The local horizon seismic peak amplitude is 
used to train the network. The algorithm performs well in generating smooth horizon surfaces 
but cannot adjust to changing geological structures. Patrick et al. in [11], proposed a technique 
using ANN for tracking horizons across discontinuities. In the research study, ANN consisting 
of three layers was trained to follow seismic amplitudes that are similar to each other. To 
determine the set of horizons with the highest average similarity, an optimized branch and 
bound algorithm was applied. However, using seismic reflector magnitude alone was not always 
practical in places with significant irregularities, particularly around faults, similar to the previous 
study [10]. 

A model-based method for measuring similarities of horizons across discontinuities 
(faults) in two-dimensional seismic data was proposed in [12]. The technique involved first 
extracting a clear horizon surface across both sides and then matching them by local seismic 
amplitude correlation along with geological experience. A Genetic Algorithm (GA) was utilized 
to find optimal solutions. This method was reliant on two-dimensional seismic data with 
geological constraints. The same algorithm was improved further in [13] by using ordinal 
measures instead of similarity measures, resulting in a 10% improvement. Despite 
improvements, the overall process was computationally expensive. 

In [14], Admasu et al. introduced a technique for matching horizons across 
discontinuities using continuous sample points. The approach involved inferring a geological 
model based on the correlated and shifted horizon surface. A multiresolution optimization 
search algorithm, utilizing simulated annealing, was employed to locate similar horizon surfaces. 
Similar to [12][13], the method was time-consuming and its performance was affected by the 
noise strength and another discrepancy in the seismic data. The research study by Phillipe in 
[15], proposed a three-step process for horizon tracking. The data management module, which 
is the first phase, includes determining the seismic reflector continuity, amplitude thickness, 
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orientation, color, and temporal relationships. In the second phase, the temporal correlations 
between the horizon reflectors are mapped and visualized. The next phase involves identifying 
different horizons by connecting nodes with comparable features and geologically correlating 
the horizon reflectors.  The ability to automatically detect geological objects relies on the 
parameters outlined in the ontology. However, the vast parameter space necessitates a significant 
amount of computation time, which may not be feasible in circumstances requiring faster 
solutions. 

In a recent study by Su et al. [16], a 3D horizon model is generated by computing the 
correlation coefficient for seismic traces.  The final horizon surface is produced via global 
diffusion after the optimal correlation linkage path has been determined using dynamic time 
warping. In [17], the researcher used seismic absolute phase for extracting horizon and 
compared the outcome of two types of phase unwrapping algorithms. In [18] deep learning 
techniques are used to condition seismic data, extract key horizons, and estimate relative 
geologic time. Whereas a knowledge distillation model in [19] is constructed using Long Short-
Term Memory and Convolutional Neural Networks for horizon tracking. A deep convolutional 
autoencoder is employed to learn the spatial correlation from seismic attributes for predicting 
and generating 3D horizon surfaces in a multi-attribute regression network [20]. Due to the 
intrinsic nature of the training parameters, the various approaches [16][17][18][19][20] require 
considerable computation time. 

To address the problem of automating the process of smooth and irregular horizon 
surfaces, particularly across faults, we proposed a jump-correlation solution by measuring Co-
semblance, introduced in [21]. The method utilizes a high-resolution based spectral 
decomposition technique known as Continuous Amplitude Phase Spectrum (CAPS), to 
efficiently track horizons. As opposed to other techniques, the proposed approach is less 
computationally expensive and does not require pre-training. The approach was tested on three-
dimensional seismic data of different geological settings. The methodology can reduce the need 
for manual tracking and has the potential to improve the accuracy and consistency of the 
resultant horizons. 
Objective and Novelty: 

The main contributions of the current research study are: 

• Using high-resolution spectral decomposition method namely CAPS on seismic dataset. 

• To devise a semi-automated process of horizon tracking with an adaptive amplitude 
threshold. 

• To devise an automated process of tracking across faults with cosemblance. 

• To study the impact of the algorithm on different geological settings such as steep 
anticlines, and various types of faults. 

