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he efficient management of hospital resources and the optimization of patient care are 
critical tasks in healthcare systems worldwide. One of the key challenges in hospital 
management is predicting the duration of a patient's stay and accurately determining their 

location within the hospital, such as whether they are in the Intensive Care Unit (ICU) or the 
Operating Theater (OT). In this study, we address this problem statement by employing machine 
learning algorithms to predict both the stay duration and the location of patients within the 
hospital. The methods applied in this study include Random Forest, Support Vector Machine 
(SVM), and K-nearest neighbors (KNN) algorithms. These algorithms utilize patient 
demographic information such as age, weight, and severity of disease as features to predict the 
stay duration and location. The dataset used for this study consists of a revised dataset containing 
relevant patient information. Upon applying the machine learning algorithms, we obtained 
promising results. The Random Forest algorithm achieved the highest accuracy of 88.6% in 
predicting patient locations, followed by SVM with an accuracy of 60.8% and KNN with an 
accuracy of 58.1%. Additionally, Random Forest exhibited superior precision, recall, and F1-
scores for both ICU and OT classifications compared to SVM and KNN. The results obtained 
from this study have several practical implications and potential uses. Firstly, accurate 
predictions of patient stay duration and location can aid hospital administrators in resource 
allocation and planning, enabling them to efficiently manage bed occupancy and staffing levels. 
Additionally, healthcare providers can use these predictions to anticipate patient needs and 
allocate resources accordingly, thereby enhancing patient care and satisfaction. Moreover, the 
machine learning algorithms utilized in this study can be integrated into hospital information 
systems to automate the prediction process, providing real-time insights to healthcare 
professionals. In conclusion, the application of machine learning algorithms in predicting patient 
stay duration and location within the hospital offers promising results and valuable insights for 
hospital management. By leveraging patient demographic information and advanced predictive 
models, healthcare institutions can improve operational efficiency, enhance patient care delivery, 
and ultimately optimize resource utilization. 
Keywords: Hospital Management; Patient Stay Duration; Patient Location; Machine Learning 
Algorithms. 
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Introduction: 
To make sure that patients receive the best care, hospitals are paying more attention to 

how they manage their resources. They want to spend less money while still giving good care to 
patients. Hospital managers focus on planning by deciding what facilities and staff are needed 
to run the hospital well and meet patients' needs. There are different methods to predict how 
many patients will come to the hospital, how many beds will be needed, and how those beds 
will be used. The most important part of these methods is accurately guessing how long patients 
will stay in the hospital and understanding what things affect how long they stay. The stay in 
hospital (StayinHos) for a patient in a hospital refers to the number of days they spend in the 
hospital during one admission [1]. It's a key factor in understanding how much of the hospital's 
resources a patient consumes. StayinHos also helps us understand how patients move through 
different parts of the hospital, which is important for evaluating how well the hospital is running. 
StayinHos is often used to measure how much resources are being used, the cost of treatment, 
and how severe a patient's illness is [2][3]. Some studies have tried to group patients based on 
their medical conditions, assuming that each condition has a recommended stay in the hospital 
[4] However, StayinHos is a complicated concept influenced by many different factors, some of 
which may even compete with each other. These factors include a patient's characteristics, 
reason for admission, any complications that arise during their stay, and discharge plans. 
Additionally, the complexity of treatment can also impact StayinHos, often leading to longer 
stays than initially anticipated. Therefore, having a model that accurately predicts a patient's 
StayinHos during their hospital stay could help healthcare providers take proactive measures to 
prevent unnecessary extensions of stay. Many patients would prefer to receive care in the 
comfort of their own homes, especially for services like palliative care, if it's feasible and 
appropriate [5]. Moreover, there are potential risks for patients who stay in the hospital longer 
than necessary for active treatment. Remaining in the hospital when they could be discharged 
increases the chances of experiencing falls, acquiring infections specific to hospitals, and 
encountering medication errors. These risks are particularly concerning for patients who are fit 
to leave the hospital. Proactively managing discharge procedures starting early in the admission 
process and minimizing stay in the hospital can help prevent such complications [6][7]. Reducing 
the stay in hospital is desirable for healthcare providers for two main reasons. Firstly, it allows 
them to tailor the level of care to each patient's specific needs [8] Secondly, it contributes to 
more efficient management and allocation of healthcare resources. By minimizing the time each 
patient spends in the hospital, resources can be distributed more effectively among a larger 
number of patients [9][10][11]. 
Objective: 

The objective of the study is to develop and apply machine learning algorithms to predict 
the duration of a patient's stay and their location within the hospital, such as whether they are 
in the Intensive Care Unit (ICU) or the Operating Theater (OT). By leveraging patient 
demographic information, such as age, weight, and severity of disease, the study aims to provide 
accurate predictions that can assist hospital administrators and healthcare providers in efficiently 
managing resources, planning bed occupancy, and staffing levels, ultimately enhancing patient 
care and satisfaction. The study evaluates the performance of different machine learning 
algorithms, namely Random Forest, Support Vector Machine (SVM), and K-nearest neighbors 
(KNN), and finds that Random Forest achieves the highest accuracy and superior performance 
metrics in predicting patient locations. The results suggest practical applications for integrating 
these predictive models into hospital information systems to provide real-time insights and 
optimize resource utilization in healthcare institutions. 
Novelty: 

