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his research investigates the feasibility of using cloud computing and open-data sources 
for hydrological modelling. It uses Google Earth Engine (GEE) and the Soil Conservation 
Service Curve Number (SCS CN) approach to estimate runoff. The SCS CN approach is 

frequently used in the simulation of rainfall-runoff processes, and it is especially useful in 
estimating water intake into rivers, lakes, and streams. Google Earth Engine offers a variety of 
functionalities, algorithms for rapid data manipulation and visualization, and access to large 
global remote sensing and geographic information system (GIS) datasets. This study describes 
the development of an algorithm that uses Google Earth Engine (GEE) to observe precipitation 
data and produce antecedent moisture condition (AMC) maps. The algorithm uses the Soil 
Conservation Service Curve Number (SCS CN) method, which combines MODIS land 
use/land cover (LULC) data with USDA soil texture data to classify hydrological soil groups. 
The runoff is estimated using three datasets: CHIRPS, GPM, and TRMM. A detailed analysis of 
the relationship between rainfall and runoff in the Mangla watershed from 2005 to 2015 is 
performed. The study not only quantifies the runoff estimated by each rainfall dataset, but it 
also performs a comparison analysis of the datasets to ensure the accuracy and reliability of 
hydrological modelling. The rainfall-runoff analysis over a time period ten years (2005-2015) 
reveals large fluctuations in average rainfall and runoff levels, as well as evident seasonal 
tendencies. The highest average precipitation (1412.194 mm) was recorded in 2015 resulting in 
an average runoff of 215.021 mm. In contrast, the minimum average precipitation of 672.808 
mm was recorded in 2009, resulting in an average runoff of 78.476 mm. The accuracy and 
validity of the modeled runoff observations are demonstrated through validation using observed 
meteorological data collected from Pakistan Meteorological Department (PMD), Water and 
Power Development Authority (WAPDA), and Climate Forecast System Reanalysis (CFSR). In 
the years 2008, 2009, and 2010, CHIRPS consistently proves better accuracies in comparison to 
GPM and TRMM, with accuracies of 90%, 79%, and 86% respectively. Furthermore, the 
sensitivity analysis conducted on the parameters of the SCS CN model reveals the impact of 
initial abstraction and Curve Number values on the estimation of runoff. In conclusion, this 
research work offers significant contributions to the understanding of hydrological processes in 
regions primarily influenced by monsoons and presents useful suggestions for the 
implementation of sustainable practices in water resource management. 
Keywords: SCS CN Method, Hydrological Modeling, Runoff Estimation, CHIRPS, GPM, 
TRMM, Google Earth Engine, Cloud Computing. 

     

 
 

   

    
 

T 

mailto:madil.ms21igis@student.nust.edu.pk
mailto:azmat@igis.nust.edu.pk
mailto:msohail.ms21igis@student.nust.edu.pk
mailto:madil.ms21igis@student.nust.edu.pk


                                 International Journal of Innovations in Science & Technology 

June 2024|Special Issue                                                                          Page |187 

Introduction: 
Water resources are constrained and vital to human socioeconomic growth as well as to 

all other living creatures. The excessive use of water stresses the world's water supplies because 
of population growth and development activities. The rate of rise in water extraction worldwide 
over the past century has been six times higher than the rate of population growth. Physical 
water scarcity is imminent for 500 million people, accounting for one fifth of the global 
population. According to estimates, 65% of the world's aquatic ecosystems and river outflow 
are under danger of degrading [1]. The majority of the water needed for agricultural and home 
use might come from surface runoff. Nonetheless, there have been notable worldwide shifts in 
surface runoff [2]. The two main factors thought to be responsible for variations in surface 
runoff are anthropogenic activity and climate change [3][4]. Anthropogenic activities encompass 
any human-caused environmental disturbances, such as urbanization, deforestation, altered land 
use, and water usage for industrial and agricultural purposes [5]. 

One of the most significant hydrologic variables utilized in numerous applications linked 
to water resources is runoff. Its frequency and amount are determined by the strength, duration, 
and distribution of the rainfall event. Planning and managing water resources at the watershed 
level requires a detailed evaluation of a waters [5] hed's hydrologic response. Accurate surface 
runoff estimation is becoming more and more important in the hydrologic sciences because of 
its role in managing water resources. Quantification of surface and subsurface runoff is used by 
hydrologists for many different reasons. Hydrologic modelling, basin water monitoring, 
groundwater recharging, flood risk assessment, and water infrastructure design are a few of the 
uses for this measurement. Runoff data collecting from gauging stations is a difficult job that 
frequently requires costly installation and upkeep. Accessible runoff data that is global, 
continuous, and most importantly trustworthy is becoming increasingly and more significant. 

The Natural Resources Conservation Services Curve Number (NRCS-CN) approach 
and its variants have been widely used in estimating runoff from ungauged watersheds. 
Compared to previous empirical and lumped parameter models, they have proven to be a faster 
and more accurate estimator of surface runoff [6]. The interplay of precipitation with the 
topography, land use, and physical characteristics of the soil of the land surface controls the 
hydrologic responses of the watershed that result in the formation of surface runoff. Because 
Geographic Information Systems (GIS) store and analyze the causal factors that lead to runoff 
generation, they are therefore preferable over traditional methodologies for accurately 
quantifying surface runoff. When the data required for CN-based runoff estimation approaches 
is saved, processed, and shown using a Geographic Information System (GIS), the estimation 
process becomes more interactive, efficient, and less labor-intensive. 

