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ccurate mapping of agricultural lands and crop distribution are critical for food security, 
sustainable development, and policymakers. In this research, agricultural crops were 
classified using multi-sensor images of Sentinel-1 and Sentinel-2 in Rahim Yar Khan 

district of Pakistan. The study used the cloud computing platform, Google Earth Engine (GEE), 
and compared the classification performance of the Random Forest (RF) algorithm using the 
Sentinel-1 (VV, HV, and HV+VV), Sentinel-2, and integration of the datasets.  Ground truth 
information developed through field surveys and high-resolution images were used as reference 
samples for training and validation. The fusion of Sentinel-1 and Sentinel-2 data increase the 
features for better classification of crop types. Post-processing procedures guaranteed that maps 
were visually clear and devoid of noise, allowing for precise crop mapping and land cover land 
use categorization. The classification findings showed that crop pixels were effectively classified, 
with high accuracy for classes including sugarcane, cotton, rice and water bodies. The RF 
classifier with the fused data produced the highest accuracy (overall accuracy 93%, and Kappa 
coefficient 90%), followed by the multispectral Sentinel-2 (89 %), Sentinal-1 VV+VH (72%), 
Sentinel – 1 VH (66 %), and Sentinel – 1 VV (62%). The study highlights the importance of data 
integration to increase the classification accuracy of major crops (sugarcane, cotton, and rice) in 
the region. While some classes demonstrated exceptional classification accuracy, others (such as 
Orchard) indicated need for improvement for further refinement in categorization procedures 
and approaches.  Overall, the study provides useful insights into the use of multi-sensor remote 
sensing data in agricultural monitoring and decision-making processes. 
Keywords: Machine learning, Crop classification, Sentinel-1, Sentinel-2, Google Earth Engine. 

     

 
 

   

    
 

A 



                                International Journal of Innovations in Science & Technology 

June 2024|Special Issue                                                                           Page |295 

Introduction: 
The number of people facing hunger in the Asia and Pacific region has reached to 375.8 

million in 2020 [1]. This situation is exacerbated as 1.1 billion did not have access to adequate 
food which presents a bleak picture of food security. In such scenarios, accurate and timely 
quantification of agricultural crops and their geographical distribution are critical for ensuring 
food security [2]. Crop mapping is also helpful as an important aspect of crop production 
forecast and agricultural statistics [3] to assess food demands. Satellite remote sensing has 
enabled in-season satellite-based crop classifications [4], [5]using multispectral imagery [6]. 

In June 2015, a high resolution (10 m) remote sensing satellite, Sentinel-2, was launched 
by the European Space Agency (ESA). The mission consists of two identical satellites, Sentinel-
2A and Sentinel-2B, each satellite returns every ten days, giving the constellation a five-day revisit 
period. The sensor, multispectral instrumentation (MSI) on-board Sentinel-2 provided 
multispectral data with 13 spectra bands in the visible, near-infrared, and shortwave infrared 
regions of the spectrum [7], [8]. Despite the higher temporal frequency of observations, the 
optical data often impeded due to the inability of optical radiation to penetrate through clouds 
that create gaps in time series observations [9] and can decrease the accuracy of crop type 
identification [10], [11]. In the areas with frequent cloud cover, the microwave remote sensing 
can compensate for missing temporal information as well as provide additional information for 
land cover land use (LCLU) classification. The microwave penetrates through clouds without 
any substantial interference in its signal as its wavelengths are far greater than those of typical 
cloud particles[12]. Synthetic Aperture Radar (SAR),  microwave-based imaging can enhance 
our understand about earth resources [13]. Since the launch of the Sentinel-1 mission by the 
ESA, SAR based applications of crop classification has increase. Previously Sentinel-1A and -
1B, both were functioning and providing observations after every 6 days, but nowadays only 
Sentinel-1A is operational that can provide repeat coverage of earth every 12 days [12]. In order 
to develop dense time series and extract information from the integrated datasets, this study 
used the Google Earth Engine (GEE),  a non-profit cloud computing platform for geographic 
spatial analysis [14] .  It has been widely used in large-scale remote sensing applications, including 
forest monitoring, crop yield estimation, and crop mapping [15]. The variety of dataset in the 
GEE and its derivatives provide a stable data source for accurate crop extraction using multi-
source remote sensing images. The main objective of this study is to integrate Sentinel-1 and 
Sentinel-2 satellite images in Rahim Yar Khan district and compares the classification 
performance of Random Forest algorithm using the Sentinel-1(VV, HV and VV+HV), Sentinel-
2, and integration of datasets. 
Material and Methods: 
Description of the Study Area: 

