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 Critical evaluation of newly developed gridded rainfall datasets is essential for their 
effective application. Over the past two decades, the availability of gridded rainfall 
measurements has increased; however, finding suitable proxies for traditional station-

based measurements remains challenging. This study conducted a comparative assessment of 
rainfall estimates from IMERG, CHIRPS, ERA-5, and APHRODITE against meteorological 
station data from five cities in Pakistan: Lahore, Faisalabad, Multan, Islamabad, and Murree. The 
assessment covered multiple temporal scales (daily, monthly, and yearly) using daily data 
recorded from 2001 to 2022. Analytical metrics applied included Bias, Mean Error (ME), Root 
Mean Square Error (RMSE), Correlation Coefficient (CC), and Coefficient of Determination 
(R²). The results revealed notable spatial and temporal patterns of agreement among the datasets. 
Correlations for daily data were generally weak across all gridded datasets, with APHRODITE 
performing the best. Monthly aggregates showed that IMERG had the highest association with 
ground data, followed by CHIRPS. Yearly accumulated rainfall records indicated that IMERG 
had the highest correlation, followed by CHIRPS. Overall, IMERG demonstrated higher 
consistency across stations at both monthly and yearly scales. CHIRPS exhibited lower errors 
(RMSE and bias) at most locations, especially Lahore, but showed higher errors in Murree at 
the monthly scale. The study concludes that a single satellite dataset alone may not provide 
sufficient accuracy over large areas; a combination of products may be required for better 
estimation. 
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Introduction: 
The global water cycle is significantly influenced by precipitation, making it a crucial 

element with substantial impacts on the socio-economic development of various regions [1]. In 
recent decades, the scientific community has increasingly focused on understanding climate 
variability and change [2][3], with precipitation data playing a pivotal role in studying both 
regional and global climate changes [4][5]. Precipitation is essential for agricultural growth, food 
security, water management, and hydropower generation. It also plays a crucial role in identifying 
weather and climatic conditions [6][7][8], and is a key variable for assessing extreme climate 
events such as droughts, which can adversely affect crop production [9][10][11]. A significant 
challenge in such studies is the lack of long-term climate data. Despite some available data 
sources, observed data from ground stations in Pakistan, including Punjab province, are very 
limited [12][13], and the quality of this data is often insufficient for comprehensive hydro-
climatological assessments. However, technological advancements have enabled hydroclimatic 
scientists to estimate climate variables and produce reliable data over longer periods, particularly 
in regions with limited ground data [14][15]. High-resolution remote sensing data, collected from 
satellites or aircraft, appear to be an optimal solution for addressing the shortage of ground 
station data [12][13]. Supplementing gauge-based measurements with satellite data has proven 
effective in overcoming the limitations of ground data availability [16][17][18], demonstrating 
significant effectiveness and cost-efficiency in recent years [19][20][21]. 

Recent studies suggest a declining annual trend in central Asia over the last few decades 
[22][23], while a slightly increasing trend in annual, seasonal, and monthly rainfall has been 
reported in the northwest Himalayan region from 2000 to 2022. In Pakistan, several studies have 
identified uneven rainfall patterns from 1980 to 2020. For example, [24] noted an increasing 
rainfall trend in Punjab province using various remotely sensed gridded precipitation datasets. 
Other studies have observed an overall increase in rainfall at annual and seasonal scales over the 
past four decades [22][25][26], with a declining trend in winter and post-monsoon periods but 
an increasing trend during monsoon and pre-monsoon periods from 1980 to 2016 [27]. 
Additionally, [28] evaluated the Climate Hazards Group Infrared Precipitation with Stations 
(CHIRPS) dataset against the Surface Precipitation Gauge (SPG) dataset for the period 1981-
2018 in Pakistan. Statistical metrics such as Mean Error (ME), Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and Coefficient of Correlation (CC) were used to assess the 
datasets at daily, monthly, annual, and seasonal scales. On average, CHIRPS showed an 
underestimation of rainfall by -0.80 to -0.17 mm/day across 46 stations. The highest ME, MAE, 
and RMSE values were 2.0 mm/day, 1.8 mm/day, and 1.8 mm/day, respectively, at the yearly 
scale. CHIRPS demonstrated high accuracy at monthly and seasonal timescales and has been 
found to be a useful alternative to station data for understanding spatial patterns and temporal 
trends in precipitation in regions of Pakistan with limited station coverage [13]. 
Objectives: 

