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ccurate mapping of agricultural lands and crop distribution is crucial for food security, 
sustainable development, and informed policymaking. This research classified 
agricultural crops in the Rahim Yar Khan district of Pakistan using multi-sensor images 

from Sentinel-1 and Sentinel-2 satellites. The study employed the cloud computing platform 
Google Earth Engine (GEE) and compared the performance of the Random Forest (RF) 
algorithm using Sentinel-1 (VV, HV, and HV+VV), Sentinel-2, and integrated datasets. Ground 
truth information obtained from field surveys and high-resolution images served as reference 
samples for training and validation. The fusion of Sentinel-1 and Sentinel-2 data enhanced 
feature extraction, leading to improved crop type classification. Post-processing procedures 
ensured that the maps were visually clear and free of noise, allowing for accurate crop mapping 
and land cover categorization. The classification results indicated high accuracy for crops such 
as sugarcane, cotton, rice, and water bodies. The RF classifier using fused data achieved the 
highest accuracy (overall accuracy of 93% and Kappa coefficient of 90%), followed by Sentinel-
2 (89%), Sentinel-1 VV+VH (72%), Sentinel-1 VH (66%), and Sentinel-1 VV (62%). The study 
underscores the value of data integration in improving the classification accuracy of major crops 
(sugarcane, cotton, and rice) in the region. While some classes showed exceptional accuracy, 
others, such as Orchard, require further refinement in categorization methods. Overall, the study 
provides valuable insights into using multi-sensor remote sensing data for agricultural 
monitoring and decision-making. 
Keywords: Machine learning, Crop classification, Sentinel-1, Sentinel-2, Google Earth Engine. 
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Introduction: 
In 2020, the number of people facing hunger in the Asia and Pacific region reached 

375.8 million [1]. This situation is further compounded by the fact that 1.1 billion individuals 
lacked access to adequate food, highlighting a serious issue of food security. Accurate and timely 
quantification of agricultural crops and their geographical distribution is crucial for ensuring 
food security [2]. Crop mapping is also essential for forecasting crop production and assessing 
agricultural statistics [3], which helps in evaluating food demands. Satellite remote sensing has 
enabled in-season crop classification using multispectral imagery [4][5][6]. 

In June 2015, the European Space Agency (ESA) launched the Sentinel-2 mission, which 
includes two identical satellites, Sentinel-2A and Sentinel-2B. These satellites provide high-
resolution (10 m) imagery with a five-day revisit period due to their ten-day individual return 
cycle. The multispectral instrumentation (MSI) on Sentinel-2 offers data with 13 spectral bands 
in the visible, near-infrared, and shortwave infrared regions [7][8]. Despite the high temporal 
frequency of observations, optical data can be hindered by cloud cover, creating gaps in time 
series and reducing the accuracy of crop type identification [9][10][11].  

To address this issue, microwave remote sensing can provide additional information for 
land cover and land use (LCLU) classification, as it penetrates through clouds without significant 
interference due to its longer wavelengths [12]. Synthetic Aperture Radar (SAR), a microwave-
based imaging technology, has enhanced our understanding of earth resources [13]. Since the 
launch of the Sentinel-1 mission by ESA, SAR-based applications for crop classification have 
increased. While both Sentinel-1A and Sentinel-1B initially provided observations every six days, 
currently only Sentinel-1A is operational, offering repeat coverage every twelve days [12]. 

To develop dense time series and extract information from integrated datasets, this study 
utilized Google Earth Engine (GEE), a non-profit cloud computing platform for geographic 
spatial analysis [14]. GEE is widely used in large-scale remote sensing applications, including 
forest monitoring, crop yield estimation, and crop mapping [15]. The variety of datasets available 
in GEE provides a reliable source for accurate crop extraction using multi-source remote 
sensing images. The main objective of this study is to integrate Sentinel-1 and Sentinel-2 satellite 
images for the Rahim Yar Khan district and to compare the classification performance of the 
Random Forest algorithm using Sentinel-1 (VV, HV, and VV+HV), Sentinel-2, and integrated 
datasets. 
Material and Methods: 
Description of the Study Area: 

