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he advancement of remote sensing technologies and the availability of free satellite data 
have significantly enhanced the precision of land use and land cover (LULC) mapping, 
facilitating the analysis of landscape transformations and ecosystem changes. However, 

selecting the most suitable classifier for LULC mapping remains a complex challenge. Therefore, 
it is essential to evaluate the accuracy of various LULC modeling algorithms to determine their 
effectiveness in different applications. This study conducted a comprehensive evaluation of both 
supervised machine learning algorithms and traditional classification methods applied to Landsat 
8 imagery with a 30-meter spatial resolution, covering the Shangla and Battagram districts in 
Khyber Pakhtunkhwa (KPK), Pakistan. The study focused on three classification algorithms: 
Maximum Likelihood Classification (MLC), Support Vector Machines (SVM), and Random 
Forest (RF). The performance of these algorithms was assessed on both multispectral images 
and composite images derived from Principal Component Analysis (PCA) and Band Ratioing 
and/or Normalized Indices. Additionally, the accuracy of these algorithms, when applied to 
different datasets, was compared with the recently released World Cover LULC product by the 
European Space Agency (ESA). The results indicated that the SVM algorithm outperformed the 
others, achieving an overall accuracy of 90.43% and a kappa coefficient of 0.8792. The MLC 
and RF algorithms also produced promising results, with overall accuracies of 85.58% and 
88.46%, respectively. Furthermore, the study found that the overall accuracy of ESA’s World 
Cover LULC product was 70.67% in the study area, based on similar validation samples. These 
findings underscore the strengths and limitations of each algorithm, providing valuable insights 
into their suitability for LULC classification and the applicability of existing global LULC maps. 
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Introduction: 
Environmental monitoring techniques are crucial for understanding the Earth's 

changing climate, including the rise in surface temperatures and the need to track its effects on 
the environment [1]. Land use and land cover (LULC) data are particularly important in this 
context. Accurate LULC data support research efforts on floods, droughts, and migration across 
various scales [2][3]. The demand for and availability of LULC maps have recently increased, 
driven in part by the expansion of publicly available satellite imagery [4]. Assessing LULC is 
essential for the sustainability and development of any region, as LULC changes—such as 
deforestation and urbanization—are major drivers of climate change globally [3]. LULC change 
is also a critical factor in environmental degradation caused by human activities and natural 
disasters, making it a significant global concern [5]. Moreover, climate change affects water 
balance, geomorphology, water quality, groundwater management, resource management, and 
land monitoring, all of which require detailed LULC maps. 

In developing countries like Pakistan, rapid population growth has intensified LULC 
changes, particularly in urban areas. Urban sprawl often encroaches on agricultural land, raising 
concerns about food security. LULC changes have far-reaching implications for both natural 
and human-induced extreme events. However, most previous research has focused primarily on 
evaluating the accuracy of LULC classification using geographic data, rather than on selecting 
appropriate LULC change detection strategies [6][7]. To manage agriculture, natural resources, 
and energy effectively in the face of population growth, it is crucial to choose the proper 
technique for monitoring LULC changes, which requires accurate LULC maps. 

Recently, machine learning (ML) algorithms have gained popularity in remote sensing 
applications due to their ability to extract vast amounts of information from satellite images. 
Significant advances have been made in land cover mapping, particularly with the use of Support 
Vector Machines (SVM) and Random Forest (RF) algorithms. For instance, [6] demonstrated 
that SVM achieved significantly higher classification accuracies than other algorithms when 
applied to Landsat 8 images for land cover mapping in various terrains. Similarly, [8] found that 
RF outperformed other methods in classifying land cover classes using Landsat 8 imagery, 
thanks to its ability to handle large datasets and reduce overfitting. Other studies have also 
employed ML models for LULC mapping [2][5][7][9]. These findings suggest that SVM and RF 
algorithms are promising options for accurate and reliable land cover mapping, often 
outperforming alternative classification techniques. 