This study evaluates the performance of four rainfall products—IMERG (Integrated 
Multi-satellite Retrievals for the Global Precipitation Measurement), CHIRPS (Climate Hazards 
Group InfraRed Precipitation), ERA-5 (ECMWF Fifth Generation Atmospheric Analysis of 
Global Climate Coverage), and APHRODITE (Asian Precipitation-Highly-Resolved 
Observation Data Integration Towards Evaluation of Water Resources)—against climate station 
data to address the limitations of spatially contiguous rainfall data availability in Pakistan. The 
evaluation was conducted using gridded rainfall datasets validated across five cities in Punjab: 
Lahore, Faisalabad, Multan, Islamabad, and Murree. Analytical metrics employed in this study 
included Bias, Mean Error (ME), Root Mean Square Error (RMSE), Correlation Coefficient 
(CC), Coefficient of Determination (R²), and Probability Value of Correlation (p). To provide a 
comprehensive assessment of the accuracy and reliability of these rainfall estimates, the analysis 
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covered three timescales (daily, monthly, and annual) using daily data recorded from 2001 to 
2022. 
Novelty Statement:  

This study conducted a comparative assessment of rainfall estimates from IMERG, 
CHIRPS, ERA-5, and APHRODITE using meteorological station data from five cities in 
Pakistan. This analysis aims to identify suitable proxies for conventional station-based 
measurements, offering a solution to address the limitations of traditional rainfall data sources. 
Material and Methods: 

A brief overview of the methodology is illustrated in the flow diagram (Figure 1).

 
Figure 1: An overview of the methodology applied in this study 

Description of Study Area and Location of Ground Stations: 
Pakistan, located in Southwest Asia, covers an area of 881,913 km², situated between 

latitudes 24° to 37° N and longitudes 60° to 75° E (Figure 2). The country features diverse 
topography, ranging from the Karakoram and Himalayan mountains in the north and northwest 
to agricultural plains in the Indus Basin and the southern coast of the Arabian Sea [29]. As an 
agrarian nation, Pakistan’s largest province, Punjab, is notable for its significant agricultural 
production, contributing over 50% of the country’s agricultural commodities [30]. The regional 
average temperature ranges from 23°C to 26°C, with minimum and maximum temperatures 
between 16°C to 19°C and 29°C to 33°C, respectively. Rainfall varies significantly, with the 
northern part of Punjab receiving more precipitation than the south; total annual rainfall ranges 
from less than 300 mm in the south to over 800 mm in the north [31]. The region experiences 
two main monsoon seasons: the summer monsoon (June–September) and the winter monsoon 
(December–April). Maximum rainfall occurs during the summer monsoon due to the monsoon 
system originating from the Bay of Bengal, entering from the east and northeast. Winter 
precipitation, driven by western disturbances from the Mediterranean Sea, affects the region 
from the southwest and northeast [32]. Extreme variations in rainfall during these monsoon 
seasons contribute to the region's vulnerability to climate change [33]. 

Ground station selection for this study was based on data from the Pakistan 
Meteorological Department (PMD), ensuring coverage of key urban centers and one hill station 
in Punjab and the Federal Capital Territory. The selected cities—Lahore (31.52°N, 74.36°E), 
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Multan (30.1864°N, 71.4886°E), Faisalabad (31.4504°N, 73.1350°E), Islamabad (33.6995°N, 
73.0363°E), and Murree (37°N, 73.3943°E)—reflect the region's geographical and climatic 
diversity, each contributing significantly to the province's socio-economic fabric (Table 1). 
According to the PMD, Lahore has moderate to high rainfall, averaging over 617 mm annually, 
with a range of 332 to 903 mm over the past 22 years. Faisalabad averages 615 mm annually, 
while Multan's rainfall ranged from 60 to 395 mm per year from 2001 to 2022. Islamabad shows 
considerable variability, with annual rainfall between 580 and 1796 mm over the past 22 years. 
Murree, known for its scenic beauty, recorded an annual rainfall range of 1136 to 2420 mm from 
2001 to 2022. 