The Natural Resources Conservation Service Curve Number approach (NRCS-CN), 
previously known as the Soil Conservation Service-Curve Number (SCS-CN) method, is a 
popular model for calculating rainfall runoff [7]. Since its inception by the USDA SCS in 1954, 
the technique has risen in popularity because to its simplicity, credibility, dependability, and 
capacity to respond to a wide range of parameters including soil type, land use, surface condition, 
and antecedent moisture condition. The NRCS approach was first developed in the United 
States to estimate runoff from storm rainfall events in agricultural watersheds. However, because 
of its convenience, water resource professionals have used it in a range of scenarios and land 
uses. The NRCS-CN approach has been successfully used to urban hydrology, rainwater 
harvesting, subsurface flow estimation, evapotranspiration (ET) calculation, and rainfall-runoff 
modelling. The NRCS-CN method's widespread use proves its utility in hydrologic applications 
[8]. Numerous methods for predicting global surface runoff need a significant amount of 
computer time. Satellite data, acquired in near real time, can provide reliable estimates of surface 
runoff at a spatial resolution relevant to hydrology. In this sense, this study provides a valid 
method for employing the NRCS-CN approach to estimate surface runoff in near-real time at 
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the pixel, watershed, regional, and global levels.  The development of a nearly real-time terrestrial 
time-series runoff, particularly in ungauged watersheds, is critical for improving surface runoff 
and flood event estimates. Runoff estimations are used for flood predictions, hydrological 
engineering, agricultural planning, and water resource monitoring.  

A global dataset for curve numbers at 250 m resolution, known as GCN250, was just 
released and made available to the public. GCN250 was validated using runoff from the Global 
Land Data Assimilation System (GLDAS), not gauge runoff data [9]. Using Google Earth 
Engine (GEE), the primary planetary-scale geospatial analytic tool, the dataset can be improved 
by altering the curve number based on its slope and then cross-referencing it with runoff data 
and remotely sensed real-time precipitation estimations. Using the GCN250 dataset, which 
considers wet, average, and dry antecedent runoff conditions, such an application will generate 
a global runoff generator building [9].  

The Darewadi watershed is the topic of [10], which uses the Soil Conservation Service's 
(SCS) runoff curve number (CN) method for runoff estimation. The study focuses particularly 
on the integration of remote sensing (RS) and geographic information system (GIS) 
technologies. The Indian Meteorological Department's daily rainfall data was used during a 20-
year period. The study demonstrates how the SCS-CN model can be used to calculate the depth 
of surface runoff when detailed hydrological data is not available. The study emphasizes the 
reliability and effectiveness of GIS and remote sensing in rapidly acquiring, processing, and 
understanding data for watershed planning. The SCS-CN model, which has been tailored to 
Indian settings, takes into account variables such as soil permeability, land use, and historical 
soil water conditions. The approach examines land use, soil type, and drainage basin boundaries. 
GIS makes it easy to compute curve numbers for runoff estimation. The study finds a 
considerable increase in maximum recharge capacity after 5 days of preceding rainfall and 
suggests that GIS is an essential tool for the tedious manual calculation of curve numbers for 
large regions. It calculates average curve numbers for pre- and post-treatment in the Darewadi 
watershed. 

In [11] research work, the modified Soil Conservation System (SCS) Curve Number 
(CN) approach is utilized to investigate the estimation of rainfall and runoff, both of which are 
key components in hydrological research. The study uses GIS and remote sensing technology 
to estimate runoff efficiently in the Khuldabad taluka of Aurangabad District, India. The SCS-
CN technique evaluates runoff potential by considering variables such as slope, vegetation cover, 
and watershed area. The researchers employed satellite data, GIS, and visual interpretation 
techniques to create digital databases and thematic maps for the study area. The SCS-CN method 
was used to estimate runoff on a daily, monthly, and annual scale. The findings revealed varying 
patterns of rainfall during a ten-years period (2003-2012). The computed runoff displayed a 
changing pattern, with 2010 having the greatest annual runoff. The correlation coefficients for 
daily, monthly, and annual runoff all indicate strong relationships, with annual runoff having the 
best fit. The study emphasizes the usefulness of SCS-CN methodology and GIS technology in 
water resource management in the area, as well as providing detailed information about the 
watershed's hydrological dynamics. 

[12] provide a modified version of the Soil Conservation Service Curve Number (SCS-
CN) approach, which is a prominent model for estimating surface runoff. The split of antecedent 
moisture condition (AMC) into three stages causes challenges for the existing SCS-CN approach 
in terms of unexpected increases in anticipated runoff. Previous attempts to solve these 
problems, such as the technique provided by [13] have improved but not eliminated structural 
inconsistencies. The proposed modification improves the Soil Moisture Accounting (SMA) 
procedure by including storm duration for more accurate estimates and resolving structural 
discrepancies. Furthermore, a physical formulation with wide application in simulating soil 
moisture dynamics is described and validated using soil water data from an experimental plot. 
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This enables the estimation of antecedent soil moisture (V0). In an evaluation utilizing a dataset 
from two experimental watersheds, the revised strategy outperformed the original SCS-CN and 
[13] methods with an efficiency of 88% in both the calibration and validation situations. The 
report emphasis the enhanced surface runoff forecast accuracy of the proposed system and urges 
for additional research to assess its robustness and potential simplifications. 

 
Figure 1: Study Area - Mangla Watershed 

Study Area: 
The Mangla Basin in northeast Pakistan has a watershed area of 33,419 km² and consists 

of seven major sub-basins: Neelum, Poonch, Kunhar, Upper Jhelum, Kanshi, Lower Jhelum, 
and Kahan. Every sub-basin has unique characteristics because of differences in catchment size 
and terrain slope [14]. The basin's hydrological dynamics are influenced by its topography, which 
ranges from gently undulating lands to abrupt cliffs and hilly terrain. The Mangla reservoir 
receives its water input in a predictable seasonal rhythm, with the majority of the inflow 
occurring between March and August and peaking in May. On the other side, the reservoir 
receives relatively little flow from October to February, typically less than 400 m3/s until 
snowmelt begins in March, triggering a rise in water flow that peaks in mid-May. The basin's 
climate varies greatly, owing primarily to elevation differences [15]. As elevation increases from 
south to north, the climate shifts from subtropical to temperate. At higher elevations, 
temperatures drop below freezing. The distribution of precipitation patterns is bi-modular, with 
peaks in March due to snowfall and in July due to monsoon rains. The Kunhar sub-basin's steep 
northern portions receive the highest precipitation, significantly influencing the basin's 
hydrological regime [16]. Temperatures vary greatly throughout the basin, with summer 
temperatures reaching up to 50 °C in the south and winter temperatures plunging below freezing 
in the north [17]. The Mangla Basin's unique terrain is the result of intricate interplay between 
hydrological processes, climate variations, and topography factors. This emphasizes the basin's 
importance in efforts to manage water supplies and improve regional environmental 
sustainability [18]. 
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Methodology: 
To create a script for the SCS CN model using cloud data and the GEE server, various 

data availability sources were investigated. A flowchart and script were used to finalize the 
methodology, which included data on land cover, rainfall (CHIRPS, GPM, and TRMM), and 
soil texture (FAO). The image below depicts the entire process of this study. 