To determine the superior model between these two, this research evaluated the 
performance of the SVM and RF algorithms for land cover mapping. The study compared the 
effectiveness of these ML-based classification methods using three different datasets: a Landsat 
8 image, its Principal Component Analysis (PCA) image, and derived indices from the Landsat 
8 image. Specifically, this research assessed the performance of three common supervised 
classification algorithms: Maximum Likelihood Classification (MLC), RF, and SVM. 

In addition to comparing these classification methods, this study investigated the use of 
Principal Component Analysis (PCA) as a dimensionality reduction tool to enhance the 
efficiency of information extraction. PCA reduces the dimensionality of multispectral data while 
retaining most of the variance, thereby improving computational efficiency and classification 
accuracy [10]. The study also explored the use of spectral indices, such as the Normalized 
Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and 
Normalized Difference Snow Index (NDSI), as supplementary features for classification. These 
indices provide valuable information about specific land cover categories—such as vegetation, 
water bodies, and snow cover—allowing for better differentiation between distinct land cover 
classes. 

The aim of this study was to analyze and compare the performance of three machine 
learning methods—MLC, SVM, and RF—for land cover mapping using Landsat 8 imagery. 



                                International Journal of Innovations in Science & Technology 

June 2024|Special Issue                                                                          Page |227 

Their accuracy was evaluated using three datasets: the multispectral Landsat 8 image, the PCA 
image, and derived indices such as NDVI, NDBI, and NDSI. Furthermore, this research 
explored the effectiveness of PCA and spectral indices in improving classification outcomes. 
The most accurate map was validated by comparison with the European Space Agency's World 
Cover dataset. The goal of this research is to identify the most effective ML algorithm for land 
cover mapping while providing accurate LULC data for environmental monitoring. This 
comparative study offers insights into the consistency and reliability of classification results in 
relation to existing land cover datasets. 
Material and Methods: 

 
Figure 1: a) International and provincial boundaries of Pakistan b) The study area exists in 
Khyber Pakhtunkhwa, a province of Pakistan c) Location of the study area with elevation 

derived from Shuttle Radar Topography Mission (SRTM) (30 m) data.   
Study Area: 

The study area encompasses the districts of Shangla and Battagram in Pakistan's Khyber 
Pakhtunkhwa province, as illustrated in Figure 1. Shangla district is situated between latitudes 
34.667°N and 35.033°N and longitudes 72.467°E and 72.917°E, while Battagram district lies 
between latitudes 34.267°N and 34.767°N and longitudes 72.767°E and 73.117°E. These 
districts, located in northern Pakistan, are characterized by diverse geographical features, 
including rocky hills, valleys, and agricultural plains. Shangla district is renowned for its 
picturesque landscapes, steep hills, terraced fields, and forest cover [11]. Battagram district, on 
the other hand, features a combination of rugged terrain and fertile valleys intersected by rivers 
and streams [12]. The study area holds significant environmental and socioeconomic 
importance, with agriculture serving as the primary source of livelihood for the local population. 
Additionally, the region is prone to natural disasters such as landslides and floods, making 
accurate land cover mapping essential for disaster management and land use planning. By 
focusing on these two districts, this study aims to provide valuable insights into the performance 
of various classification algorithms for land cover mapping in hilly terrains. 
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Methodology: 
The study evaluated the effectiveness of various image classification techniques applied 

to Landsat 8 imagery in generating accurate LULC maps. The classification process involved 
multiple steps, as depicted in Figure 2. These steps included data acquisition, pre-processing, 
training sample collection, and supervised image classification. The study employed three 
machine learning algorithms—Support Vector Machine (SVM), Random Forest (RF), and 
Maximum Likelihood Classifier (MLC)—using multispectral bands, Principal Component 
Analysis (PCA) bands, and normalized indices such as the Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Built-up Index (NDBI), and Normalized Difference 
Snow Index (NDSI). The final step involved assessing the accuracy of the classifications and 
comparing the results with the European Space Agency (ESA) land cover map. 

 
Figure 2: Representation of adopted Methodology. 