Table 1: Description of the ground station data acquired from the Pakistan Meteorological 
Department 

Station Longitude Latitude Elevation (m) Period 

Lahore 74.33 31.55 213 2001-2022 
Faisalabad 73.1 31.43 184 2001-2022 
Islamabad 73.13 33.67 495 2001-2022 

Murree 73.38 33.92 2290 2001-2022 
Multan 71.43 30.2 122 2001-2022 

 
Figure 2: Topographic settings and location of the ground stations 

Gridded Rainfall Measurements: 
Gridded rainfall measurements were obtained from four sources: CHIRPS [9], IMERG 

[34], APHRODITE [35], and ERA-5 [36], covering the period from 2001 to 2022. A brief 
description of these datasets is provided below and summarized in Table 2. 
CHIRPS: 

The CHIRPS (Climate Hazards Group InfraRed Precipitation with Station Data) 
product offers high spatial resolution (0.05°) and extends from 1983 to the present. CHIRPS 
provides temporal resolutions including daily, monthly, pentad, and annual composites 
[20][37][38]. For this study, daily, monthly, and annual gridded data from 2001 to 2022 were 
utilized. Data can be accessed at CHIRPS website. 
IMERG: 

IMERG (Integrated Multi-satellite Retrievals for the Global Precipitation Measurement) 
version V06 provides rainfall estimates at a spatial resolution of 0.1° × 0.1° since 1997, with 

https://www.chc.ucsb.edu/data/chirps
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temporal aggregates of 30 minutes, 1 day, and 1 month. In this study, IMERG-Final v6 data 
were retrieved from NASA’s GPM site. 
ERA-5: 

ERA-5 (Fifth Generation ECMWF Atmospheric Reanalysis of the Global Climate) is 
the latest global atmospheric reanalysis product from ECMWF. For this study, daily data with a 
spatial resolution of 0.25° × 0.25° were downloaded from Climate Data Guide and converted 
into monthly totals and annual composites for analysis. 
APHRODITE: 

APHRODITE (Asian Precipitation - Highly Resolved Observational Data Integration 
Towards Evaluation of Water Resources) provides high-resolution (0.25°) gridded daily rainfall 
datasets for Asia. Developed by the Research Institute for Humanity and Nature (RIHN) and 
the Meteorological Research Institute of the Japan Meteorological Agency (MRI/JMA) since 
2006 [35], APHRODITE data are available from 1961. Access the dataset at APHRODITE 
website and APHRODITE product page. 

Table 2: Description of gridded rainfall measurement data used in the study 

Datatype Temporal Scale Source Year 
Spatial 

Resolution 

CHIRPS (Climate Hazards 
Group InfraRed Precipitation 
with Station data) 

Daily, 5Day, 
10Day, Monthly 

UCSB/
USGS 

1983 - Present 0.05°×0.05° 

IMERG (Integrated Multi-
satellite Retrievals for the 
Global Precipitation 
Measurement) 

30min NASA 1997-2015 & 
2014-Present 

0.1° × 0.1° 

APHRODITE (Asian 
Precipitation - Highly-
Resolved Observational Data 
Integration Towards 
Evaluation of Water 
Resources) 

Daily JAXA 
/RIHN 

1951-Present 
& 1961- 
Present 

0.25°×0.25° 
& 

0.05°×0.05° 

ERA-5 (Fifth generation 
ECMWF atmospheric 
reanalysis of the Global 
Climate Covering) 

Hourly, Daily, 
Monthly 

ECMW
F 

1950 - Present 0.125° × 
0.125° 

Data Analysis: 
A comprehensive analysis was conducted to examine the relationships between the 

CHIRPS, IMERG, ERA-5, and APHRODITE datasets and the rainfall data recorded at the 
stations. The statistical indicators used for this assessment included bias, mean absolute error 
(MAE), root mean square error (RMSE), correlation coefficient (CC), coefficient of 
determination (R²), and the probability value of correlation (p). 
Bias: 

Bias (Eq 1) represents the average difference between the datasets, which can be either 
positive or negative. A negative bias indicates an underestimation of rainfall, while a positive 
bias signifies an overestimation. 