The novelty of the method described in the study lies in its comprehensive and 
integrated approach to improving hospital management through machine learning. By 
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employing a comparative analysis of multiple machine learning algorithms, including Random 
Forest, Support Vector Machine, and K-nearest neighbors, the study evaluates their 
effectiveness in predicting both the duration of a patient's stay and their specific location within 
the hospital, such as the ICU or OT. This dual focus on predicting both stay duration and 
location is particularly innovative, as it provides a more holistic solution to managing hospital 
resources. The study utilizes patient demographic information, such as age, weight, and severity 
of disease, as predictive features, highlighting the significant role these factors play in patient 
outcomes and demonstrating their effective integration into predictive models. Notably, the 
Random Forest algorithm achieved a high accuracy of 88.6% in predicting patient locations, 
outperforming SVM and KNN, and exhibited superior precision, recall, and F1 scores for ICU 
and OT classifications. The practical implications of these findings are substantial, as accurate 
predictions can aid hospital administrators in resource allocation and planning, optimizing bed 
occupancy and staffing levels. Furthermore, the potential for real-time integration of these 
predictive models into hospital information systems represents a significant advancement 
toward automating and enhancing hospital management processes. Overall, this method 
promises to improve operational efficiency and patient care delivery by leveraging advanced 
predictive models and patient demographic information, ultimately optimizing resource 
utilization in healthcare institutions. 
Flow of Study: 

Here is the flow of the study and it comprises these steps, namely, Data Collection, Data 
Preprocessing, Feature Selection, Model Selection, Model Training, Model Evaluation, 
Comparison and Analysis, Implementation and Integration, and Practical Implications. 
Approaches for Stay in Hospital of Patients: 

As healthcare costs continue to rise, accurately predicting how long a patient will stay in 
the hospital due to a serious illness or disease is becoming increasingly crucial for planning and 
evaluating healthcare interventions [12]. These costs can escalate due to various factors, such as 
the range of medications and treatments provided, staffing requirements, and the use of 
specialized equipment, in addition to the length of a patient's stay. Swiftly identifying patients 
who are at a higher risk of experiencing a prolonged hospital stay or death can help significantly 
reduce these unavoidable costs. It can also enhance patient care and decrease the likelihood of 
patients experiencing further healthcare-related complications [13]. A significant portion of 
research on StayinHos has mainly focused on identifying the factors that strongly impact 
StayinHos in various settings rather than directly predicting StayinHos outcomes [14][15]. 
There's been limited exploration using machine learning models that directly address StayinHos. 
Present machine learning studies typically concentrate on specific patient groups and medical 
conditions [16][17]. However, there's growing interest in innovative deep-learning methods, 
especially with the increasing use of Electronic Health Records (EHRs) in healthcare settings 
[18][19]. This interest has led to the creation of advanced predictive modeling techniques aiming 
to enhance healthcare quality and provide more personalized care. These models are applied 
across various clinical prediction tasks, including predicting StayinHos [20][21]. 

It is noteworthy that a considerable amount of scholarly literature has been dedicated to 
addressing the challenges associated with predicting both the length of StayinHos and mortality 
rates within hospital settings. Prediction models for these issues commonly utilize conventional 
arithmetic methods, such as mean and median calculations, alongside statistical techniques like 
regression analysis [22]. Furthermore, data mining techniques have emerged as valuable tools in 
these domains. Hospitals face ongoing pressures to improve patient care quality while 
simultaneously reducing costs, particularly within intensive care units (ICUs) where care needs 
are intricate and expenses are heightened. Evaluating care efficiency within ICUs often entails 
assessing hospital mortality rates and StayinHos durations. Consequently, many of the predictive 
models developed for StayinHos estimation are equally applicable to forecasting mortality 
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outcomes [23]. This section aims to provide an overview and comprehensive survey of the 
diverse analytical approaches documented in the literature about StayinHos prediction over 
recent decades. 
Research-Based Techniques for Stay in Hospital of Patients: 

A commonly employed metric within the realm of StayinHos prediction is the average 
StayinHos, often computed straightforwardly by determining the mean value. This average 
duration of StayinHos is typically derived by dividing the total number of in-patient days by the 
count of patient admissions sharing the same diagnosis-related group classification. However, 
it's important to note that this metric may inadequately capture the underlying data distribution, 
particularly when dealing with highly skewed data [24]. Despite its limitations, the average 
StayinHos finds widespread use in basic planning and hospital capacity management due to its 
simplicity. Models formulated based on this metric often adopt deterministic approaches and 
rely heavily on spreadsheet-based calculations [25]. Nevertheless, given the inherently complex 
and uncertain nature of hospital environments, simplistic methodologies may prove less 
effective [26]. Dependence solely on the average StayinHos can be misleading, especially in 
scenarios where the data distribution deviates from normality. Models exclusively built upon the 
average StayinHos may fail to accurately represent the patient population, potentially leading to 
erroneous conclusions [27]. To tackle this challenge, operational strategies have been devised to 
enhance patient flow modeling and StayinHos prediction. In the ensuing sections, we delve into 
four operational modeling techniques utilized for StayinHos prediction, elucidating their 
respective applications. 
Computational Modelling 