Material and Methods: 
Dataset: 

In the current research study, three publicly available datasets [22][23][24] were used to 
examine the performance of the auto-steered tracker under different geological conditions. 
Seismic information from both the Teapot Dome [24] area in Natrona County, Wyoming, as 
shown in Figure 2(a), and F3 Block [22] from the Dutch offshore, shown in Figure 3(a), includes 
anticlines and normal faults. Penobscot located on Canada’s Scotian coast [23] consists of 
vertical faults with single and double displacement shown in Figure 4(a). The dataset shall be 
used to analyze the effectiveness of the proposed algorithm. 
Flow Diagram of Methodology: 

The automated three-dimensional horizon tracker is illustrated in Figure 1. The tracker 
requires access to seismic data and high-resolution-based dip volumes across both inline and 
crossline. The dip volumes are computed using CAPS. Conventional spectral decomposition 
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methods aim to increase the time-frequency precision by adjusting the window length. In CAPS, 
the resolution is regulated by averaging the response across different window lengths. Hence it 
provides both high time and high frequency resolution. The auto-tracker starts from a 
predefined seed point selected from the seismic plane and grows into a horizon surface. The 
seed point amplitude is used as a threshold and is adjusted by the tracker based on the geological 
variation. The tracker stops when the entire surface has been generated. The cosemblance 
algorithm activates when the dip is high, indicating the presence of a fault, and additional seed 
points are found for expanding the horizon surface further. The proposed approach is explained 
below in more detail. 

 
Figure 1: Process of an automated three-dimensional horizon tracker 

Seed Point Selection: 
The process begins by selecting a seed point from a seismic volume, which represents 

either a peak, trough, or zero-crossing. It is usually labeled as (x0, y0, T0 ), where ‘x0’ and ' y0' 
are inline and crossline indices, and 'T0' is the time/depth sample. Seed points are selected for 
horizons that are indicative of oil and gas reserves.  In the current methodology, seed points are 
selected in areas with a low signal-to-noise ratio. This results in an accurate, reliable horizon 
surface for reducing the risk of unsuccessful drilling and optimizes resource recovery.  
Data Dip Volumes: 

To analyze the seismic data, we used CAPS based spectral decomposition technique to 
obtain high-resolution Fourier coefficients from a short time-window signal. As suggested in 
[25], spatial gradients are extracted from the phase spectrum, to derive the dips. Unlike 
conventional methods that compute dips by cross-correlating adjacent seismic signals in the time 
domain, our approach utilized precomputed high-resolution-based dip volumes along inline 
dt⁄dx and crossline dt⁄dy directions, obtained through CAPS. The approach is beneficial in areas 
with unconformity and where the lag in cross-correlation lag is uncertain. Precomputed dip 
volumes are capable of guiding the horizon tracker to navigate areas with noise and track seismic 
reflectors with quick variations in dips. 
Semblance: 

To traverse the horizon, we computed semblance over a grid with a radius ‘r’. The grid 
is a symmetrical planar window centered on a seed point (data point). The grid, represented as 
T(x,y), is populated with seismic data points using Equation 1.  

T(x, y) =  (x − x0)
dt

dx
  +  (y − y0)

dt

dy
  + T0                        (1) 

If a seismic data point is similar to the seed point, it becomes a new seed point turning 
into a part of a horizon surface. The process continues till there is no valid seismic data point.  
The process takes more time as the grid size ‘r’ increases, however, it offers the benefit of 
allowing the horizon tracker to jump over noisy or less disturbed areas such as channels. The 
similarity metric, semblance is evaluated using Equation 2.  

Semblance =
Signal Power after Stack

N ∗ Signal Power before Stack
                   (2) 
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Adaptive Threshold Mechanism: 
A common algorithmic criterion in tracking horizons is to use an absolute seismic data-

point threshold. However, in areas of larger seismic data variations, the trackers often stop early. 
To overcome this limitation, an adaptive mechanism is proposed to tune the threshold. During 
grid computation, we also extracted the signal amplitudes and computed their mean and 
standard deviation over the grid. The deviation between the mean prospective seismic data 
points and the mean amplitude in the prior grid window is used to update the threshold value. 
This approach enables the algorithm to adjust the amplitude threshold as needed and track 
horizons more effectively in areas with varying reflection strengths. 
Co-Semblance: 