The Rahim Yar Khan district is situated between 60°44' and 70°02' East and 27°41' and 
29°15' North (Figure 1). It covers an area of 11,880 km2. The district experiences extremely hot 
and dry summers, with recorded temperatures ranging from 6.8°C to 49.7°C, and average annual 
rainfall of 165 mm. The district is divided into three main sections: the river region, the irrigated 
region, and the Cholistan region. The irrigated area lies to the southwest of the district's river 
area, adjacent to the Indus and Panjnad rivers, with elevations between 150 and 200 meters 
above sea level. The desert, known as Cholistan, is situated in the southeast corner. Sugarcane, 
wheat, and cotton are the primary crops grown in the region, while major industries include 
textile spinning, vegetable ghee, sugar, and various others such as oil mills, paper production, 
and pharmaceuticals. 

In this study, the Sentinel-1 and Sentinel-2 data was used along with ground truth 
information for crop classification by applying a Random Forest classifier (Figure 2). 
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Figure 1: The Study area map of District Rahim Yar Khan 

Satellite Data Used: 
This study utilized the ground range detected (GRD) product from Sentinel-1A in 

Interferometric Wide (IW) mode with a fine 10 m spatial resolution. This data source offers two 
primary polarization channels: VV (cross-polarization) and VH (cross-polarization)  in the 
Google Earth Engine (GEE) [12]. The images were acquired in whole kharif crop growing 
season, from May to October 2022, from planting to harvesting were for crop mapping. 
Likewise, the multispectral optical imagery of Sentinel-2 was used. The Sentinel-2 image has 13 
spectral bands in visible, near-infrared (NIR), and Short-wave infrared (SWIR) region of the 
electromagnetic spectrum (Table 1). The spatial resolutions range from 10 to 60 meters. 
Sentinel-2 has frequent revisits, 10 days with one satellite and 5 days with two satellites [2]. The 
Sentinel-2, optical images, of Rahim Yar Khan with minimal cloud cover (less than 10%) and 
acquired between early May to October 2022 were used for analysis. Cloudy pixels were masked 
using Quality Assessment band and median reduction image applied to produce seasonal 
composite image to use with time series. Widely used vegetation indices, including the 
Normalized Difference Vegetation Index (NDVI) [16], Soil-Adjusted Vegetation index (SVI) 
[17], Bare Soil Index (BSI) [18], and Enhanced Vegetation Index (EVI) [16]. 

NDVI =  
NIRσ − Redσ

NIRσ + Redσ
      (1) 

SAVI =  
(NIRσ − REdσ)

(NIRσ− Redσ + L)
× (1 + L)    (2) 

BSI = ( 
(PREDσ + PSWIR1σ) −(PNIRσ + PBLUEσ)

(PREDσ + PSWIR1σ) +(PNIRσ + PBLUEσ)
) + 1  (3) 

EVI = 2.5 =  (
NIRσ − REdσ

(NIRσ+6red−7.5 Blue)+1
)   (4) 

Where PBLUEσ, NIRσ and Redσ represents reflectance in the blue, NIR and red 
wavebands, respectively. 
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Figure 2: Flowchart of Crop Classification Using Random Forest Algorithm 

Table 1: Characteristics of both Sentinel 1 and Sentinel 2 Sensors used in this Study. 