Compartmental systems, as defined by literature [28], consist of a finite number of 
homogeneous, well-mixed, lumped subsystems referred to as compartments. These models 
come in various forms, encompassing linear, deterministic, non-linear, or stochastic 
representations, contingent upon the specific process they aim to emulate. Over recent decades, 
compartmental models have found application in studying patient movement across different 
hospital systems. Notably, in a study cited in [29], it was observed that StayinHos durations 
within geriatric departments couldn't be accurately encapsulated by a singular metric like the 
mean value. Instead, the StayinHos distribution exhibited characteristics akin to a mixed 
exponential distribution. Here, an exponential distribution delineates the probability distribution 
of time intervals between events, while a mixed distribution portrays the probability distribution 
of a random variable derived from a collection of other random variables [30]. 

The model described in [31] provides a mechanism for estimating the count of acute 
and long-stay patients, along with predicting their expected hospital stays. By forecasting both 
the average StayinHos and the average number of patients in each state, this two-compartment 
model aids healthcare professionals in effectively managing bed utilization within the geriatric 
department. It offers valuable insights into patient flow dynamics within the department and 
forecasts the anticipated StayinHos. Building upon this framework, subsequent research in [31] 
extended the model's capabilities by introducing a third compartment dedicated to rehabilitative 
care, thereby enriching the representation of patient flow dynamics within the hospital setting. 

Compartmental modeling strategies rely on a daily census, where parameters 
characterizing fluctuating flow rates are deduced from occupancy profile data collected over a 
single day [32]. Depending on the presence of one, two, or three components in the best-fit 
mixed exponential equation, corresponding statistics for one, two, or three compartments are 
generated. This modeling technique has found successful applications across various healthcare 
domains, as evidenced by studies such as those cited in [33] and [34]. Notably, in [35], researchers 
examined a one-night bed occupancy census encompassing data from 6,068 patients across 
seven distinct provider groups to model a comprehensive health and social care system, 
encompassing geriatric hospital beds, psychiatry beds, and nursing homes. Compartmental 
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modeling stands out as a well-established and mathematically rigorous methodology consistently 
employed to simulate patient flow dynamics within healthcare systems. Nonetheless, the 
predominant focus of compartmental modeling approaches has often been directed toward 
specific patient cohorts, such as geriatric patients. The inclination towards specializing 
compartmental modeling primarily for specific patient groups, such as geriatric patients, has 
impeded the widespread adoption of these models by both researchers delving into StayinHos 
studies and hospital decision-makers. However, with the recent surge in interest in "big data" 
and the increasing focus on delving into electronic health records, it is conceivable that the 
utilization of compartmental modeling might wane, giving way to more contemporary machine 
learning techniques like artificial neural networks. A notable limitation of compartmental models 
lies in their reliance on a solitary day's census of beds, rendering them highly sensitive to the 
specific day on which the census was conducted. Consequently, the StayinHos predictions 
derived from these models might struggle to generalize well over prolonged durations. 
Moreover, compartmental models overlook cyclical patterns in admissions and discharges, 
failing to incorporate seasonal variations in the data. 
Simulation Modelling: 

Expanding compartmental models can entail adopting a queueing system perspective, 
which involves utilizing metrics like "time in the system" and "time spent waiting in a queue" to 
gauge performance. By employing queueing systems or simulations, hospital planners can 
evaluate and strategize for various scenarios, thereby alleviating bottlenecks within the system. 
Discrete event simulation (DES) serves as a prominent approach in this regard, wherein the 
system is modeled as it progresses through time, with state variables undergoing instantaneous 
changes at discrete events. These events signify occurrences capable of altering the system's 
state, and DES has garnered extensive usage in modeling healthcare systems. In general, patient 
simulation systems comprise fundamental components aimed at replicating real-world hospital 
scenarios: 
 Activities: These encompass the operations and tasks responsible for transforming 

entities within the system. 
 Entities: These represent the elements of the simulated system, such as patients 

undergoing treatment. 
 Overall State: This denotes a comprehensive collection of features describing the entire 

system's current status. 
The concept of such systems was initially introduced in a study documented in [36], 

where a simulation model developed using discrete event simulation (DES) was utilized for 
numerical evaluations. This simulation model featured three compartments: acute, rehabilitation, 
and long-stay, which were constructed and validated against results obtained from established 
compartmental models. A significant finding from this research was the identification of a "long 
warming up period," during which continuous simulations were conducted until the system 
reached a steady state. This observation suggested that any modifications made to the system, 
such as adjusting the number of beds or altering patient StayinHos, required an extended period 
for the model to stabilize. By manipulating policy parameters like the overall level of emptiness, 
number of available beds, ward conversion rates, and patient admissions, the simulation model 
could assist hospital planners in assessing the effectiveness of a geriatric department. 