It is an extension of the conventional semblance measurement. Semblance computes the 
similarity of a signal over a spatial grid of continuous seismic data points while cosemblance is 
designed to measure the similarity across spatially separated seismic data- points, as is the case 
with horizons that are interrupted by a fault or a noisy area. Essentially, it is a form of semblance 
with jump correlation that can effectively handle irregular horizon surfaces. The proposed 
method is used at the horizon edges where the standard tracking approach is not effective. To 
compute the dip vectors, a small spatial grid is created using the already tracked time samples. 
This involves fitting a regression plane to compute inline and crossline dips (dt/dx and dt/dy). 
Nearly 50% of the predefined grid is filled with seismic magnitudes centered across the reflector 
along the dip. Based on the phase of the reflector and the dip data, across the fault, the seismic 
volume is systematically scanned to identify the remaining 50% of the grid. These two spatially 
separated grids are then fused and treated as a single continuous patch of seismic data. Co-
Semblance measurement is then computed for the grid using Equation 2. To calculate the power 
of the signal after stacking, first, we squared the sum of the signal samples taken along a path 
across N traces. Then, we added up the cosemblance values for each time window. For every 
phase point in the search volume, this procedure is carried out to determine the patch in the 
second half that maximizes Co-Semblance, thereby serving as the correlated horizon on the 
fault’s opposite side. However, the accuracy of Co-Semblance may be restricted due to the 
selection of the closest grid value instead of the exact magnitude along the dipping time plane. 
Additionally, it is not possible to remove the noise present, which can potentially impact the 
precision of the approach. 
Result and Analysis: 

In this study, the proposed algorithm is tested across two scenarios: (a) tracking steep 
anticlines and (b) tracking across faults. 
Tracking Steep-Anticline - Teapot Dome, Wyoming: 

  
Figure 2: (a) Seismic data of Teapot Dome, Wyoming. A seed-point is selected to track the 
horizon (b) Three-dimensional horizon surface generated by using the proposed algorithm 

with the selected seedpoint. 
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Seismic information from the Teapot Dome [24] area in Natrona County, Wyoming, has 

an anticline and normal faults, as shown in Figure 2(a). Figure 2(b) displays the horizon surface 

generated using the algorithm described in the paper. Although the tracker has been successfully 

guided along the horizon by the dip vector volume, there are still some gaps or cavities in the 

surface. Areas of stratigraphic discontinuities do not require the algorithm to continue the 

horizon laterally; instead, these spaces may need to be interpolated or filled manually. These gaps 

should be examined for geological consistency, as they might represent the channel boundaries 

or other regional characteristics. 

Tracking Steep-Anticline - F3 Block, Netherlands: 
Another seismic information from the Dutch offshore, accessed from [22], is shown in 

Figure 3(a), and it includes an anticline and normal faults. The horizon surface generated for this 
volume is shown in Figure 3(b), demonstrating the effectiveness of the algorithm across various 
geological settings. 

  
Figure 3: (a) F3 Block Netherland seismic data along with a tracked horizon surface (b) 

Three-dimensional horizon surface generated through the proposed algorithm 
Tracking Across Faults - Horizon-Fault, Single Displacement: 

A seismic segment of the Penobscot field where a planar horizon meets a fault plane is 
shown in Figure 4(a). For reference, the real horizon and the seed point are both marked. The 
tracked horizon and seismic volume are shown in Figure 4(b). The tracker steered around the 
significant displaced fault. The horizon surface generated through this algorithm is shown in 3D 
perspective image in Figure 4(c). 
Tracking Across Faults - Horizon-Fault, Double Displacement: 

In this scenario, Co-semblance algorithm is tested. Figure 5 displays a partly tracked 
horizon (H1) that ends at the edge of a fault in an inline portion of the Penobscot dataset, 
specifically at location T1 = 596 ms. To identify possible horizons, a search window is defined 
from time 468 ms to 716 ms, as indicated by the black vertical bar. 

   
Figure 4: (a) Seismic section of Penobscot dataset. The section indicates the presence of a 
fault. The seedpoint used in the algorithm is marked for reference.  (b) Three-dimensional 
horizon surface generated via the algorithm with the seismic data  (c) Three-dimensional 
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horizon surface generated via the algorithm without seismic data (for visualization purposes 
only). 