 
Figure 2: Methodology Flow Chart 

Development of SCS CN Model: 
As specified in the Soil Conservation Service (SCS) by the National Engineering 

Handbook (NEH-4) Section of Hydrology [19][20] the SCS–CN (1985) model was established 
in 1954 by the USDA SCS [21]. SCS-CN technique is predicated on the water balance 
computation [22]. The CN method, a lumped rainfall–runoff model that is event-based, is 
derived from the following water budget equation. 

𝐐 =  
(𝐏−𝐈𝐚)𝟐

(𝐏−𝐈𝐚)+𝐒
               𝐏 > 𝐈𝐚 Equation i 

where : 
Q = runoff depth, in mm 
P = rainfall depth, in mm 
Ia = initial abstraction, in mm 
S = surface retention maximum potential, in mm 

The primary components of initial abstraction are surface depression storage, infiltration 
during the initial stages of the storm, and interception. For small watersheds, where lag is 
negligible, it can be inferred from observed rainfall-runoff events as the precipitation that falls 
prior to the start of runoff. While surface conditions and land cover can be used to predict 
interceptions and surface depression storage, infiltration during the early stages of a storm is 
highly variable and depends on various elements such soil moisture, soil texture, and the intensity 
of the rainfall. It's difficult to establish a relationship for estimating Ia. As a result, it was believed 
that Ia depended on S, the maximum surface potential retention. The empirical relationship 
between Ia and S was expressed as; 

𝐈𝐚 = 𝟎. 𝟐𝐒 Equation ii 
The rainfall-runoff relationship is obtained by substituting initial abstraction Ia value 

into equation of discharge. 

𝐐 =
 (𝐏−𝟎.𝟐𝐒)𝟐

(𝐏+𝟎.𝟖𝐒)
Equation iii 
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Where P is the daily rainfall, Ia the initial abstraction, Q the direct surface run off, S the 
potential maximum surface retention. Using Ia = 0.2S, was used to determine the curve numbers 
in (NEH, [23]. 
Curve Number: 

The Curve number as defined by the U.S Soil Conservation Service (1972) is given by; 

𝐂𝐍 =  
𝟐𝟓𝟒𝟎𝟎

𝟐𝟓𝟒+𝐒
      𝐟𝐨𝐫 𝐒 𝐢𝐧 𝐦𝐢𝐥𝐥𝐢𝐦𝐞𝐭𝐞𝐫𝐬 (𝐦𝐦)Equation iv 

𝐂𝐍 =  
𝟏𝟎𝟎𝟎

𝟏𝟎+𝐒
               𝐟𝐨𝐫 𝐒 𝐢𝐧 𝐢𝐧𝐜𝐡𝐞𝐬 (𝐢𝐧𝐜𝐡)Equation v 

Where S the potential maximum surface retention and CN is a unitless run-off 
coefficient that depends on land use (LU), hydrological soil type and AMC [24]. 

 
Figure 3: Curve Number Values for equation Q=(P-0.2S)2/(P+0.8S) 

The amount and duration of rainfall, soil moisture content, land cover density, all 
contribute to the fluctuation in the CN. The Antecedent Moisture Condition (AMC) is a 
collective term for these sources of variability. Antecedent moisture is a catchment's relative 
wetness or dryness, which varies over time and has a big impact on run-off. Three classes can 
be distinguished within AMC. 

• AMC I- Wet conditions with lowest runoff potential 

• AMC II- Average Conditions with moderate runoff potential 

• AMC III- Heavy rainfall with greatest runoff potential 
Antecedent moisture conditions are determined using the previous five (5) days 

antecedent rainfall. 
Table 1: AMC conditions using the 5 days antecedent rainfall. 

Group Soil Characteristics 
Five-day antecedent rainfall in mm 

Dormant Season Growing Season 

AMC I Wet Conditions >13 >36 

AMC II Moderate Conditions Between 13 to 28 Between 36 to 53 

AMC III Heavy Rainfall <28 <53 

LULC and soil group conditions have been combined to generate CNs for AMC II. The 
following equations can be used to obtain CN for AMC I and AMC III equations [25][26]. 

𝑪𝑵 𝑰 =  
𝟒.𝟐 ×𝑪𝑵 𝑰𝑰

𝟏𝟎−𝟎.𝟎𝟓𝟖 ×𝑪𝑵 𝑰𝑰
 Equation ( vi)          𝑪𝑵 𝑰𝑰𝑰 =  

𝟐𝟑 ×𝑪𝑵 𝑰𝑰

𝟏𝟎+𝟎.𝟏𝟑×𝑪𝑵 𝑰𝑰
Equation( vii) 

According to antecedent soil moisture condition (AMC) and land use/cover (LU/LC), 
the SCS curve number determines a soil's capacity to permsit water infiltration [27]. According 
to the U.S. Soil Conservation Service (SCS), soils are categorized into four hydrologic soil 
groups, A, B, C, and D, based on the likely and eventual infiltration rates of runoff. To evaluate 
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the hydrological characteristics of the soil, soil texture data from the USDA Open Land Map 
were transformed into hydrological soil groups. Based on predetermined criteria, four 
hydrological groups (A, B, C, and D) were established from the soil texture classes, which 
indicate the relative amounts of sand, silt, and clay particles in the soil [28]. 