Data Collection: 
In this study, Landsat 8 Operational Land Imager (OLI) satellite imagery served as the 

primary data source for land cover classification (Table 1). Landsat satellites are widely used for 
constructing LULC maps due to their favorable spatial and temporal resolution [13][14][15]. 
Landsat 8 offers multispectral imagery with a 30-meter spatial resolution, making it well-suited 
for detailed land cover mapping across large areas. The dataset was obtained from the USGS 
Earth Explorer platform (https://earthexplorer.usgs.gov/). Additionally, the ESA’s World 
Cover LULC map was used as a reference dataset for comparative analysis, accessed from 
(https://esa-worldcover.org/en). The World Cover LULC map provides a standardized 
depiction of land cover across different regions, derived from satellite imagery and ground truth 
data. 

Table 1: Description of primary datasets used in the study. 

Data Satellite Resolution (m) Date/Year Location 

Satellite Imagery Landsat 08 (OLI) 30 2021/10/06 Battagram, Shangla 
ESA World Cover Sentinel-1/2 10 2021 Battagram, Shangla 

Principal Component Analysis: 
Principal Component Analysis (PCA) was employed as a dimensionality reduction 

technique to enhance the accuracy of land cover mapping using Landsat 8 OLI satellite images. 
PCA transforms multispectral data into a set of uncorrelated variables, known as principal 
components, which capture the majority of the variance in the original dataset. By retaining only, 
the most informative components and eliminating redundant information, PCA reduces the 
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dataset's dimensionality, thereby improving computational efficiency and significantly impacting 
spatial and spectral resolution [16][17][18]. In this study, PCA was applied to Landsat 8 OLI 
images to identify the most significant spectral features for LULC classification. These principal 
components were then used as input variables for supervised classification algorithms, including 
Maximum Likelihood Classifier (MLC), Support Vector Machines (SVM), and Random Forest 
(RF). 
Band Indices: 

In remote sensing, band indices are mathematical combinations of spectral bands 
derived from remote sensing data, such as satellite or aerial imagery. These indices are 
instrumental in highlighting specific features of interest, including vegetation, water bodies, and 
soil types [17]. In this study, NDVI, NDSI, and NDBI band indices were utilized to extract 
seven feature classes (Figure 3). 
Normalized Difference Vegetation Index (NDVI): 

The Normalized Difference Vegetation Index (NDVI) is a widely used spectral index in 
remote sensing for assessing vegetation health and abundance. The features extracted by NDVI 
are illustrated in Figure 3a. NDVI is calculated as the normalized difference between the near-
infrared (NIR) and red bands of satellite imagery, with higher NDVI values indicating denser 
and healthier vegetation cover (Equation 1). 

𝑵𝑫𝑽𝑰 =
𝑵𝑰𝑹−𝑹𝑬𝑫

𝑵𝑰𝑹+𝑹𝑬𝑫
,     (1) 

Where NIR and RED represent the corresponding bands of the image. 
Normalized Difference Snow Index (NDSI): 

The Normalized Difference Snow Index (NDSI) is a spectral index used to detect snow 
and ice cover in satellite imagery. The features extracted by NDSI are shown in Figure 3b. NDSI 
is calculated as the normalized difference between the green and shortwave infrared (SWIR) 
bands, with higher NDSI values indicating the presence of snow or ice, as shown in Equation 
2. 

𝑵𝑫𝑺𝑰 =
𝑮𝒓𝒆𝒆𝒏−𝑺𝑾𝑰𝑹

𝑮𝒓𝒆𝒆𝒏+𝑺𝑾𝑰𝑹
    (2) 

Where Green and SWIR represent the corresponding bands of the image. 
Normalized Difference Built-up Index (NDBI): 

The Normalized Difference Built-up Index (NDBI) is a spectral index used to identify 
built-up areas and urban infrastructure in satellite imagery. The features extracted by NDBI are 
illustrated in Figure 3c. NDBI is calculated as the normalized difference between the shortwave 
infrared (SWIR) and near-infrared (NIR) bands, with higher NDBI values indicating the 
presence of built-up structures, as shown in Equation 3. 