 
Figure 5: The 3D horizon surface that stopped at seismic data point T1. Spatial grid search 

was used across the fault using co-semblance algorithm. 

  
Figure 6: Cosemblance Measurement analysis (a) Time Domain measurements  (b) Time 

Domain measurements with zero mean 
Co-semblance algorithm is applied to seismic data with pre-defined settings, and their outputs 
are shown in Figure 6(a). Figure 6(a) displays a distinct peak at the real horizon's location, H1. 
A co-semblance value of 1 indicates a high similarity between spatial patches of windowed 
signals, while a value of 0 indicates a poor match. The same algorithm is also measured across a 
zero-mean grid window and results are shown in Figure 6(b). The presence of three visible peaks 
is observed, among which the one with the highest intensity corresponds to the accurate horizon 
point, H1. This peak's location is considered a starting point for the ongoing tracking of the 3D 
horizon surface. The resulting tracked horizon surface is depicted in three-dimensional form in 
Figure 7.  
Discussion: 

Figure 2(b) is the horizon surface generated of a steep-anticline in Teapot Dome, 
Wyoming by using the proposed algorithm. Although the tracker has been successfully guided 
along the horizon by the inline and crossline dip volumes, there are still some gaps or cavities in 
the surface. Caveats in horizon surfaces are due to several factors such as data contaminated by 
noise during acquisition, low resolution, the presence of complex faults and fractures, and 
incorrect or oversimplified velocity models. Areas of stratigraphic discontinuities do not require 
the algorithm to continue the horizon laterally; instead, these spaces may need to be interpolated 
or filled manually as a post-processing step. These gaps should be examined for geological 
consistency, as they might represent the channel boundaries or other regional characteristics. In 
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Figure 3(b) a smooth horizon surface with no caveats of a steep anticline in F3 Block, 
Netherland, is generated as the data does not include complex fractures or faults.  

 
Figure 7: Three-dimensional horizon surface generated via the Cosemblance algorithm 

Figure 4(b) displays the horizon surface in Penobscot, Canada, where a horizon is 
intersected by a fault plane. The horizon surface has some gaps or cavities that can be filled by 
using post-processing techniques such as interpolation. The algorithm was successful in steering 
its way through the seismic data, despite a huge fault encounter. Moreover, the same field also 
contains a fault that is spatially displaced. Cosemblance algorithm was triggered when the 
horizon surface stopped at the junction of the fault. Figure 7 shows that incorporating 
cosemblance in the process can effectively continue horizon surface generation. 

Assuming a seismic data with 40 inlines and 40 crosslines of moderate complexity and 
quality, a manual horizon extraction process approximately takes 1-2 hours in initially picking 
horizons, 4-6 hours in refinement to ensure continuity, 2-4 hours to validate and make 
corrections and 1 hour to finalize and report. The objective of the current study was to reduce 
the 4-6 hours in refinement and with the proposed algorithm the time is substantially reduced 
to minutes. The proposed algorithm was able to find horizon surfaces in steep anticlines and 
across faults with high confidence. 
Conclusion: 

In difficult terrain, conventional horizon tracking is a labor- and time-intensive 
procedure where several seed-points or horizon lines are needed to produce a horizon surface. 
Automated precise tracking of horizons plays a critical role in interpreting structural features in 
three dimensions. The process reduces the risk of unsuccessful drilling and optimizes resource 
recovery.  We suggest an automatic horizon tracker that selects the horizon with the least amount 
of human interaction while adjusting its parameters to the complexity of the geology. 

The Co-Semblance technique proposed presents an automated approach to horizon 
tracking that accommodates faults and other disruptions. The method entails a similarity metric 
across seismic signals using high-resolution dip volume. The methodology was tested on three-
dimensional seismic data that exhibited vertical and horizontal fault displacements. Our results 
showed that the zero-mean method was successful in jump-correlating the correct horizon. In 
our future work, we plan to examine the potential benefits of using amplitude-weighted 
frequency co-semblance to further improve the algorithm.  The algorithm shall also be tested 
on other geological conditions such as salt bodies, gas hydrates, and rift basins to name a few.  
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