Table 2: The four USDA hydrologic soil groups (HSGs) are described as; 

Hydrological Soil Groups Description 

HSG (A) Sand & Sandy Loam 
HSG (B) Silty Loam & Loam 
HSG (C) Sandy Clay Loam 
HSG (D) Silt &Silty Clay Loam 

Table 3: Datasets Used in this research work 

S/N0 Data Type Dataset Availability 

1 TRMM, CHIRPS and GPM Rainfall data 1998-2020 
2 Open Land Map Soil Texture 

Class (USDA System) 
Soil data 1950-2018 

3 MODIS Land Cover Type 
Yearly Global 500m 

LULC 2001-2021 

4 Digital Elevation Model (SRTM) DEM 2000 
5 Station rainfall data of PMD and 

WAPDA 
Rainfall data 1960-2020 

Table 4: Mangla Watershed LuLc Area in Sq-Km 

 
Figure 4: Mangla Watershed Land Use Land Cover Map 

A comprehensive assessment was done to classify land use and land cover (LULC) 
within the Mangla watershed. The results of the land use and land cover (LULC) study exhibited 
a wide array of land cover categories throughout the watershed. Notably, forests constitute a 
significant proportion, spanning 9,851 square kilometers, which corresponds to 29% of the total 
land area. The region's agricultural activities are reflected in the 3,311 square kilometers (10%) 
of crops and agricultural grounds. The urban and infrastructural development within the 
watershed is indicated by the built-up area, which covers 4,515 square kilometers (14%). In 
addition, there is 1,126 square kilometers (3%) of bare ground and 1,610 square kilometers (5%) 
of snow-covered regions. The primary attribute of the terrain is vegetation, including a total area 
of 12,666 square kilometers, which accounts for approximately 38% of the total land area. 
Mangla Watershed Soil Texture Map: 

Within the study area, two distinct hydrological soil types have been identified, namely 
Group C (Sandy loam) and Group D (Clay loam). The predominant soil type identified across 

LuLc Type Area_SqKm 

Water 340 
Forest 9851 
Crops/Agriculture 3311 
Built-up Area 4515 
Bare Land 1126 
Snow Covered 1610 
Vegetation 12666 

Total 33419 
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the study area is Sandy loam soil. Sandy loam soil is characterized by an average soil texture, 
exhibiting a fairly uniform distribution of sand, silt, and clay particles. It is commonly observed 
in regions characterized by moderate to high levels of precipitation. 

 
Figure 5: Mangla Watershed Soil Map 

Soil data were characterized using soil texture data from the Open Land Map Soil 
Texture Class (USDA System) on Google Earth Engine [29]. Soil texture, or the relative 
proportions of sand, silt, and clay particles in the soil, has a substantial impact on soil fertility, 
water retention capacity, and overall soil quality. 

Table 5: Hydrological Soil Group vs Runoff Potential 

Hydrological 
Soil Group 

Soil Type 
Runoff Potential 

Infiltration Rate 
mm/hr 

HSG (A) Sand & Sandy Loam Low Greater than 7.5 
HSG (B) Silty Loam & Loam Medium Between 3.8 to 7.5 
HSG (C) Sandy Clay Loam Medium Between 1.3 to 3.8 
HSG (D) Silt & Silty Clay Loam High Less than 1.3 

Precipitation Datasets: 
In this research we used three commonly utilized rainfall datasets to investigate 

precipitation patterns. These datasets include the Tropical Rainfall Measuring Mission (TRMM), 
the Global Precipitation Measurement (GPM), and the Climate Hazards Group Infrared 
Precipitation with Station Data (CHIRPS). CHIRPS combines a unique mix of in-situ station 
data and satellite photos with a resolution of 0.05° to provide highly precise gridded rainfall time 
series from 1981 to December 31, 2023 [30]. A groundbreaking global satellite effort known as 
the Global Precipitation Measurement (GPM) promises to change our understanding of global 
precipitation patterns IMERG, or Integrated Multi-satellite Retrievals for GPM, is the project's 
core component [31]. IMERG's fine-scale temporal resolution allows researchers to properly 
capture the intricacies of rainfall variability, with observations available every three hours. The 
GPM mission continues to lead global precipitation monitoring via constant validation and 
development, offering essential insights into the complexities of rainfall variability and its 
consequences for the environment and society [32]. The TRMM dataset provides researchers 
with precise insights into the global dynamics of tropical precipitation, with a temporal 
resolution of three hours and a spatial precision of 0.25 degrees. TRMM uses an advanced 
algorithm to gather satellite observations from many microwave devices in the constellation, 
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improving and interpolating precipitation estimates. Another element of the dataset is the RMS 
precipitation-error estimate, which increases the accuracy and dependability of rainfall data. It is 
critical to understand the complex connections between tropical rainfall patterns and wider 
climate dynamics [33]. 
Generating Curve Number Map: 

Curve Number (CN) is a dimensionless parameter in hydrology that represents the 
runoff potential of a watershed or a specific geographical region. The Curve Number (CN) is an 
important component of several hydrological models, particularly the SCS-CN approach. 

Table 6: CN Values for HSGs and Land Cover (USDA) 

S. No LuLc A B C D 

1 Water 100 100 100 100 
2 Trees 40 66 77 85 
3 Terraced Crop 50 63 74 83 
4 Build Up Area 81 88 91 93 
5 Bare Land 68 79 86 89 
6 Snow/Ice 98 98 98 98 
7 Vegetation 63 77 88 88 

 
Figure 6: Google Earth Engine Flow Chart [34]. 