𝑵𝑫𝑩𝑰 =
𝑺𝑾𝑰𝑹−𝑵𝑰𝑹

𝑺𝑾𝑰𝑹+𝑵𝑰𝑹
    (3) 

Where NIR and SWIR represent the corresponding bands of the image. 
Methods for LULC Classification: 

Assigning predetermined classes to individual pixels or image segments based on their 
spectral characteristics is a crucial step in the classification process [19]. In the Shangla and 
Battagram districts of Khyber Pakhtunkhwa province, Pakistan, Landsat 8 multispectral satellite 
imagery, along with its PCA image and stacked band ratios derived from the original image, was 
classified using supervised classification algorithms. These classifications resulted in seven 
LULC classes: grasses, urban areas, forests, agriculture, water, snow, and bare areas, as detailed 
in Table 2. A total of 530 sample points were used in this study, with 350 allocated for training 
the algorithms and the remaining 180 samples reserved for validation and accuracy assessment. 
Support Vector Machine: 

Support Vector Machine (SVM) was originally developed to address binary classification 
problems and is based on the Structural Risk Minimization (SRM) principle. It utilizes a 
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hyperplane to classify data points [20], aiming to maximize the margin between different classes 
through the support vectors that define this margin. SVM is capable of handling both 
continuous and categorical variables and can classify linear and non-linear samples with varying 
class memberships. Although radial basis function (RBF) and polynomial kernels are commonly 
used in remote sensing, RBF is preferred for LULC classification due to its superior accuracy 
compared to other conventional techniques [5]. 

 
Figure 3: Layers of normalized indices that were used for classification (a) NDVI, (b) NDSI, 

and (c) NDBI 
Table 2: Explains the description of all LULC classes 

Classes Description 

Grasses Areas dominated by natural or cultivated grasslands 
Urban Area Developed areas like buildings, infrastructure, and human settlements 
Forest Dense areas covered by trees 
Agriculture Cultivated areas such as farming, crop cultivation, and grazing. 
Water Bodies of water including rivers, lakes, reservoirs, and ponds. 
Snow Areas covered by snow and ice 
Bare Area Open areas like barren lands and bare soils 

The SVM approach begins with a dataset and seeks to identify the hyperplane that best 
separates the data into distinct classes. To achieve this, SVM relies on an appropriate kernel 
function to minimize classification errors and create effective hyperplanes. The choice of kernel 
is crucial, as it influences the smoothness of the separating surface. The performance of SVM, 
particularly when applied to hyperspectral satellite data, is optimized with a well-chosen kernel 
and may benefit from genetic optimization methods. The primary objective of SVM is to 
determine the optimal boundary that maximizes the distance between all support vectors [15]. 
Random Forest: 

Random Forest (RF) is a widely used classifier for LULC classification, often referred to 
as an ensemble classifier because it relies on a multitude of decision trees for classification [7]. 
RF generates numerous random decision trees by using predictions from previously established 
trees [21]. While a subset of the input data is used for training the RF model, the remaining data 
is reserved for objective validation. The final classification result is derived by averaging the 
predictions of each tree to determine the likelihood of each class. RF is known for its robustness 
and effectiveness in managing issues like noise and overfitting [5]. Additionally, RF is well-suited 
for handling high-dimensional data. Various factors can influence the final classification 
outcome of the RF model [1]. 
Maximum Likelihood: 

The Maximum Likelihood (ML) classifier is a widely used supervised classification 
technique in remote sensing for land cover mapping. In this study, the ML classifier was applied 
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to Landsat 8 OLI satellite images to assign each pixel to the most probable land cover class 
based on its spectral signature. The ML classifier operates under the assumption that pixel values 
within each class follow a multivariate normal distribution in the feature space [22]. It calculates 
the probability of a pixel belonging to each class and assigns it to the class with the highest 
likelihood, based on the mean vector and covariance matrix estimated from the training data 
[23]. By utilizing spectral information from various bands of satellite imagery, the ML classifier 
effectively differentiates between diverse land cover types, making it particularly useful for 
complex landscapes with multiple land cover classifications. 