Bias =  
∑ (PSi− POi)N
i=1  

N
    (Eq 1) 

Mean Absolute Error (MAE): 
The Mean Absolute Error (MAE) quantifies the magnitude of errors in the datasets, as 

represented by Eq (2). 

https://pmm.nasa.gov/data-access/downloads/gpm
https://climatedataguide.ucar.edu/climate-data/era5-atmospheric-reanalysis
http://aphrodite.st.hirosaki-u.ac.jp/japanese/products.html
http://aphrodite.st.hirosaki-u.ac.jp/japanese/products.html
http://aphrodite.st.hirosaki-u.ac.jp/product/
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MAE=
∑ ∣PSi−POi∣
N
i=1

N
    (Eq 2) 

Root Mean Square Error (RMSE): 
The Root Mean Square Error (RMSE) highlights larger errors more significantly than 

the MAE and is used to assess the average magnitude of errors, as defined by Eq (3). It is 
calculated as follows: 

RMSE=√
1

N
∑ (PSi − POi
N
i=1 )2   (Eq3) 

Correlation Coefficient (CC): 
The correlation coefficient (CC) measures the consistency between two observations, as 

given by Eq (4). Ranging from -1 to +1, it indicates high negative or positive associations, with 
values close to zero reflecting a weak relationship. The formula for CC is: 

𝐶𝐶=
∑ (PSi−PS)(POi−PO)
N
i=1

√∑ (PSi−PS)
N
i=1 2√∑ (POi−PO)

N
i=1 2

   (Eq 4) 

Results: 
In this study, daily, monthly, and annual precipitation datasets from CHIRPS, ERA-5, 

IMERG, and APHRODITE were assessed against rain-gauge observations over a 22-year 
period (2001–2022) across five major cities: Lahore, Faisalabad, Multan, Islamabad, and Murree. 

Table 3: Statistical indicators for the association of the datasets at the daily timescale 

Ground Station Data Bias MAE RMSE CC 𝐑𝟐 

Lahore 

CHIRPS 1.000801 0.00147 0.131799 0.206 0.04257 

ERA-5 0.92401 -0.1395 12.50495 0.289 0.08357 

IMERG 2.21794 2.235785 200.4241 0.306 0.09383 

APHRODITE 0.837535 -0.28334 20.97266 0.626 0.39305 

Faisalabad 

CHIRPS 0.9056 -0.11032 9.889782 0.174 0.03029 

ERA-5 1.042978 0.050227 4.502556 0.246 0.06068 

IMERG 2.548662 1.809883 162.2446 0.26199 0.068641 

APHRODITE 1.130008 0.153446 11.35814 0.402 0.161348 

Islamabad 

CHIRPS 0.981185 -0.06415 5.750653 0.261 0.068275 

ERA-5 0.65691 -1.16979 104.8644 0.357 0.126884 

IMERG 1.950067 3.23932 290.3848 0.261 0.06852 

APHRODITE 1.237686 0.80124 59.30799 0.1517 0.023014 

Murree 

CHIRPS 1.23966 0.998514 89.51049 0.184 0.033864 

ERA-5 0.934577 -0.27258 24.43484 0.376 0.141287 

IMERG 1.715339 2.980372 267.1717 0.217 0.047237 

APHRODITE 1.103078 0.439234 32.51222 0.562 0.315611 

Multan 

CHIRPS 0.917942 -0.05106 4.57694 0.164 0.027194 

ERA-5 1.142331 0.088559 7.938722 0.224 0.050183 

IMERG 2.968035 1.224517 109.7703 0.21945 0.048516 

APHRODITE 1.713999 0.440873 32.63354 0.4392 0.192869 

Association of the Data at a Daily Timescale: 
The daily data from rain gauge stations were compared with rainfall estimates from 