The Rahim Yar Khan district is located between 60°44' and 70°02' East and 27°41' and 
29°15' North (Figure 1). Covering an area of 11,880 km², the district experiences extremely hot 
and dry summers, with temperatures ranging from 6.8°C to 49.7°C and an average annual rainfall 
of 165 mm. The district is divided into three main regions: the river region, the irrigated region, 
and the Cholistan region. The irrigated area, situated to the southwest of the river region, is 
adjacent to the Indus and Panjnad rivers and has elevations between 150 and 200 meters above 
sea level. The Cholistan Desert, located in the southeast, is characterized by its arid conditions. 
Major crops in the district include sugarcane, wheat, and cotton. The principal industries are 
textile spinning, vegetable ghee production, and sugar, along with oil mills, paper production, 
and pharmaceuticals. 

In this study, Sentinel-1 and Sentinel-2 data were used, along with ground truth 
information, to classify crops using a Random Forest classifier (Figure 2). 
Satellite Data Used: 

This study utilized the ground range detected (GRD) product from Sentinel-1A in 
Interferometric Wide (IW) mode, which provides a fine spatial resolution of 10 meters. This 
data source includes two primary polarization channels: VV (vertical-vertical) and VH (vertical-
horizontal), available in Google Earth Engine (GEE) [12]. The images were acquired throughout 
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the kharif crop growing season, from May to October 2022, to cover the entire crop cycle from 
planting to harvesting for mapping purposes. Additionally, multispectral optical imagery from 
Sentinel-2 was used. Sentinel-2 imagery includes 13 spectral bands across the visible, near-
infrared (NIR), and shortwave infrared (SWIR) regions of the electromagnetic spectrum (Table 
1), with spatial resolutions ranging from 10 to 60 meters. Sentinel-2 provides frequent revisits, 
with a 10-day interval for a single satellite and a 5-day interval when both satellites are operational 
[2]. For this study, Sentinel-2 optical images of Rahim Yar Khan with minimal cloud cover (less 
than 10%) acquired between early May and October 2022 were used. Cloudy pixels were masked 
using the Quality Assessment band, and a median reduction was applied to produce a seasonal 
composite image for time series analysis. Vegetation indices commonly used in the analysis 
include the Normalized Difference Vegetation Index (NDVI) [16], Soil-Adjusted Vegetation 
Index (SAVI) [17], Bare Soil Index (BSI) [18], and Enhanced Vegetation Index (EVI) [16]. 

NDVI =  
NIRσ − Redσ

NIRσ + Redσ
      (1) 

SAVI =  
(NIRσ − REdσ)

(NIRσ− Redσ + L)
× (1 + L)    (2) 

BSI = ( 
(PREDσ + PSWIR1σ) −(PNIRσ + PBLUEσ)

(PREDσ + PSWIR1σ) +(PNIRσ + PBLUEσ)
) + 1  (3) 

EVI = 2.5 =  (
NIRσ − REdσ

(NIRσ+6red−7.5 Blue)+1
)   (4) 

Where PBLUEσ, NIRσ and Redσ represents reflectance in the blue, NIR and red 
wavebands, respectively. 

 
Figure 1: The Study area map of District Rahim Yar Khan 

Ground Truth Information and Sample Data: 
While crops were the primary focus, the study also addressed regional heterogeneity and 