In essence, simulation modeling offers hospital managers not only the ability to test 
changes within a system but also greater flexibility in comprehending the system under 
investigation. This comprehension can be further enriched by incorporating external 
compartments such as independent homes and support homes into the basic model 
configuration, as suggested in [37]. Furthermore, the basic model can be adapted to address 
potential scenarios such as a winter bed crisis in English hospitals, as explored in [38]. However, 
the practical application of these models in real-world settings often necessitates a strong 
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operational focus and the collection of substantial volumes of data. Additionally, simulation 
models tend to apply only to the specific environments in which they are deployed, lacking 
generalizability. While they can provide valuable insights, the extensive data requirements and 
development costs associated with simulation models may pose challenges to their widespread 
adoption by clinicians. 
Markov Modelling: 

Markov and semi-Markov models are constructed under the premise that patient 
subgroups exhibit homogeneity, resulting in events occurring at regular intervals in time. These 
modeling techniques are instrumental in comprehending patient flow and StayinHos, particularly 
in larger population cohorts where the assumptions of Markov models hold [39]. Markov 
models operate on the premise of probabilistic patient behavior within healthcare systems, thus 
providing a realistic depiction of real-world healthcare dynamics. A continuous time stochastic 
model delineating patient flow is expounded upon in [40]. This model constitutes a two-stage 
continuous time Markov model elucidating the progression of geriatric patients through geriatric 
hospitals. The compartments in the model signify distinct states, and the probabilities governing 
patient transitions between these states can be quantified. Patients initially admitted to an acute 
stay state may transition to a long-stay state or depart the hospital entirely through discharge or 
death states, akin to the compartments in compartmental modeling. 

The work delineated in [40] builds upon that of [30], which investigated the StayinHos 
distribution of patients with a given census date utilizing a mixed exponential distribution. 
However, the model presented in [40] is deterministic and discrete-time valued, facilitating the 
estimation of the number of patients admitted to acute and long-stay states and their anticipated 
StayinHos. In contrast, [40] extends this methodology to continuous time, enabling the 
computation of variances and covariances for acute and long-stay patients. Two distinct models 
are formulated: the first assumes a waiting list of patients with a constant overall patient count, 
while the second model portrays a scenario featuring random admissions. An augmentation of 
the stochastic Markov model mentioned earlier was devised to accommodate three stages [41]. 
This extension incorporates a cost element for each stage, allowing the model to support health 
and social services for the elderly while factoring in associated costs.  

 
Figure 1: Patient’s Journey [42]. 

Expanding on previous research, [43] employs a comparable methodology to a four-
compartment model outlined in [44], where the four stages delineate acute, long-stay, 
community, or deceased statuses. This model facilitates the estimation of the anticipated patient 
count in each stage at any given time for multiple patients admitted on the same day. Subsequent 
enhancements to these models were documented in [45], which introduced six stages aiming to 
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investigate the intrinsic interactions between hospital medical services and community care. 
Figure 1 illustrates the trajectory of patients through these stages. The StayinHos in hospitals, 
particularly in intensive care units (ICUs) and operating theaters, is a critical factor affecting 
patient outcomes, healthcare resource utilization, and overall hospital efficiency. The severity of 
diseases often correlates with prolonged hospital stays, posing challenges for healthcare 
providers in managing patient flow, allocating resources, and optimizing care delivery. 
Additionally, the dynamic nature of patient conditions and the unpredictable nature of medical 
emergencies further complicate the process of predicting and managing StayinHos. 
The major contributions of our work are given below,  

1. We developed an AI-based approach for predicting the stay of patients in hospitals and 
patients in ICU and OT.  

2. The proposed method effectively predicted the stay of patients in hospitals and patients 
in ICU and OT.   

3. Comparative analysis with different AI-based approaches demonstrated the efficient 
capability of our technique in predicting the stay of patients in hospitals and patients in 
ICU and OT. 

We prepared the remaining paper for the following purposes: Section 2 delves into the 
proposed working system, Section 3 provides detailed information on the experimental 
evaluation, and lastly, Section 4 draws conclusions from this work. 
Proposed System: 

 
Figure 2: Proposed Working System. 

This work aims to predict the stay in hospital of patients and the location such as ICU 
and OT. The detailed working mechanism is illustrated in Figure 2.  
Random Forest Regression: 

Decision Trees serve dual purposes, addressing both regression and classification 
challenges. Structured like branching trees, they visually depict decision paths, hence their name. 
In regression scenarios, they commence at the tree's root, traversing splits dictated by variable 
outcomes until reaching a leaf node, where the final result is derived. Figure 3 is an illustrative 
example of a decision tree. 

In this basic decision tree diagram, the process begins with Var_1 and proceeds to split 
based on predetermined criteria. If the condition is met ('yes'), the tree follows one path; if not 
('no'), it takes the alternative route. This cycle continues until the tree reaches a leaf node, where 
the outcome is determined. In the provided example, the placeholders a, b, c, or d can represent 
any numeric or categorical values. Ensemble learning involves employing multiple models trained 
on the same dataset and aggregating their predictions to achieve a more robust predictive or 
classification outcome. The premise behind ensemble learning is to capitalize on the diversity 
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among models, such as decision trees so that their errors are independent and vary from one 
model to another. 