SCS CN Model in GEE: 
Google Earth Engine's vast collection of spatial data makes it simple to choose input 

data. Users can use a variety of filter methods to narrow down datasets from large image 
collections. Furthermore, GEE can handle dynamic data, but current models cannot. First, the 
image expression uses the ternary operator to arrange the soil texture map into four hydrologic 
soil groups (A, B, C, and D). Next, using the conditional statement, the curve number (CN II) 
map is created for each combination of the four soil groups and the 17 MODIS LULC data sets. 
The CN I and CN III equations are used to generate the CN I and CN III maps from CN II. 
The S image is AMC dependent and serves the same purpose as the CN image. As a result, 
during the final Q computation, the S values for the CN maps are formed. To minimize 
processing time, the script generates S images as a global variable for all CN conditions [34]. 
Create CN Map using JavaScript Expression: 

CN values assigned to individual pixels were examined using the inspector tool in order 
to evaluate the dependability of the CN map. In order to do this, it was necessary to confirm if 
the given CN values matched the expected values for each land use land cover and soil 
hydrological group listed in the CN table provided by United States Department of Agriculture 
(USDA). For example, the expected CN value for water bodies should be between 98 and 100. 
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Using the inspection tool, we found that water bodies had a CN value of 100, confirming the 
accuracy of the CN values generated. 

Table 7: Curve Number Expression using "IF" Statement 

Soil Group A Soil Group C 

(a('soil') = 1) && (a('lulc') =1) 35 (c('soil') = 3) && (c('lulc') =1) 73 
(a('soil') = 1) && (a('lulc') =2) 25 (c('soil') = 3) && (c('lulc') =2) 70 
(a('soil') = 1) && (a ('lulc' =3) 45 (c('soil') = 3) && (c('lulc' =3)  77 
(a('soil') = 1) && (a('lulc') =4) 39 (c('soil') = 3) && (c('lulc') =4) 74 
(a('soil') = 1) && (a('lulc') =5) 45 (c('soil') = 3) && (c('lulc') =5) 77 
(a('soil') = 1) && (a('lulc') =6) 49 (c('soil') = 3) && (c('lulc') =6) 79 
(a('soil') = 1) && (a('lulc') =7) 68 (c('soil') = 3) && (c('lulc') =7) 86 
(a('soil') = 1) && (a('lulc') =8) 36 (c('soil') = 3) && (c('lulc') =8) 73 
(a('soil') = 1) && (a('lulc') =9) 45 (c('soil') = 3) && (c('lulc') =9) 77 
(a('soil') = 1) && (a('lulc') =10) 30 (c('soil') = 3) && (c('lulc') =10) 71 
(a('soil') = 1) && (a('lulc') =11) 95 (c('soil') = 3) && (c('lulc') =11) 96 
(a('soil') = 1) && (a('lulc') =12) 66 (c('soil') = 3) && (c('lulc') =12) 85 
(a('soil') = 1) && (a('lulc') =13) 72 (c('soil') = 3) && (c('lulc') =13) 87 
(a('soil') = 1) && (a('lulc') =14) 63 (c('soil') = 3) && (c('lulc') =14) 83 

(a('soil') = 1) && (a('lulc') =15) 100 (c('soil') = 3) && (c('lulc') =15) 100 
(a('soil') = 1) && (a('lulc') =16) 73 (c('soil') = 3) && (c('lulc') =16) 90 
(a('soil') = 1) && (a('lulc') =17) 100 (c('soil') = 3) && (c('lulc') =17) 100 

Soil Group B Soil Group D 

(b('soil') = 2) && (b('lulc') =1) 51 (d('soil') = 4) && (d('lulc') =1) 78 
(b('soil') = 2) && (b('lulc') =2) 55 (d('soil') = 4) && (d('lulc') =2) 77 
(b('soil') = 2) && (b ('lulc' =3) 66 (d('soil') = 4) && (d ('lulc' =3) 82 
(b('soil') = 2) && (b('lulc') =4) 61 (d('soil') = 4) && (d('lulc') =4) 81 
(b('soil') = 2) && (b('lulc') =5) 66 (d('soil') = 4) && (d('lulc') =5) 82 
(b('soil') = 2) && (b('lulc') =6) 69 (d('soil') = 4) && (d('lulc') =6) 90 
(b('soil') = 2) && (b('lulc') =7) 79 (d('soil') = 4) && (d('lulc') =7) 89 
(b('soil') = 2) && (b('lulc') =8) 60 (d('soil') = 4) && (d('lulc') =8) 79 
(b('soil') = 2) && (b('lulc') =9) 65 (d('soil') = 4) && (d('lulc') =9) 83 
(b('soil') = 2) && (b('lulc') =10) 58 (d('soil') = 4) && (d('lulc') =10) 78 
(b('soil') = 2) && (b('lulc') =11) 95 (d('soil') = 4) && (d('lulc') =11) 95 
(b('soil') = 2) && (b('lulc') =12) 78 (d('soil') = 4) && (d('lulc') =12) 89 

(b('soil') = 2) && (b('lulc') =13) 81 (d('soil') = 4) && (d('lulc') =13) 89 
(b('soil') = 2) && (b('lulc') =14) 75 (d('soil') = 4) && (d('lulc') =14) 87 
(b('soil') = 2) && (b('lulc') =15) 100 (d('soil') = 4) && (d('lulc') =15) 100 
(b('soil') = 2) && (b('lulc') =16) 84 (d('soil') = 4) && (d('lulc') =16) 92 
(b('soil') = 2) && (b('lulc') =17) 100 (d('soil') = 4) && (d('lulc') =17) 100 

Rainfall: 
After generating the Curve Number (CN) map, three rainfall datasets were used to assess 

the hydrological modelling process. To improve the hydrological modelling approach, three 
rainfall datasets were combined with the Curve Number (CN) map. The Climate Hazards Group 
InfraRed Precipitation with Station Data (CHIRPS) daily dataset [35] was utilized first, followed 
by the Global Precipitation Measurement, GPM [32] and Tropical Rainfall Measuring Mission 
(TRMM) [36] datasets. Notably, CHIRPS data was available with a temporal resolution of 24 
hours, whereas TRMM and GPM data were available every three hours. Mathematical 
computations were used to convert TRMM and GPM data to daily values for consistency in 
analysis. 
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Figure 7: Mangla Watershed Curve Number Map 

 
Figure 8: Observed vs Simulated Rainfall Graph 

Daily Antecedent Moisture Condition (AMC) images were generated based on rainfall 
data. First, the AMC value range for each pixel and day were examined. A Soil Moisture 
Condition (S) image was created based on each pixel's AMC value. In particular, the S-I image 
computed from CN I [40] was used to replace pixels with AMC less than 13 mm, while the S-
III image computed from CN III was used to replace pixels with AMC greater than 28 mm. 
According to [40] pixels with AMC values of 13 to 28 mm retained their previous CN II values. 
Using this method, a single S image could be generated for each day, containing the appropriate 
soil moisture levels depending on the AMC values obtained throughout the study area. The S 
picture served as the foundation for further hydrological modelling and research. This provided 
insights into the constant interaction between runoff potential, soil moisture, and rainfall. 