CHIRPS, IMERG, ERA-5, and APHRODITE. The association between these datasets was 
assessed using metrics including Bias, MAE, RMSE, R², and p (Table 3). Overall, APHRODITE 
demonstrated the highest correlations, with the strongest correlation observed at Lahore station 
(0.63), followed by Murree (0.56). IMERG showed a high bias across all stations (Table 3, Figure 
3). For Lahore, correlations with CHIRPS, ERA-5, and IMERG were weak, ranging from 0.2 
to 0.35. In Murree, which is geographically closer to Islamabad, APHRODITE provided a 
slightly better correlation, just above 0.5, while other datasets had weaker correlations ranging 
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from 0.1 to 0.37. CHIRPS slightly overestimated daily precipitation at Lahore (MAE = 0.00147), 
whereas APHRODITE and ERA-5 both underestimated (MAE = -0.28 and MAE = -0.139). 
At Multan, CHIRPS underestimated but was close to the mean of ground station data, while 
ERA-5 and APHRODITE overestimated (0.088 and 0.44, respectively). IMERG had the highest 
mean error. In Lahore, CHIRPS had a low RMSE, indicating higher accuracy, followed by ERA-
5 and APHRODITE with RMSE values of 12.5 and 20.9, respectively. In Islamabad, only 
CHIRPS had a low RMSE, consistent with its good correlation. All datasets showed significant 
dispersion at Murree, with ERA-5 and APHRODITE showing relatively lower accuracy. 

 
Figure 3: Statistical indicators showing the relationship between the ground station data and 

daily gridded precipitation datasets a) Bias, b) MAE, c) RMSE, d) CC, and e) R2 with 
correspondence observatories from 2001–2022. 

Association of the Data at a Monthly Timescale: 
All datasets exhibited strong correlations at the monthly timescale (Table 4, Figure 4). 

IMERG showed the highest correlation with monthly aggregates, particularly at Lahore station, 
where the correlation reached 0.93, followed by CHIRPS (0.90), APHRODITE (0.89), and 
ERA-5 (0.73). At Faisalabad station, IMERG also had the highest correlation with ground 
station data for monthly aggregates (0.90), followed by CHIRPS (0.80). Similarly, at Islamabad 
station, IMERG achieved the highest correlation (0.80). Regarding MAE, CHIRPS recorded 
values lower than the mean of ground station data for Multan, Islamabad, and Faisalabad, 
ranging from -1 to -3, indicating proximity to the ground station's monthly aggregates. Notably, 
a very low MAE of overestimation was observed for Lahore, while Murree exhibited a higher 
overestimation. ERA-5 showed underestimation at Lahore, Islamabad, and Murree, with the 
most significant mean underestimated error in Islamabad, exceeding -35. CHIRPS demonstrated 
very low RMSE values, less than 1 for Lahore, indicating high accuracy in precipitation 
estimation, though it showed considerable dispersion for Murree, resulting in the lowest 
accuracy among all cities. Despite providing the strongest monthly precipitation correlations, 
IMERG's high RMSE is attributed to outliers and significant differences between sub-datasets 
of ground stations and precipitation datasets on specific dates. APHRODITE, despite a lower 
correlation compared to IMERG, showed high RMSE values across all ground stations, ranging 
from 115.3 to 178.8, suggesting lower accuracy compared to CHIRPS and ERA-5. Although 
APHRODITE had a lower correlation than IMERG, its lower RMSE was due to less variance 
between APHRODITE sub-datasets and ground station data compared to IMERG. 
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Table 4: Statistical indicators for the association of the datasets at a monthly timescale 