 
Figure 3: Decision Tree [46] 

Bootstrapping refers to the technique of randomly sampling subsets of a dataset across 
multiple iterations and variable selections. These sampled results are then aggregated or averaged 
to enhance the robustness of the outcome. Bootstrapping serves as a practical example of an 
ensemble model in action. The bootstrapping Random Forest algorithm integrates ensemble 
learning principles with the decision tree framework. It generates multiple decision trees by 
randomly sampling from the dataset, then combines their predictions through averaging to 
produce a consolidated result, which typically yields robust predictions or classifications. In the 
Random Forest Regression Model, the sklearn module was utilized for training our random forest 
regression model, specifically the Random Forest Regressor function. The Random Forest 
Regressor documentation showcased many different parameters that are selected for our model. 
Some of the important parameters are highlighted below: 

 n_estimators: This parameter specifies the number of decision trees that will be included 
in the random forest model. Increasing the number of estimators typically leads to better 
performance, but it also increases computational complexity and training time. 

 criterion: This parameter allows you to choose the criterion or StayinHoss function used 
to measure the quality of a split in the decision tree. The two main options are Mean 
Squared Error (MSE) and Mean Absolute Error (MAE). The default value is MSE, which 
is often suitable for regression tasks. 

 max_depth: This parameter controls the maximum depth of each decision tree in the 
forest. A deeper tree can capture more complex relationships in the data, but it also 
increases the risk of overfitting. Setting an appropriate value for max_depth helps prevent 
overfitting and improves generalization to unseen data. 

 max_features: This parameter specifies the maximum number of features that the model 
will consider when looking for the best split at each node of the decision tree. By limiting 
the number of features, you can reduce the computational burden and prevent the model 
from focusing too much on noisy or irrelevant features. 

 bootstrap: When set to True (the default), this parameter enables bootstrapping, a 
resampling technique where random samples are drawn with replacement from the 
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training dataset. Bootstrapping helps create diverse subsets of data for each tree, 
contributing to the randomness and robustness of the random forest model. 

 max_samples: This parameter is relevant only when bootstrap is set to True. It specifies 
the maximum number of samples (or proportion of samples) to be drawn for training 
each tree. Controlling the size of the bootstrap samples can influence the diversity of the 
trees and the overall performance of the random forest. 

 min_samples_split: This parameter determines the minimum number of samples 
required to split an internal node in a decision tree. If the number of samples at a node is 
less than min_samples_split, the node will not be split, and it will become a leaf node. 
Setting a higher value for min_samples_split can help prevent the model from overfitting 
by imposing constraints on the minimum number of samples required for a split, thereby 
promoting simpler and more generalized trees. 

 min_samples_leaf: This parameter specifies the minimum number of samples required 
to be at a leaf node. In other words, a split will only be considered if it leaves at least 
min_samples_leaf training samples in each of the left and right branches. Similar to 
min_samples_split, setting a higher value for min_samples_leaf helps prevent overfitting 
by controlling the minimum size of leaf nodes. It encourages the model to create larger, 
more robust branches. 

 n_jobs: This parameter controls the number of CPU cores used when fitting the random 
forest model. By default, n_jobs is set to 1, meaning that the model will only use a single 
CPU core for training. However, you can set n_jobs to -1 to utilize all available CPU 
cores, speeding up the training process significantly, especially for large datasets. Using 
multiple CPU cores allows for parallelization of computations, resulting in faster model 
fitting and improved efficiency. 
Each decision tree in a Random Forest splits the data using the best split among a random 

subset of the features at each node. For regression, the decision at each node is typically made by 
minimizing the Mean Squared Error (MSE) or another relevant metric. The MSE for a split is 
calculated as: 

MSE =
1

N
∑ (yi − yi)2

n

k=0
  (3.1) 

Where: 

 N is the number of data points in the subset, 

 yi is the actual value, 

  ỳ ỳỳi is the predicted value for the data point. 
For regression, the Random Forest algorithm's prediction (Ỳ) for a given input vector is 

the average of the predictions from all the individual trees in the forest: 

Ỳ =
1

T
∑ ỳ(x)

T

t=1
  (3.2) 

Where: 
 T is the total number of trees in the forest, 

 ỳȝ(x) is the prediction for the input x from the tree. 
Dataset Analysis: 

The study employed various performance metrics to evaluate the effectiveness of the 
proposed approach. These included roots mean square error (RMSE), mean square error (MSE), 
R-squared, accuracy, precision, recall, and F1-score. The subsequent sections delve into a detailed 
analysis of our experimental results, featuring insights from confusion matrix analysis and 
performance comparisons. 
Dataset Details: 
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The dataset contains information about patients admitted to a hospital named Surgi Care 
Hospital, Aziz Bhatti Town Sargodha. It includes the following columns: 
 sr#: This column represents a serial number or identifier assigned to each record in the 

dataset. It serves as a unique identifier for referencing individual entries. 
 Patient Number: This column contains unique identifiers for each patient admitted to 

the hospital. Each patient is assigned a distinct patient number to differentiate them from 
others in the dataset. 