Table 8: Inventory of Climate stations 

No. Station Name Latitude 
N 

Longitude 
E 

Elevation(m) Data 
Source 

Data 
Availability 

1 Balakot 34.38 73.35 995 PMD 1962-2023 
2 Ghari Dopatta 34.22 73.62 814 PMD 1961-2023 
3 Kotli 33.52 73.90 614 PMD 1981-2023 
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4 Murree 33.90 73.39 2213 PMD 1961-2023 
5 Muzaffarabad 34.37 73.48 686 PMD 1961-2023 
6 Bagh 33.97 73.77 1067 WAPDA 1970-2009 
7 Domel 33.71 73.49 702 WAPDA 1970-2009 
8 Gujjar Khan 33.26 73.30 547 WAPDA 1970-2009 
9 Naran 34.90 73.64 2362 WAPDA 1970-2009 
10 Rawalakot 33.85 73.75 1676 WAPDA 1970-2009 
11 Rehman Bridge 33.50 73.90 530 WAPDA 1970-2009 
12 Saiful Maluk 34.88 73.69 3240 WAPDA 1970-2009 
13 Sehr Kokata 33.50 73.73 915 WAPDA 1970-2009 
14 Neelum 34.66 74.47 1035 CFSR 2000-2022 
15 Baramulla 34.68 75.07 995 CFSR 2000-2022 
16 Srinagar 34.20 74.86 1050 CFSR 2000-2022 
17 Pulwama 33.67 74.49 1102 CFSR 2000-2022 
18 Poonch 33.53 75.39 802 CFSR 2000-2022 

*CFSR [37][38][39] 

 
Figure 9: Rainfall Spatial Maps (Year 2010) 

 
Figure 10: CHIRPS, TRMM and GPM Computed vs Observed Rainfall 

Results and Discussions: 
The rainfall-runoff model was successfully developed on the Google Earth Engine 

(GEE) platform using the Soil Conservation Service Curve Number (SCS-CN) method. This 
model utilizes GEE's JavaScript API to incorporate essential data such as rainfall data, land use 
land cover (LULC) maps, and soil maps. To generate CN maps, the soil texture map was first 
classified as a soil hydrology group, and then integrated with LULC data. Antecedent Moisture 
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Conditions (AMC) were determined based on the total amount of precipitation received over 
the previous five days. The daily runoff was then calculated, considering the AMC conditions 
for each pixel. 

 
Figure 11: CHIRPS, TRMM and GPM Runoff Maps 

The study area encompassed the Mangla watershed for ten years, from 2005 to 2015. It 
is important to emphasize that the study is based on the assumption that rainfall should always 
exceed runoff. Any occurrence in which runoff numbers exceed the amount of rainfall would 
indicate possible calculation error. The combined analysis of the CHIRPS, GPM, and TRMM 
datasets from 2005 to 2015 reveals important information about the patterns of summer 
monsoon rainfall in the Mangla watershed. Over a ten-year period, the datasets demonstrate 
unique seasonal fluctuations and general trends in rainfall patterns, illustrating the 
unpredictability of the summer monsoon with significant variances between years. Despite 
variations between the datasets, there is a consistent representation of the seasonal onset and 
withdrawal of the monsoon, with peak rainfall occurring during the monsoon months. Figure-
10 shows yearly rainfall against each dataset with the corresponding runoff values generated. In 
2005 highest rainfall 944.98mm was recorded for GPM resulting in a mean runoff of 83.829mm, 
followed by CHIRPS with a mean rainfall of 905.75mm, generating a runoff of 179.874mm. 
While the lowest rainfall for the year 2005 was recorded by TRMM with a mean value of 
838.615mm resulting in a mean runoff of 127.20mm. Despite heavy rainfall only 8.8% of runoff 
was generated by GPM, this is because of the dry monsoon season where only 293mm rainfall 
was recorded which led to AMC I (lowest runoff potential). In 2006 a significant increase was 
observed in the rainfall values, for GPM it was 339mm taking the mean precipitation to 
1283.321mm that resulted in a mean runoff of 242.89mm which increased the runoff value by 
44%, for TRMM a mean rainfall of 1140.19mm was observed in the year 2006, resulting in a 
mean runoff of 210.77mm while for CHIRPS it was observed to be 1002.135mm generating a 
runoff of 241.74mm. Not much difference was observed in 2007,2008 and 2009 where a mean 
rainfall of 932.363, 948.24 and 800.15mm was recorded for CHIRPS resulting in a mean runoff 
of 210.80,202.97 and 119.12mm respectively. For GPM a rainfall of 867.92mm was observed in 
2007, 1078.83mm in 2008 and 782.78mm in 2009. While the corresponding runoff values are 
124mm, 140mm and 63.24mm respectively. 
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In 2010, a slight increase can be seen in the rainfall values which ultimately add off to 
the runoff values. For CHIRPS a mean runoff of 230.63mm was recorded, for TRMM it was 
observed to be 159.13mm and in case of GPM a mean runoff of 173.064mm was recorded. 
Next three years, 2011-2013 were relatively dry where a mean rainfall of 876.88mm was recorded 
for GPM, TRMM and CHIRPS, which resulted in a mean runoff of 132.2mm only. During the 
year 2014, which was dominated by heavy monsoon rainfalls high mean precipitation values 
were recorded. For CHIRPS it was observed to be 1244.064mm, for TRMM it was 1098.22mm 
while in case of GPM it was observed to be 1170.56mm resulting a mean runoff of 
402.65,285.198 and 254.085mm respectively. In 2015 a rich pre-monsoon season was observed 
where a mean rainfall of 1228.064mm was observed for CHIRPS that resulted in a mean runoff 
of 283.82mm. on the other hand TRRM and GPM recorded a mean precipitation of 1175.79mm 
and 1412.19mm respectively, while their corresponding runoff vales were 287.36mm and 
215.021mm. Overall an increasing trend was observed in the rainfall values from 2005 to 2015 
for all the datasets. For rainfall values it was noticed that GPM led the charts while in case of 
runoff, CHIRPS was observed to be on the dominating side. TRMM seemed to be in transition 
for both rainfall and runoff. 