Ground Station Data Bias MAE RMSE CC 𝐑𝟐 

Lahore 

CHIRPS 1.000801 0.044585 0.72579 0.9 0.8102 

ERA-5 0.92401 -4.23015 68.86191 0.729 0.5317 

IMERG 2.21794 67.79912 1103.69 0.928 0.848 

APHRODITE 0.837535 -8.5768 115.3891 0.8897 0.7915 

Faisalabad 

CHIRPS 0.9056 -3.3455 54.46076 0.8187 0.6703 

ERA-5 1.042978 1.523117 24.79455 0.6686 0.4471 

IMERG 2.548662 54.88383 893.4441 0.9051 0.8195 

APHRODITE 0.7781 -7.86403 128.0171 0.5697 0.3246 

Islamabad 

CHIRPS 0.981185 -1.94532 31.66753 0.8427 0.7101 

ERA-5 0.65691 -35.4733 577.4641 0.6467 0.4182 

IMERG 1.950067 98.23085 1599.082 0.8526 0.727 

APHRODITE 1.237686 24.25411 326.3056 0.3789 0.1383 

Murree 

CHIRPS 1.23966 30.27945 492.9138 0.8115 0.6586 

ERA-5 0.934577 -8.26577 134.557 0.7579 0.5745 

IMERG 1.715339 90.37837 1471.253 0.857 0.7352 

APHRODITE 1.103078 13.29593 178.8784 0.6789 0.461 

Multan 

CHIRPS 0.918732 -1.53205 24.94001 0.7903 0.6246 

ERA-5 1.143314 2.701724 43.98087 0.6871 0.4721 

IMERG 2.97059 37.14912 604.7438 0.8778 0.7704 

APHRODITE 1.71618 13.3693 179.8655 0.5841 0.3412 

Table 5: Statistical indicators for the association of the datasets at an annual timescale 

Ground Station Data Bias MAE RMSE CC 𝐑𝟐 

Lahore 

CHIRPS 1.000801 0.513696 2.463598 0.7835 0.6139 

ERA-5 0.92401 -48.7387 233.7427 0.1342 0.018 

IMERG 2.21794 781.1637 3746.33 0.8178 0.6688 

APHRODITE 0.818419 -97.0251 388.1004 0.0316 0.778553 

Faisalabad 

CHIRPS 0.9056 -38.546 184.8599 0.6265 0.3925 

ERA-5 1.042978 17.54896 84.16183 0.26 0.0676 

IMERG 2.548662 632.3572 3032.679 0.6855 0.4698 

APHRODITE 1.13 52.54579 210.1832 0.3087 0.0953 

Islamabad 

CHIRPS 0.984776 18.07 86.66068 0.736 0.5417 

ERA-5 0.659314 404.371 1939.295 0.2302 0.0553 

IMERG 1.957203 1136.134 5448.706 0.687 0.472 

APHRODITE 1.244417 280.6183 1122.473 0.4459 0.1989 

Murree 

CHIRPS 1.23966 348.872 1673.131 0.6139 0.3769 

ERA-5 0.934577 -95.2361 456.7362 0.3477 0.1209 

IMERG 1.715339 1041.316 4993.976 0.5556 0.3087 

APHRODITE 1.103078 150.4102 601.6408 0.7446 0.5443 

Multan 

CHIRPS 0.917936 -17.8402 85.55847 0.7165 0.5133 

ERA-5 1.142324 30.94029 148.3844 0.3469 0.1204 

IMERG 2.968018 427.8342 2051.821 0.8738 0.7637 

APHRODITE 1.713983 150.9696 603.8783 0.6249 0.3905 

Association of the Data at an Annual Timescale: 
In the yearly correlation analysis between CHIRPS and ground station data, a good to 

strong correlation was observed across all ground stations, ranging from 0.61 to 0.78 (Table 5, 
Figure 5). Lahore exhibited the strongest correlation, followed by Islamabad, Multan, Faisalabad, 
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and Murree. IMERG also demonstrated a good to strong relationship with all ground stations, 
with correlations ranging from 0.55 to 0.87. IMERG showed particularly high correlations for 
Lahore and Multan, with values exceeding 0.80 for both stations. APHRODITE presented 
slightly better correlations for Faisalabad and Islamabad. For Murree, APHRODITE showed a 
higher correlation (0.74) and a moderate correlation for Multan (0.62). CHIRPS exhibited 
minimal mean error for Lahore, but for Multan and Faisalabad, it was underestimated (-17.8 and 
-38.5), whereas for Murree and Islamabad, it was overestimated (348.87 and 18.07). These 
statistics highlight the deviations of rainfall datasets from the yearly mean of ground station data. 