 Patient Name: This column stores the names of the patients admitted to the hospital. It 
provides information about the identity of each patient. 

 Gender: This column records the gender of each patient, indicating whether they are 
male or female. Gender is a categorical variable with two possible values: "Male" or 
"Female". 

 Age: This column specifies the age of each patient at the time of admission to the 
hospital. Age is typically recorded in years and represents a continuous numerical variable. 

 Weight: This column denotes the weight of each patient upon admission to the hospital. 
Weight is usually measured in kilograms or pounds and represents a continuous numerical 
variable. 

 Date of Admission: This column indicates the date when each patient was admitted to 
the hospital. It provides temporal information about the timing of admissions. 

 Hospital Name: This column identifies the name or designation of the hospital where 
each patient was admitted. It helps in categorizing patients based on the hospital they 
were treated in. 

 Disease: This column specifies the disease or medical condition for which each patient 
was admitted to the hospital. It provides information about the primary reason for 
hospitalization. 

 Severity of the Disease: This column quantifies the severity level or extent of the disease 
or medical condition affecting each patient. It helps in assessing the seriousness of the 
patient's health condition. 

 Stay in Hospital: This column indicates the duration of each patient's stay in the hospital 
following admission. It provides information about the length of hospitalization, typically 
measured in days or weeks. 

 Location: This column denotes the specific location within the hospital where each 
patient is admitted. It categorizes patients based on their placement in different areas of 
the hospital, such as wards, intensive care units (ICUs), or operating theaters (OTs). 
These columns collectively provide comprehensive information about patients admitted 

to hospitals, including their demographics, medical history, hospitalization details, and current 
health status. Analyzing this dataset can help in understanding patient demographics, disease 
patterns, treatment outcomes, and resource utilization within healthcare facilities. The target 
variable for the first prediction task (stay in hospital prediction) is Stay in Hospital, while the 
target variable for the second prediction task (location prediction) is Location. 
Results and Discussion: 

This section has the details of the approaches for the prediction of StayinHos and the 
location such as ICU or OT. The results for each using different algorithms are discussed in 
subsequent sections. 
Random Forest Regression for StayinHos: 
Data Used: 

The data utilized in this analysis comprises information about patients' demographics, 
clinical characteristics, and the duration of their hospital stay. Stored in a CSV file, the dataset 
contains features such as age, weight, severity of the disease, and the duration of hospitalization. 
These attributes serve as inputs for predicting the stay duration category. The dataset likely 
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originates from a healthcare setting where patient records are maintained for medical and 
administrative purposes. By leveraging this data, healthcare providers can gain insights into 
factors influencing patient length of stay, enabling them to better allocate resources and improve 
operational efficiency. 
Approach: 

The approach begins with loading and preprocessing the dataset, involving steps such as 
converting categorical variables into numerical form using one-hot encoding and splitting the 
data into training and testing sets. Subsequently, a Random Forest Classifier model is trained 
using the training data. Once trained, the model is used to predict the stay duration category for 
the test set. Performance metrics including accuracy, R-squared, Mean Squared Error (MSE), and 
Root Mean Squared Error (RMSE) are computed to evaluate the model's efficacy. Additionally, 
visualizations such as confusion matrices, bar plots, and histograms provide further insights into 
the model's performance and the distribution of predicted values. 
Results Obtained: 

The analysis yields promising results, indicating that the Random Forest Classifier model 
accurately predicts the stay duration categories for the patients in the test set. The high accuracy 
score of 95.375% suggests that the model correctly identifies the stay duration category for the 
majority of patients. Similarly, the R-squared value of 0.944 indicates a strong correlation between 
the predicted and actual stay durations. Furthermore, the low MSE and RMSE values of 1.13375 
and approximately 1.065, respectively, imply that the model's predictions of StayinHos align with 
the actual stay durations. 

Several factors contribute to the obtained results. Firstly, the Random Forest Classifier is 
a robust ensemble learning algorithm capable of capturing complex relationships between input 
features and target variables. Additionally, the dataset likely contains informative features that are 
highly correlated with the target variable (stay duration), enabling the model to make accurate 
predictions. Moreover, the preprocessing steps, such as one-hot encoding and splitting the data 
into training and testing sets, help ensure that the model is trained and evaluated appropriately, 
leading to reliable results. 
Uses of the Method and Results: 

The method and results have several practical applications in the healthcare domain. 
Healthcare providers can leverage the trained model to predict the expected duration of a patient's 
hospital stay based on their demographic and clinical characteristics. By accurately forecasting 
stay durations, hospitals can optimize resource allocation, streamline patient flow, and improve 
overall operational efficiency. Additionally, insights gleaned from the analysis can inform 
decision-making processes and aid in the development of strategies to enhance patient care, 
resource management, and hospital operations. Overall, the method and results offer valuable 
tools for improving healthcare delivery and patient outcomes. The following three figures show 
the results obtained using the random forest for stay in hospital. 
Comparison of All Approaches: 