In this study, the ML classifier was evaluated alongside other classification algorithms, 
such as Support Vector Machines (SVM) and Random Forest (RF), to compare their 
effectiveness in accurately mapping land cover in the Shangla and Battagram districts of Khyber 
Pakhtunkhwa province, Pakistan. The ML classifier's ability to model the statistical distribution 
of spectral data and make probabilistic predictions underscores its importance for land cover 
categorization and environmental monitoring [18].  
Accuracy Assessment: 

The accuracy of a classifier is influenced by factors such as input data, the study region, 
and satellite sensors. Different researchers have reported varying LULC accuracy for different 
classifiers across diverse study areas [14][24]. Accuracy assessments for these techniques were 
conducted using a confusion matrix, which compares the actual and predicted classifications 
made by the classification system. This matrix evaluates how well the categorized pixels from 
the image match field observations at the same locations. The results of an accuracy assessment 
typically provide the overall accuracy (OA) of the map as well as the accuracy for each individual 
class. The overall accuracy percentage was calculated using Equation 4.  

𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 𝒔𝒂𝒎𝒑𝒍𝒆𝒔∗𝟏𝟎𝟎

𝒕𝒐𝒕𝒂𝒍 𝒔𝒂𝒎𝒑𝒍𝒆𝒔
   (4) 

In addition to overall accuracy, the classification accuracy for individual classes was 
assessed using two key metrics: user's accuracy (UA) and producer's accuracy (PA). Producer's 
accuracy is calculated by dividing the number of correctly classified pixels in a given class by the 
total number of pixels in that class, as indicated by reference data, and is detailed in Equation 5. 
In this study, producer's accuracy measures the effectiveness of classifying specific areas. 

𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒓′𝒔 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒑𝒓𝒐𝒑𝒆𝒓𝒍𝒚 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒑𝒊𝒙𝒆𝒍𝒔 𝒐𝒇 𝒄𝒍𝒂𝒔𝒔∗𝟏𝟎𝟎

 𝒕𝒐𝒕𝒂𝒍 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒑𝒊𝒙𝒆𝒍𝒔 𝒐𝒇 𝒄𝒍𝒂𝒔𝒔
(𝒕𝒉𝒆 𝒄𝒐𝒍𝒖𝒎𝒏 𝒕𝒐𝒕𝒂𝒍) (5) 

Meanwhile, user's accuracy is calculated by dividing the number of correctly classified 
pixels in each category by the total number of pixels that were classified into that category. User's 
accuracy reflects the probability that a pixel classified into a particular category actually belongs 
to that category, as shown in Equation 6 [25]. 

𝑼𝒔𝒆𝒓′𝒔 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒑𝒓𝒐𝒑𝒆𝒓𝒍𝒚 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒑𝒊𝒙𝒆𝒍𝒔 𝒐𝒇 𝒄𝒍𝒂𝒔𝒔∗𝟏𝟎𝟎

 𝒕𝒐𝒕𝒂𝒍 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒑𝒊𝒙𝒆𝒍𝒔 𝒐𝒇 𝒄𝒍𝒂𝒔𝒔
(𝒕𝒉𝒆 𝒓𝒐𝒘 𝒕𝒐𝒕𝒂𝒍) (6) 

Kappa Coefficient: 
The Kappa coefficient (Kc) is another important measure used in many studies 

[24][26][27]. It is calculated by multiplying the total number of pixels across all ground truth 
classes (N) by the sum of the confusion matrix diagonals (Xkk), then subtracting the sum of the 
products of ground truth pixels in each class and classified pixels in that class, summed over all 
classes (ΣXkΣ YkΣ), where XkΣ represents the row totals and YkΣ represents the column totals. 
This result is divided by the total number of pixels squared minus the sum of the products of 
ground truth pixels and classified pixels for each class. The Kappa value ranges from 0 to 1, with 
0 indicating agreement due only to chance and 1 indicating perfect agreement between the 
datasets. Negative values, though rare, can occur but are considered spurious. The Kappa 
statistic is often expressed as a percentage (%) and provides a more nuanced measure of classifier 
agreement compared to overall accuracy [28], offering better interclass discrimination. The 
Kappa coefficient is calculated using Equation 7.  
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𝑲𝑪 =
𝑵∑𝒄𝒓 𝒊=𝟏 𝒙𝒋𝒌 ∑𝒄𝒓 𝒊=𝟏 𝒙𝒋+ 𝒙+𝒋 )