Satellite Band No Wavelength(nm) Band Name Resolution (m) 

Sentinel-1  C-band VV 10 
   VH 10 
 2 490 Blue 10 
 3 560 Green 10 
 4 665 Red 10 

Sentinel-2 8 842 Near-infrared 10 
 11 1610.4 SWIR 20 
 12 2202.4 SWIR 20 

Ground Truth Information and Sample Data: 
While crops were the primary emphasis; the study addressed regional heterogeneity and 

other misclassifications by defining broad LCLU groups. The LCLU categories included Barren, 
Built-up, Water Bodies, Cotton, Orchard, Rice, Sugarcane and Other Crops (Table 2) as well as 
(Figure 3). To evaluate a supervised classification Performance for crop mapping, reference 
samples from the 2022 growing seasons were obtained from May to September. These details 
enable the evaluation, modelling, and quantification of agricultural crop productivity. To train 
and evaluate the supervised classification system of crop mapping for Rahim Yar Khan, 
reference samples were divided in training and validation samples (70%, 30%). The agricultural 
crop was the primary focus of this study, however, because of the spatial variability of this 
region, the existence of different other land cover classes could have an impact on the outcomes 
of crop mapping. The study area's grassland is made up of all the small plants cultivated there, 
whereas the built-up consists of dwellings and impermeable surfaces. All the uncultivated area 
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is bare land. Water bodies in the research region include lakes, rivers, streams, and other bodies 
of still water. Any class that isn't included within one of the class categories (vegetation, other 
crops, forest, etc.) is referred to as an "other”. Based on visually analyzing the multi-sensor 
composites and Google Earth geo-referenced images, the classes were determined on-screen. 
In addition to the locations of the sugarcane, cotton, rice, and orchard samples, a further training 
sample and validation points were also chosen randomly. To create a polygon to encompass 
each sampling point, on-screen digitizing was performed. Corresponding to the target crops, 
identified seven major groups of land use with land cover within the area of interest were 
utilized.  
Table 2: Distribution of training and validation samples for LCLU classification in the study 

area 

No LCLU Class Count Training Sample Validation Sample 

1 Barren 102 71 31 
2 Built up 119 83 36 
3 Cotton 100 70 30 
4 Orchard 100 70 30 
5 Other Crop 108 75 33 
6 Rice 100 70 30 
7 Sugarcane 242 170 72 
8 Water-bodies 101 70 31 

The table 2 shows that approximately 70% of the obtained field samples were used to 
train classification models using approaches such as Random Forest, which were chosen for 
their ability to perform multi-class classification tasks and handle non-linear data relationships. 
The remaining 30% of field samples were set aside for model validation, with the data utilized 
to create agriculture crop and other land cover maps that serve as ground truth standards for 
assessing model correctness. 
Random Forest Algorithm: 

Random Forest (RF) is an ensemble classifier that uses numerous decision trees to 
address the limitations of single decision trees [19]. By using tune function random parameters 
are selected. In the present investigation, the ideal number of predictors/features (max features) 
was computed as the square root of the total number of available features, and it was determined 
that the ideal number of trees (mtry) was 100.  One of RF's advantages is its capacity to identify 
important data inside each feature. A global optimum could be reached by including numerous 
trees, solving any issues that may have been brought on by a single tree. With this classifier, a 
vast amount of data may be classified effectively while handling uneven input features [20]. The 
best results are produced by RF classifiers in terms of effectiveness and accuracy. Mostly, the 
sample data are divided into two parts: one is training datasets for model construction and the 
second is test datasets for model confirmation [12]. It has been frequently used in the agricultural 
field. One of its drawbacks is that it makes trees difficult to envision because there are so many 
of them [21]. The RF classifier from GEE was used to obtain the LCLU classification from the 
Sentinel-1 (VV), Sentinel-1 (VH), Sentinel-1 (VV+VH) optical multispectral bands Sentinel-2, 
and integrated datasets of Sentinel-1 and Sentinel-2. 
Accuracy Assessment: 

Accuracy assessment of the LCLU is an important part of the classification procedure 
[22]. The degree of agreement among the outcomes and the values presumptively true is a 
common way to gauge accuracy [23]. All the classification outcomes were evaluated using 
confusion matrices to measure their overall accuracy (OA) (Eq 5), producer accuracy (PA), user 
accuracy (UA), the kappa coefficient (Eq 6), and F1-score (Eq 7) [22]. The overall accuracy 
indicates the number of accurately categorized reference pixels divided by all the references 
pixels. 
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(OA =  
∑ correct predictions

total number of predictions
)    (5) 

In Equation 6 predictions were calculated for all available validation samples and second, 
the predicted labels were compared to the true labels [8]. 