The three methods employed for predicting stay durations in hospitals exhibit varying 
degrees of performance and predictive accuracy. The Random Forest algorithm yielded the most 
favorable results, achieving a high accuracy of 95.375%, accompanied by a robust R-squared value 
of 0.94446, indicating strong predictive capability. Additionally, the Random Forest model 
demonstrated low mean squared error (MSE) and root mean squared error (RMSE), suggesting 
precise predictions with minimal deviation from the actual values. In contrast, the Support Vector 
Regression (SVR) model showed comparatively poorer performance, with a significantly lower 
R-squared value of 0.04968 and substantially higher MSE and RMSE values, indicating a 
suboptimal fit to the data and less accurate predictions. Similarly, the K Nearest Neighbors 
(KNN) algorithm exhibited moderate accuracy at 54.75% but yielded a negative R-squared value 
and notably high MSE and RMSE values, suggesting limited predictive power and potentially 
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inadequate model fitting. Overall, the Random Forest model emerges as the preferred choice for 
stay duration prediction due to its superior accuracy and robust performance metrics compared 
to SVR and KNN. Table 1 shows the performance of all approaches for StayinHos. 

Table 1: Performance of All the Approaches for StayinHos. 

Method Results Key Observations 

Random 
Forest 

Accuracy: 0.95375 <br> R-
squared: 0.94446 <br> MSE: 
1.13375 <br> RMSE: 1.06478 

High accuracy and R-squared 
<br> Low MSE and RMSE 

Support 
Vector 

R-squared: 0.04968 <br> MSE: 
19.40081 <br> RMSE: 4.40463 

Poor predictive performance 
<br> High MSE and RMSE 

K Nearest 
Neighbors 

Accuracy: 0.5475 <br> R-
squared: -0.36548 <br> MSE: 
27.87625 <br> RMSE: 5.27980 

Moderate accuracy <br> 
Poor predictive performance 

Random Forest for Location Prediction: 
Data Used: 

The data utilized in this method comprises features such as Age, Weight, Disease, Severity 
of the Disease, and Stay in Hospital, with the target variable being the Location. These features 
are extracted from the provided dataset stored in a CSV file, containing information relevant to 
hospital admissions. 
Approach: 

The approach involves employing a Random Forest Classifier to predict the location of 
patients within the hospital premises based on the provided features. The dataset is preprocessed 
by converting categorical variables into dummy/indicator variables to facilitate model training. 
Subsequently, the dataset is split into training and test sets using the train_test_split function from 
the sci-kit-learn library. The Random Forest Classifier is then initialized, trained on the training 
data, and used to predict the location of patients in the test set. Model evaluation is performed 
using accuracy score, confusion matrix, and classification report metrics. 
Results Obtained: 

The Random Forest Classifier achieved an accuracy of 88.625% in predicting the location 
of patients within the hospital. The classification report provides additional insights into the 
model's performance, indicating high precision, recall, and F1-score for both ICU and OT 
locations. The confusion matrix visually represents the model's performance, showcasing the 
number of correct and incorrect predictions for each class. The reported accuracy of 88.625% 
suggests that the Random Forest Classifier model performed reasonably well in predicting the 
location of patients within the hospital. This means that the model accurately classified 
approximately 89 out of every 100 instances. Looking at the classification report, we observe that 
the model performed better in identifying the 'OT' (Operating Theater) locations, with a precision 
of 92%, meaning that when it predicted a patient to be in the OT, it was correct 92% of the time. 
The recall for 'OT' is also high at 89%, indicating that the model correctly identified 89% of all 
OT instances. Similarly, for the 'ICU' (Intensive Care Unit), the precision and recall values are 
83% and 88%, respectively. The F1-score, which is the harmonic mean of precision and recall, is 
0.86 for 'ICU' and 0.90 for 'OT'. The weighted average F1-score of 0.89 indicates a good overall 
balance between precision and recall across both classes. These results suggest that the model 
effectively captures the underlying patterns in the data and can reliably predict the location of 
patients based on the provided features. The macro average precision, recall, and F1-score are all 
around 0.88, indicating a balanced performance across both classes. Overall, the model's ability 
to accurately classify patient locations can be valuable for hospital management in optimizing 
resource allocation and improving patient care efficiency. 

The high accuracy and performance metrics obtained can be attributed to the 
effectiveness of the Random Forest Classifier in handling complex datasets with multiple 
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features. Random Forests are known for their ability to handle both categorical and numerical 
data, handle missing values, and mitigate overfitting. Additionally, the preprocessing steps, 
including converting categorical variables and splitting the dataset into training and test sets, 
contribute to the model's robustness and generalization capabilities. 
Uses of the Method and Results: 

The Random Forest Classifier for location prediction in hospital settings has several 
practical applications. It can assist hospital administrators and staff in efficiently managing patient 
flow, resource allocation, and bed occupancy. By accurately predicting patient locations, hospitals 
can optimize staff deployment, streamline logistics, and ensure timely care delivery. Moreover, 
the insights gained from the classification report can inform decision-making processes, helping 
healthcare providers improve operational efficiency and patient outcomes. The method's high 
accuracy and comprehensive evaluation metrics make it a valuable tool for enhancing hospital 
management and patient care practices. 
Comparison of Approaches for Location Prediction: 