  
Figure 12: Yearly Rainfall vs Runoff (GPM, TRMM & CHIRPS) 

Monsoon: 
There are two sources of rainfall in the Indus River basin: the monsoon and the western 

disturbance [41]. Western disturbances begin in December and spersist until March, while the 
summer season runs from June to September. The Indian Monsoon, which is also known as the 
summer monsoon in South Asia, is a significant meteorological phenomenon that affects 
regional weather patterns and agricultural practices [42]. Heavy rains and strong winds are used 
to provide relief from the extreme heat leading up to the monsoon season, which lasts from 
June to September. In countries such as Pakistan [43] India, Bangladesh, and Nepal, the summer 
monsoon contributes significantly to yearly rainfall. This helps to keep agricultural activities 
running by giving water to crops and replenishing groundwater reserves [44]. We explored 
seasonal variation in precipitation properties over the Mangla watershed to compare the 
differences in seasonal variations in precipitation characteristics between TRMM, GPM, and 
CHIRPS, we chose three different years: 2006, 2010, and 2015. The target years were chosen 
based on the significant rainfall cycles that occurred across those years. Figure 11 shows the 
runoff values recorded against each rainfall dataset during the monsoon season, demonstrating 
the difference in runoff generation based on the recorded rainfall. For example, in June 2006, 
an average runoff of 20mm was recorded for CHIRPS rainfall, for GPM a runoff of 3.4mm, 
and for TRMM the recorded runoff was 3.5mm only. During the peak monsoon season in July 
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and August, CHIRPS records runoff values of 125mm in 2006, 112mm in 2010, and 73mm in 
2015. GPM records runoff values of 146mm, 105mm, and 43mm for the respective years, while 
TRMM records 122mm, 80mm, and 42mm. Overall, CHIRPS exhibits the highest total runoff 
during the peak monsoon season, followed by GPM, with TRMM showing the lowest runoff 
values. 

  
Figure 13: TRMM, GPM and CHIRPS Monsoon Rainfall and Runoff 

Comparisons in year-to-year variations of seasonal mean monsoon rainfall for 3 different 
years (2006,2010 and 2015) of TRMM, GPM and CHIRPS was carried out. Yearly rainfall shows 
highest mean values for GPM 637mm in 2006 followed by TRMM with a mean rainfall of 
623mm while the lowest yearly mean values of 552mm was observed in case of CHIRPS during 
the monsoon season year 2006.Interestengly the runoff calculated was highest 202mm for 
CHIRPS, 176mm recorded for GPM and lowest 133mm was observed in case of TRMM. 
Despite the lowest rainfall values for CHIRPS, highest runoff values were observed during 2006 
monsoon season because of AMC III (highest runoff potential) conditions, which is a function 
of consistent rainfalls and high soil moisture content. Moving forward to monsoon 2010 where 
a mean rainfall of 505mm was recorded for CHIRPS resulting in a mean runoff of 176mm.  In 
the case of GPM, during monsoon, a rainfall of 543mm was observed generating a runoff of 
111mm in the year 2010. While in case of TRMM it was observed to be 535mm in 2010 
monsoon season resulting in a mean runoff of 85mm only. In the year 2015 monsoon season 
the mean rainfall recorded for CHIRPS was 478mm resulting in a mean runoff of 158mm. For 
the same year (2015) GPM showed relatively higher rainfall values (499mm) during monsoon 
season, generating a mean runoff of 77mm. While TRMM in monsoon 2015 showed a mean 
precipitation of 443mm resulting a runoff of 67mm. 
Results Validation: 

For validation of results the observed daily meteorological data from year (1961-2022) 
were obtained from Pakistan Meteorological Department (PMD), Water and Power 
Development Authority (WAPDA) and Climate Forecast System Reanalysis (CFSR). The 
WAPDA stations are mainly for observing the flow discharge data, but they also observe certain 
climatic data such as precipitation and temperature data. An inventory of meteorological stations 
is displaced in Table-7. As Mangla Basin is a transboundary waterbody and we only have 
observed data of PMD and WAPDA which doesn’t cover the entire basin that’s why CFSR data 
were used along with PMD and WAPDA stations for the validation of results. CFSR data can 
be used in data scarce regions [38]. Out of 18 stations that were used for validation, data of five 
(5) stations were taken from CFSR database. 

For the year 2008 the actual mean runoff calculated from the ground stations was 
224.96mm while the observed mean runoff was 202.9mm for CHIRPS rainfall datasets, showing 
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a remarkable accuracy of 90%. While for GPM, a mean runoff of 140.5mm was observed with 
an accuracy of 62.5% only. The lowest accuracy of 52% was observed for TRMM rainfall 
datasets, where a mean runoff of 117mm was recorded during the year 2008. In 2009, the actual 
runoff recorded was 149.71mm while observed runoff for CHIRPS was 119.12mm (79% 
accuracy), 78.47mm (52% accuracy) for GPM and for TRMM a runoff of 63.24mm with an 
accuracy of 42% was observed. The mean runoff recorded was 267.37mm for the year 2010 
while the observed mean runoff for CHIRPS, GPM and TRMM was, 230.63mm, 173.064mm 
and 159.19mm respectively with the highest accuracy of 86% by CHIRPS, 65% accuracy by 
GPM and about 60% accuracy was shown by TRMM.  
Sensitivity Analysis: 

As it is evident from the equation of SCS CN model that it requires only two input 
parameters one is initial abstraction value, and the second one is rainfall data. 