 
Figure 3: Sample Area of Rahim Yar Khan District 

Kappa Coefficient (KC) = N ∑ ri = 1𝓍ii −  ∑ ri = 1(𝓍i +  𝓍 + i)N2 −  ∑ ri =
 (𝓍i +  𝓍 + i) (6) 

Classified maps were evaluated using the F1-Score method, Eq (7), which calculates 
accuracy assessment statistics for each class and measures accuracy determined by the confusion 
matrices. The harmonic mean of recall and precision, two essential measures used to gauge both 
user accuracy and producer accuracy, is utilized to calculate the F1 score[24]. In comparison to 
independent producer and user indicators, it is an important signal for assessing the 
categorization model.  

F1 =  
2 ×PA ×UA

PA+UA
     (7) 

Where PA represent the producer's accuracy whereas UA represent the user's accuracy 
Result and Discussion: 

By integrating Sentinel-2 and Sentinel-1 satellite data agricultural crops were mapped at 
10-meter resolution for the Rahim Yar Khan district by using RF machine learning method in a 
cloud computing platform, Google Earth Engine (GEE). Multispectral data from Sentinel-2 and 
VV and VH cross polarizations from the Sentinel-1 was used for classifying crops. These maps 
accurately depict cropland and various land cover types, demonstrating the effectiveness of 
current approach in categorizing different crops like sugarcane, cotton, rice, orchards, water 
bodies, deserts and built-up areas. Various combinations of optical Sentinel-2 and microwave 
Sentinel-1 were tested using RF for classification of crops (Table 3). These combinations of 
satellite data include optical bands from Sentinel-2, VH polarization band from Sentinel-1, VV 
polarization band from Sentinel-1, combination of VH and VV polarization bands from 
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Sentinel-1, and combination optical bands from Sentinel-2 VH and VV polarization bands from 
Sentinel-1. Area statistics of different crops from Crop Reporting Service (CRS) for the year 
2022 was used as reference for comparison with satellite based predicted crops. 
Table 3: Area of different crops (in km2) predicted by using different combination of Sentinel-

1 and Sentinel-2 imagery and crop area from crop reporting service for the year 2022. 

Class Name Sentinel-
2 

Sentinel-
1 VH 

Sentinel-
1 VV 

Sentinel-1 
VH+VV 

Combined Multi-
sensor Year 2022 

CRS 
2022 

Sugarcane 1762.7 2581.4 3290.3 2707.1 1834.7 2165.0 
Cotton 1717.6 1355.6 836.3 1474.2 1578.6 1897.9 
Rice 212.3 989.4 835.7 781.6 204.4 283.2 
Other Crop 2450.2 1695.9 1588.5 1704.9 2891.5 834.2 
Orchard 58.5 199.4 213.9 137.1 54.31 196 
Water Bodies 502.2 587.1 388.7 360.3 305.4 - 

Desert 5386.6 4942.8 5088.2 5231.3 5524.0 - 
Built up 504.3 234.0 343.9 189.1 192.8 - 

Table 3 shows that the combination of Sentinel-1 and Sentinel-2 outputs area of 
sugarcane of 1834.71 km², which is quite close to the sugarcane area estimated from CRS with 
the value of 2165.07 km². For the other combination of bands, there is a large difference between 
satellite-based estimation of crop area and CRS crop area. Similarly, for the other crops cotton 
and rice, satellite-based area of crops using combination of sentinel-1 and sentinel-2 are quite 
close to CRS estimated as shown in Table 3. 