Table 2 presents a detailed comparison of the performance metrics for three different 
machine learning algorithms - Random Forest, Support Vector Machine (SVM), and K-Nearest 
Neighbors (KNN) - in predicting the location of patients within a hospital. Starting with accuracy, 
Random Forest demonstrates the highest accuracy of 88.6%, indicating its ability to correctly 
classify patient locations. In contrast, SVM and KNN exhibit lower accuracies at 60.8% and 
58.1%, respectively. Moving to precision, Random Forest achieves a precision of 0.83 for ICU 
and 0.92 for OT, suggesting that when it predicts a patient to be in the ICU or OT, it is correct 
approximately 83% and 92% of the time, respectively. On the other hand, KNN shows lower 
precision for ICU (0.46) compared to Random Forest, indicating a higher rate of false positives 
in classifying patients in the ICU. Regarding recall, Random Forest demonstrates balanced 
performance for both ICU and OT with recall scores of 0.88 and 0.89, respectively. However, 
SVM exhibits a recall of 0.00 for ICU, indicating its failure to correctly identify ICU instances, 
while achieving a perfect recall of 1.00 for OT. Moving to the F1-score, Random Forest shows 
the highest scores for both ICU (0.86) and OT (0.90), indicating a good balance between precision 
and recall. In contrast, SVM achieves a low F1-score of 0.00 for ICU due to the absence of true 
positives, while KNN exhibits moderate F1-scores for both ICU (0.45) and OT (0.66). Analyzing 
the macro and weighted average F1-scores, Random Forest outperforms both SVM and KNN, 
demonstrating superior overall performance in capturing the trade-off between precision and 
recall across both classes. In summary, Random Forest emerges as the most effective algorithm 
among the three in predicting patient locations within the hospital, offering a high level of 
accuracy, precision, recall, and F1 scores for both ICU and OT. 

Table 2: Performance for Location Prediction of All Approaches. 

Metric Random Forest SVM KNN 

Accuracy 0.886 0.608 0.581 
Precision (ICU) 0.83 - 0.46 
Recall (ICU) 0.88 0.00 0.44 
F1-score (ICU) 0.86 0.00 0.45 
Precision (OT) 0.92 0.61 0.65 
Recall (OT) 0.89 1.00 0.67 
F1-score (OT) 0.90 0.76 0.66 
Macro Avg F1-score 0.88 0.38 0.56 
Weighted Avg F1-score 0.89 0.46 0.58 

Conclusion: 
In this study, we investigated the application of machine learning algorithms for 

predicting patient stay duration and location within a hospital setting, specifically focusing on the 
Intensive Care Unit (ICU) and the Operating Theater (OT). Hospital management faces 
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significant challenges in optimizing resource allocation, staffing levels, and patient care efficiency. 
Accurate predictions of patient stay duration and location can greatly assist in addressing these 
challenges and improving overall hospital operations. Throughout this study, we employed three 
machine learning algorithms: Random Forest, Support Vector Machine (SVM), and K-Nearest 
Neighbors (KNN). These algorithms were trained using a revised dataset containing relevant 
patient demographic information such as age, weight, disease severity, and stay duration. The 
primary goal was to evaluate the performance of these algorithms in predicting patient location 
accurately. Our analysis revealed several key findings. Firstly, the Random Forest algorithm 
achieved the highest accuracy of 88.6% in predicting patient locations, followed by SVM with an 
accuracy of 60.8% and KNN with an accuracy of 58.1%. These results suggest that Random 
Forest outperforms SVM and KNN in accurately classifying patients into the ICU and OT 
categories based on their demographic attributes. Furthermore, we assessed the precision, recall, 
and F1 scores for both ICU and OT classifications across the three algorithms. Random Forest 
exhibited superior performance in terms of precision, recall, and F1-scores for both ICU and OT 
categories compared to SVM and KNN. This indicates that Random Forest can effectively 
balance precision and recall in classifying patients into different locations within the hospital. The 
results obtained from this study have significant implications for hospital management and 
patient care. Accurate predictions of patient location can enable hospital administrators to 
optimize resource allocation, streamline bed management, and enhance patient flow. By 
anticipating patient needs and allocating resources accordingly, hospitals can improve operational 
efficiency and reduce wait times, leading to better patient outcomes and satisfaction. Moreover, 
the machine learning algorithms utilized in this study can be integrated into hospital information 
systems to automate the prediction process. Real-time insights provided by these algorithms can 
empower healthcare professionals to make informed decisions regarding patient care and 
resource allocation. Additionally, the predictive models developed in this study can be 
continuously updated with new data to improve their accuracy and reliability over time. In 
conclusion, the application of machine learning algorithms for predicting patient stay duration 
and location offers significant potential benefits for hospital management and patient care. By 
leveraging patient demographic information and advanced predictive models, healthcare 
institutions can optimize resource utilization, improve operational efficiency, and enhance the 
overall quality of care delivery. As the healthcare landscape continues to evolve, machine learning-
based approaches will play an increasingly important role in shaping the future of hospital 
management and patient care. 
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