 𝑵𝟐 ∑𝒓 𝒊=𝟏 𝒙𝒋+×𝒙+𝒋 )
    (7) 

Where, xij = number of counts in the ijth cell of the confusion matrix  

● N = total number of counts in the confusion matrix  

● xi+ = marginal total of row i  

● x+i = marginal total of column i 
Result and Discussion: 
LULC Classifications: 

This study analyzed seven different types of land use and land cover (LULC) in the 
Battagram and Shangla districts for the year 2021 using Landsat 8 imagery and its derivatives 
(PCA and band ratios). The analysis employed three commonly used supervised learning 
algorithms—Maximum Likelihood Classification (MLC), Random Forest (RF), and Support 
Vector Machines (SVM)—each yielding slightly different results. Figure 4 illustrates the spatial 
distribution of all LULC classes as determined by these three machine learning algorithms using 
Landsat 8 multispectral imagery, PCA, and stacked indices. 
Classification Using Multispectral Bands of Landsat 8 Image:  

The results reveal that forest cover is the most dominant land cover type in Shangla and 
Battagram, as shown in Figure 5a. Using the Landsat 8 image, the SVM classifier identified 2,145 
ha as water bodies, 12,563 ha as urban areas, 109,329 ha as forest, 1,828 ha as snow, 48,676 ha 
as bare areas, 90,906 ha as grasslands, and 48,021 ha as agricultural land. 

 
Figure 4: Spatial Distribution of LULC classification by RF, SVM, and MLC by using Landsat 

08, PCA, Stacked Indices 
The Random Forest classifier classified 2,338 ha as water bodies, 13,556 ha as urban 

areas, 110,916 ha as forest, 1,802 ha as snow, 42,980 ha as bare areas, 87,197 ha as grasslands, 
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and 46,675 ha as agricultural land. The Maximum Likelihood classifier identified 1,171 ha as 
water bodies, 19,404 ha as urban areas, 94,701 ha as forest, 2,585 ha as snow, 48,676 ha as bare 
areas, 90,906 ha as grasslands, and 48,021 ha as agricultural land. 
Classification Using PCA Image: 

Results using the PCA images are depicted in Figure 4, with Figure 5b illustrating the 
area comparison of LULC derived from the PCA image. For the PCA image classification, 
covering 305,464 ha, the SVM classifier identified 2,243 ha as water bodies, 12,994 ha as urban 
areas, 109,329 ha as forest, 1,928 ha as snow, 46,696 ha as bare areas, 85,298 ha as grasslands, 
and 46,976 ha as agricultural land. The Random Forest classifier classified 2,468 ha as water 
bodies, 14,156 ha as urban areas, 109,141 ha as forest, 1,602 ha as snow, 42,380 ha as bare areas, 
87,297 ha as grasslands, and 48,420 ha as agricultural land. The Maximum Likelihood classifier 
identified 1,971 ha as water bodies, 13,104 ha as urban areas, 101,702 ha as forest, 2,385 ha as 
snow, 48,976 ha as bare areas, 88,906 ha as grasslands, and 48,420 ha as agricultural land. 

 
(a) 

 
(b) 

Figure 5: Area comparison of land cover classes (a) using Landsat-08 (b) using PCA image 
Classification Using Stacked Indices: 

Results using the stacked indices are illustrated in Figure 4. From the classification of 

the image, covering 305,464 ha, the SVM classifier identified 2,343 ha as water bodies, 20,994 

ha as urban areas, 102,329 ha as forest, 2,328 ha as snow, 43,743 ha as bare areas, 91,258 ha as 

grasslands, and 42,479 ha as agricultural land. The Random Forest classifier classified 2,284 ha 

as water bodies, 22,140 ha as urban areas, 101,241 ha as forest, 2,200 ha as snow, 45,560 ha as 

bare areas, 92,262 ha as grasslands, and 39,780 ha as agricultural land. The Maximum Likelihood 

classifier identified 2,476 ha as water bodies, 20,099 ha as urban areas, 98,717 ha as forest, 2,480 

ha as snow, 50,676 ha as bare areas, 89,306 ha as grasslands, and 41,720 ha as agricultural land, 

as shown in Figure 6. 