 
Figure 4: Classified maps of Rahim Yar Khan District using Sentinel-1 and Sentinel-2 

(A)Crop Classification using Sentinel 2 Sensor Only (B) Crop Classification using Sentinel 1 
VH Channel (C) Crop Classification using Sentinel 1 VV Channel (D) Crop Classification 

using Sentinel-1 VH +VV Channel. 
To evaluate the accuracy of integration of different combination of Sentinel-1 and 

Sentinel-2 for crop classification using RF, different accuracy evaluation metrics were used such 
as overall accuracy (OA), F1-score, Kappa coefficient (KC), user's accuracy (UA), and producer's 
accuracy (PA) for key crops (sugarcane, rice, cotton, orchards) and other land cover types in 
Rahim Yar Khan District. Our results indicate high values of F1-score, user accuracy and 
producer accuracy for the scenario combining Sentinel-1 and Sentinel-2 data as compared to 
other four combinations (Table 4) 

Promising results have been obtained when agricultural crops in the Rahim Yar Khan 
district were mapped at a 10-meter resolution using integration of Sentinel-2 and Sentinel-1 with 
the Random Forest (RF) machine learning approach in GEE platform. The study created precise 
maps that accurately depicted crops and different types of land cover by merging multispectral 
data from Sentinel-2 with VV and VH cross polarizations bands from Sentinel-1. The method 
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effectively classified several land cover types, including water bodies, deserts, and populated 
regions, in addition to various crops, including rice, cotton, sugarcane, and orchards. This 
illustrates how well the approach distinguishes and categorizes agricultural areas. 
Table 4: Accuracy of Random Forest Algorithm Using Different Datasets on District Rahim 
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A comparative study conducted with Crop Reporting Service (CRS) data for 2022 
confirmed that the satellite-based forecasts were accurate. Particularly for rice, cotton, and 
sugarcane, the crop area estimates produced by combining Sentinel-1 and Sentinel-2 data closely 
matched the CRS data. For example, the estimated area of sugarcane was 1834.71 km², which is 
in good agreement with the 2165.07 km² estimate from the CRS. Significant differences were 
shown by other combinations of satellite data, highlighting the integrated approach's superiority 
for precise crop area calculation. 

Sentinel-1 and Sentinel-2 data combined approach consistently produced high values for 
all of the accuracy evaluation criteria used in the study, overall accuracy (OA), F1-score, Kappa 
coefficient (KC), user's accuracy (UA), and producer's accuracy (PA). These results demonstrate 
how land cover categorization and agricultural monitoring might be enhanced by combining 
cutting-edge machine learning algorithms with optical and microwave satellite data. This would 
offer a dependable resource management and planning tool for agricultural regions. 

The study's conclusions, which include timely and precise crop categorization maps, 
greatly improve agricultural management. Farmers may increase yields and resource efficiency 
by using these maps to help them plan their planting, irrigation, and harvesting operations. For 
food security initiatives, this study offers a scalable and affordable way to reliably monitor and 
estimate crop output. In order to prevent food shortages, early identification of regions at risk 
for low yields or crop failure enables immediate action. Accurate crop mapping also facilitates 
resilient agricultural practices and policies for long-term food security by tracking agricultural 
patterns and evaluating the effects of climate change. 
Conclusion: 

The use of remote sensing (RS) has expanded rapidly in recent years because of the 
availability of high spatial resolution Sentinel-2 and Sentinel-1 free of cost at high temporal 
resolution and high-performance cloud computing platforms like GEE for processing and 
analysis of massive amounts of data. This study demonstrates the use of state-of-the-art machine 
learning method RF and fusion of Sentinel 2 and Sentinel 1 produces a crop classification map 
at high accuracy as compared to traditional statistical classification methods and only single 
satellite-based data. The main goal of the research was to map and classification of crop cover 
in Pakistan's, district Rahim Yar Khan. Different combination of satellite data including optical 
bands from Sentinel-2, VH polarization band from Sentinel-1, VV polarization band from 
Sentinel-1, combination of VH and VV polarization bands from Sentinel-1, and combination 
optical bands from Sentinel-2 and VH and VV polarization bands from Sentinel-1 were testing 
to select which combination would provide high accuracy. Our results show combination of 
Sentinel-1 and Sentinel-2 outperforms as compared to individual use of optical and SAR 
imagery. For the future research very high-resolution imagery such as World View, GeoEye, and 
Pleiades can be used with other machine learning methods like support vector machine and 
artificial neural network for better accuracy of crop classification. 
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