𝐐 =  
(𝐏 − 𝐈𝐚)𝟐

(𝐏 − 𝐈𝐚) + 𝐒
 

Where, 

𝐈𝐚 = 𝟎. 𝟐𝐒 

𝐐 =
 (𝐏 − 𝟎. 𝟐𝐒)𝟐

(𝐏 + 𝟎. 𝟖𝐒)
  Equation(a) 

𝐂𝐍 =  
𝟐𝟓𝟒𝟎𝟎

𝟐𝟓𝟒 + 𝐒
      𝐟𝐨𝐫 𝐒 𝐢𝐧 𝐦𝐢𝐥𝐥𝐢𝐦𝐞𝐭𝐞𝐫𝐬 (𝐦𝐦) 

From equation (a) it is clear that basin recharge (S) depends on Curve Number value. 
So, we evaluated the model sensitivity for CN and S values. It can be clearly seen in the graph 
(Figure-12) that the estimated runoff was equal to zero when the CN values were less than 70 
and then there is an increasing trend in the runoff values with increase in CN values. At CN=100 
runoff values were equal to rainfall, as CN=100 represents waterbodies. On the other hand, in 
Figure-12 it can be observed that the runoff values decrease gradually as the initial abstraction 
values are increasing. Higher the Ia value lower will be the estimated runoff and vice versa. This 
comparative analysis confirmed that SCS CN model was much more sensitive to change in CN 
values and less sensitive to Ia values, and the same point is already endorsed [45]. 

Table 9: Results Validation against each Watershed 

Objectid Shape LULC Watershed hydgrp CN 
Basin 

Recharge Ia =0.2S 

273523 Polygon Built-up WS-1 C 91 25.12088 5.024176 
274025 Polygon Vegetations WS-1 C 85 44.82353 8.964706 
274233 Polygon Crops WS-1 C 74 89.24324 17.84865 
274980 Polygon Barren Land WS-1 C 86 41.34884 8.269768 
275568 Polygon Crops WS-1 C 74 89.24324 17.84865 
275615 Polygon Trees WS-1 C 77 75.87013 15.17403 
381596 Polygon Snow/Ice WS-2 C 98 5.183673 1.036735 
381683 Polygon Trees WS-2 C 77 75.87013 15.17403 
381746 Polygon Vegetations WS-2 C 85 44.82353 8.964706 
383132 Polygon Barren Land WS-2 C 86 41.34884 8.269768 
384209 Polygon Water WS-2 C 100 0 0 

263 Polygon Snow/Ice WS-3 C 98 5.183673 1.036735 
264 Polygon Barren Land WS-3 C 86 41.34884 8.269768 
269 Polygon Vegetations WS-3 C 85 44.82353 8.964706 
1264 Polygon Barren Land WS-4 D 89 31.39326 6.278652 
1837 Polygon Snow/Ice WS-4 D 98 5.183673 1.036735 
2555 Polygon Vegetations WS-4 D 88 34.63636 6.927272 
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2084 Polygon Snow/Ice WS-4 C 98 5.183673 1.036735 
2158 Polygon Barren Land WS-4 C 86 41.34884 8.269768 
2567 Polygon Vegetations WS-4 C 85 44.82353 8.964706 

127942 Polygon Snow/Ice WS-5 C 98 5.183673 1.036735 
129938 Polygon Vegetations WS-5 C 85 44.82353 8.964706 
130065 Polygon Built-up WS-5 C 91 5.183673 1.036735 
130422 Polygon Trees WS-5 C 77 75.87013 15.17403 
131274 Polygon Water WS-5 C 100 0 0 
156846 Polygon Barren Land WS-6 C 86 41.34884 8.269768 
157475 Polygon Trees WS-6 C 77 75.87013 15.17403 
157571 Polygon Vegetations WS-6 C 85 44.82353 8.964706 
160555 Polygon Snow/Ice WS-6 C 98 5.183673 1.036735 
173402 Polygon Water WS-6 C 100 0 0 
167119 Polygon Crops WS-6 C 74 89.24324 17.84865 
175467 Polygon Trees WS-6 D 85 44.82353 8.964706 
175806 Polygon Vegetations WS-6 D 88 34.63636 6.927272 
176128 Polygon Snow/Ice WS-6 D 98 5.183673 1.036735 

  
Figure 14: Runoff vs Curve Number and Runoff vs Initial Abstriction 

Conclusion and Recommendations: 
The application of Geographic Information Systems (GIS) in hydrologic modeling and 

water resource management is crucial for effectively analyzing and managing large datasets 
associated with water resources. However, the processing of such large datasets requires 
significant computing resources, which can be challenging for traditional computing 

environments. To address this challenge, the developed runoff model leverages the powerful 
computing environment of Google Earth Engine. Google Earth Engine provides a scalable 
platform for processing big data in minutes [46], overcoming the limitations of traditional 

computing resources and saving valuable time in the modeling process. In the runoff model, 
various data inputs are incorporated, including soil data, land cover data, rainfall data, and 
Antecedent Moisture Conditions (AMC However, it is important to remember that the model's 
default Curve Number (CN) for water bodies and snow may not always accurately reflect their 
hydrological characteristics. A CN of 98-100 may be good for water bodies, however it is not 
appropriate for snow-covered terrain. 

To increase the model's accuracy, recommendations include improving the CN values 
assigned to snow-covered locations. This can be done by taking into account additional variables 
such as temperature, which are critical in determining snowmelt processes. Incorporating 
temperature data enables the computation of growing degree days or melting degree days, which 
can then be used to obtain more accurate CN values for snow-covered terrain. By fine-tuning 
the CN values based on temperature data, the runoff model may deliver more realistic 
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simulations of hydrological processes in snow-covered locations, thereby enhancing hydrologic 
modelling and water resource management efficiency. 
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