 
Figure 6: Comparison of the area of LC classes using Stacked Indices Image 
This study assesses the performance of classification algorithms using multispectral 

images, Principal Component Analyses (PCA), and normalized indices. Consequently, the area 
statistics may not fully align with national estimates for some land cover and land use classes. 
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Comparison of Classifiers: 
To evaluate classifier performance, three different classifiers were applied to three types 

of images: Landsat 8, PCA, and stacked indices (including NDVI, NDSI, and NDBI). Overall 
accuracy and the Kappa coefficient are commonly used metrics for determining classifier 
performance. Figure 7a presents the overall accuracy, while Figure 7b displays the Kappa 
coefficients for each classifier across Landsat 8, PCA, and stacked indices. 

The results indicate that the Support Vector Machine (SVM) classifier outperformed 
both the Random Forest Classifier (RFC) and the Maximum Likelihood Classifier (MLC) across 
all three image types. The SVM classifier achieved a maximum overall accuracy of 90.43% for 
the Landsat 8 image, compared to 87.52% for RFC and 84.5% for MLC. Among the classifiers, 
MLC showed the lowest overall accuracy, trailing behind both SVM and RFC. 

 
(a) 

 
(b) 

Figure 7: Performance comparison of Machine Learning algorithms. (a) Overall accuracy for 
MLC, RF, and SVM, (b) Kappa coefficient of MLC, RF, and SVM 

 
(a) 

 
(b) 

 
(c) 

Figure 8: User’s Accuracy of all land cover classes using SVM, RFC, and MLC classifiers on 
(a) PCA image (b) Landsat 08 image, and (c) Stacked indices image 
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Among the two derived datasets from Landsat satellite imagery, the Principal 
Component Analysis (PCA) from Landsat 8 performed best across all three classification 
methods. PCA achieved overall accuracies of 86.12% for the Maximum Likelihood Classifier 
(MLC), 86.23% for the Random Forest Classifier (RFC), and 87.52% for the Support Vector 
Machine (SVM) classifier. In contrast, the Landsat-8-derived stacked indices (NDVI, NDSI, and 
NDBI) performed the least effectively among the three datasets, with overall accuracies of 
82.56% for MLC, 83.78% for RFC, and 86.5% for SVM. 

The study assessed the performance of SVM, MLC, and RFC models on three data 
products for each LULC class, using User Accuracy (UA) and Producer Accuracy (PA) metrics. 
Results for each class were reported separately due to varying model performance. Figure 8 
illustrates the user's accuracy for each classifier using Landsat 8, its PCA, and derived indices 
imagery. Snow cover generally had the highest user accuracy, while Bare Area had the lowest. 
The Landsat 8 image consistently outperformed the PCA and stacked indices images across 
most classes. The SVM classifier demonstrated superior performance compared to the other 
classifiers. Similar trends were observed in the producer accuracy results. Snow cover achieved 
the highest producer accuracy in all images, as shown in Figures 9 and 10. Both user and 
producer accuracies were notably lower for the stacked indices image, as depicted in Figures 8c 
and 10. This reduction in accuracy is attributed to misclassifications, particularly of Bare and 
Urban areas, due to the NDBI index used for urban area extraction, which impacted the accuracy 
of the stacked imagery. 