 
Figure 4: Statistical indicators showing the relationship between the ground station data and 
daily gridded precipitation datasets at a monthly timescale, a) Bias, b) MAE, c) RMSE, d) CC, 

and e) R2 with correspondence observatories from 2001–2022. 
Discussion: 

The four gridded precipitation datasets evaluated in this study—ERA5, IMERG, 
CHIRPS, and APHRODITE—were thoroughly analyzed using data from five ground stations 
in Punjab Province, Pakistan, covering the period from 2001 to 2022. Statistical techniques, 
including bias, mean error (ME), root mean square error (RMSE), correlation coefficient (CC), 
and coefficient of determination (R²), were applied to assess these datasets on daily, monthly, 
and annual scales. Results revealed significant variations in dataset performance across different 
periods and geographic regions in Punjab. On a daily basis, IMERG exhibited limitations, 
particularly in Faisalabad, whereas CHIRPS demonstrated the best correlation with ground data 
in Lahore. IMERG showed greater dispersion from ground data compared to CHIRPS, which 
had lower Mean Absolute Error (MAE) values in Multan, Islamabad, and Faisalabad. However, 
IMERG led in monthly correlations across cities. Both IMERG and CHIRPS showed strong 
correlations in yearly evaluations, with IMERG exhibiting stronger correlations and CHIRPS 
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having lower mean errors. The study's strengths lie in its comprehensive assessment over 
multiple timescales and climatic zones in Punjab, enhancing the validity of its conclusions. 
However, regional emphasis and variability in ground station data quality are noted drawbacks. 
This study contributes to understanding the performance of gridded precipitation datasets, 
aligning with previous research that highlights the reliability of monthly forecasts [39] and the 
relative accuracy of IMERG and CHIRPS [18][40]. The findings suggest that, except for 
Faisalabad, most cities exhibited better daily correlations with CHIRPS, while IMERG 
outperformed on monthly and annual bases. These results support earlier studies that found 
monthly projections to be more reliable. Moreover, CHIRPS consistently showed smaller errors 
compared to IMERG, highlighting its relative accuracy. Nonetheless, disparities were observed, 
with IMERG occasionally overestimating precipitation and ERA-5 underestimating rainfall 
compared to other datasets. These findings underscore the importance of considering regional 
and spatiotemporal factors when using gridded precipitation datasets. Future research should 
explore hybrid models integrating multiple datasets, expand geographic coverage, incorporate 
recent data to assess climate change impacts, and employ advanced statistical techniques for 
evaluating dataset performance, especially in extreme weather events. Such advancements will 
enhance the selection and application of gridded rainfall datasets for improved water resource 
management, disaster planning, and climate monitoring. 

 
Figure 5: Statistical indicators showing the relationship between the ground station data and 
daily gridded precipitation datasets at an annual timescale, a) Bias, b) MAE, c) RMSE, d) CC, 

and e) R2 with correspondence observatories from 2001–2022. 
Conclusion: 

In countries like Pakistan, where rain gauge distribution is sparse, effective alternatives 
are needed. Satellite datasets offer a viable solution for assessing precipitation, provided they are 
efficient and deliver near-real-time data after error correction. This study evaluates four gridded 
rainfall measurements against rain gauge data from five ground stations, finding that while these 
datasets have higher errors for daily estimates compared to ground station data, they perform 
effectively for monthly and annual precipitation. Among the datasets, CHIRPS proved most 
suitable for both monthly and annual assessments due to its strong correlation and low RMSE 
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[41]. Biases vary significantly for daily satellite estimates compared to ground observatory data 
[42], but bias reduces with longer timescales due to data accumulation. For monthly evaluations, 
ERA-5 is suitable for Murree and Faisalabad due to its low RMSE, while APHRODITE is 
recommended for annual estimates in Murree due to its lowest variance and highest correlation. 
CHIRPS, however, remains highly effective for measuring both monthly and annual rainfall 
across all stations due to its minimal RMSE and bias. 
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