 
(a) 

 
(b) 

Figure 9: Producer’s Accuracy of all land cover classes using SVM, RFC, and MLC classifiers 
on (a) Landsat 08 image (b) PCA image 

 
Figure 10: Producer’s Accuracy of land cover classes using SVM, RFC, and MLC classifiers 

on Stacked Indices. 
ESA Landcover Validation: 

The ESA land cover map, validated with the same points, achieved an overall accuracy 
of 70.16%. This moderate accuracy can be attributed to several factors. Firstly, the temporal 
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aspect of the datasets contributed to reduced accuracy. The ESA land cover map, updated 
annually, was validated using data from October 6, 2021. Consequently, the map may not 
capture the dynamic changes in land cover throughout the year, leading to class mixing and 
temporal mismatches. Secondly, the resolution discrepancy between datasets affected the 
accuracy; our validation points were based on 30-meter resolution, while the ESA map has a 
finer resolution of 10 meters. These factors highlight the challenges in achieving improved 
validation accuracy with datasets of varying resolutions and temporal spans. 
Discussion: 

This study assessed Landsat 8 multispectral images and their derivatives (PCA and 
indices) to evaluate the accuracy of machine learning classifiers (MLC, SVM, and RF) for land 
cover classification. Accuracy was assessed using user accuracy (UA), producer accuracy (PA), 
overall accuracy (OA), and the Kappa coefficient (Kc). The results showed that the SVM 
classifier outperformed both RF and MLC across all datasets. SVM achieved the highest overall 
accuracy of 90.43% with the Landsat 8 image, compared to 87.52% for RF and 84.5% for MLC. 
These findings align with previous research [4][6][19], indicating that SVM provides robust 
predictions and captures complex linkages effectively. The SVM model exhibited higher OA 
and Kappa indices than RF, as illustrated in Figure 7. According to [15], RF's stability is 
influenced by the number of trees, bagging, and random impressions, which can affect efficiency 
and accuracy. MLC demonstrated lower accuracy compared to RF and SVM, as shown in Figure 
7. Research suggests that RF and SVM classifiers perform better due to their resilience to noise 
[29] and their ability to handle random and systematic noise in training data [9][30], with 
performance also dependent on data dimensionality [5]. 

The performance of the classifiers was influenced by both the machine learning models 
and the data used. PCA images improved classification accuracy for certain classes but 
introduced discrepancies. For MLC, PCA enhanced accuracy for some classes (Figure 7) but led 
to misclassifications in others. SVM is effective and efficient in high-dimensional spaces with 
clear class separations but requires extensive training for large datasets. 

In classifying LULC in the Battagram and Shangla districts, this study found that RF and 
MLC had the lowest accuracy in bare and urban areas, especially with the stacked indices dataset 
due to NDBI's influence. Unplanned urbanization and limited high-rise constructions in these 
districts caused minor misclassifications, affecting accuracy. Despite these challenges, all three 
models demonstrated reliable accuracy in detecting distinct LULC classes, with snow cover 
being the most accurately classified. Previous studies have shown that different classifiers can 
yield varying results for LULC mapping depending on the data and study area [31][32]. 
Conclusion: 

LULC mapping is crucial for sustainable development and economic resilience. Machine 
learning algorithms generally outperform other methods for LULC classification in terms of 
reliability and accuracy. Understanding the factors affecting algorithm accuracy can enhance 
classification results. This study evaluated SVM, RF, and MLC algorithms using Landsat 8 
multispectral images, PCA, and stacked normalized indices. The findings indicate that machine 
learning algorithms effectively analyze Landsat data and its derivatives for LULC analysis. SVM 
emerged as the top-performing algorithm across all datasets, achieving 90.43% accuracy for 
Landsat 8, 87.52% for PCA, and 86.5% for band indices imagery. RF followed with 88.46% for 
Landsat 8, 86.23% for PCA, and 83.78% for band indices imagery, while MLC had the lowest 
accuracy at 85.58% for Landsat 8, 86.12% for PCA, and 82.56% for indices imagery. The 
Landsat 8 image achieved the highest overall accuracy, and the ESA land cover map achieved 
70.16% accuracy using the same validation points. 

LULC classification results vary based on satellite data, research region, and algorithms. 
Different classifiers perform differently across climate zones and geographical areas. For more 
accurate LULC classification, researchers should use high-resolution imaging, specific class 
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definitions, field data, and advanced machine learning methods. This study may guide 
policymakers and planners in mountainous cities. Changes in study area, duration, algorithms, 
or datasets can significantly impact classification accuracy. 
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