other misclassifications by defining broad LCLU (Land Cover/Land Use) groups. These 
categories included Barren, Built-up, Water Bodies, Cotton, Orchard, Rice, Sugarcane, and 
Other Crops (Table 2, Figure 3). To evaluate the performance of supervised classification for 
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crop mapping, reference samples from the 2022 growing season (May to September) were 
collected. These data enabled the assessment, modeling, and quantification of agricultural crop 
productivity. For Rahim Yar Khan, the reference samples were divided into training and 
validation sets (70% and 30%, respectively) to train and evaluate the supervised classification 
system. Although the study primarily focused on agricultural crops, the spatial variability of the 
region meant that other land cover classes could influence crop mapping outcomes. The study 
area’s grassland consisted of various small plants, while built-up areas included dwellings and 
impermeable surfaces. Barren land covered all uncultivated areas, and water bodies included 
lakes, rivers, streams, and other still water sources. The 'Other' category encompassed any class 
not explicitly included in the predefined categories. The classes were determined through on-
screen analysis of multi-sensor composites and Google Earth geo-referenced images. In addition 
to the sugarcane, cotton, rice, and orchard samples, additional training and validation points 
were randomly selected. On-screen digitizing was performed to create polygons encompassing 
each sampling point. Seven major land use and land cover groups were identified within the area 
of interest, corresponding to the target crops. 

 
Figure 2: Flowchart of Crop Classification Using Random Forest Algorithm 

Table 1: Characteristics of both Sentinel 1 and Sentinel 2 Sensors used in this Study. 

Satellite Band No Wavelength(nm) Band Name Resolution (m) 

Sentinel-1  C-band VV 10 
   VH 10 
 2 490 Blue 10 
 3 560 Green 10 
 4 665 Red 10 

Sentinel-2 8 842 Near-infrared 10 
 11 1610.4 SWIR 20 
 12 2202.4 SWIR 20 
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Table 2: Distribution of training and validation samples for LCLU classification in the study 
area 

No LCLU Class Count Training Sample Validation Sample 

1 Barren 102 71 31 
2 Built up 119 83 36 
3 Cotton 100 70 30 
4 Orchard 100 70 30 
5 Other Crop 108 75 33 
6 Rice 100 70 30 
7 Sugarcane 242 170 72 
8 Water-bodies 101 70 31 

Table 2 shows that approximately 70% of the field samples were used to train 
classification models, such as Random Forest, selected for their capability to perform multi-class 
classification tasks and manage non-linear data relationships. The remaining 30% of the field 
samples were reserved for model validation. This data was used to create agricultural crop and 
other land cover maps, serving as ground truth standards for evaluating model accuracy. 
Random Forest Algorithm: 

Random Forest (RF) is an ensemble classifier that uses multiple decision trees to 
overcome the limitations of individual trees [19]. In this study, the ̀ tune` function was employed 
to select random parameters. The optimal number of predictors/features (`max features`) was 
calculated as the square root of the total available features, and the ideal number of trees (`mtry`) 
was set to 100. One of the advantages of RF is its ability to identify significant information 
within each feature. By incorporating numerous trees, RF addresses the issues that may arise 
from relying on a single tree, helping to reach a global optimum. This classifier effectively 
handles large datasets and uneven input features, producing highly accurate results [20]. 
Typically, the sample data are divided into two parts: training datasets for model construction 
and test datasets for model validation [12]. RF has been widely used in agriculture, though one 
of its drawbacks is the difficulty in visualizing the numerous trees involved [21]. In this study, 
the RF classifier in Google Earth Engine (GEE) was utilized to obtain LCLU classification from 
Sentinel-1 (VV), Sentinel-1 (VH), Sentinel-1 (VV+VH), Sentinel-2 optical multispectral bands, 
and integrated datasets from Sentinel-1 and Sentinel-2. 
Accuracy Assessment: 

Accuracy assessment of the LCLU is a crucial component of the classification process 
[22]. It is commonly measured by the degree of agreement between the classification results and 
the presumed true values [23]. The classification outcomes were evaluated using confusion 
matrices to calculate overall accuracy (OA) (Eq 5), producer accuracy (PA), user accuracy (UA), 
the kappa coefficient (Eq 6), and the F1-score (Eq 7) [22]. Overall accuracy reflects the 
proportion of correctly classified reference pixels relative to the total number of reference pixels. 

(OA =  
∑ correct predictions

total number of predictions
)    (5) 

In Equation 6, predictions were made for all available validation samples, and the 
predicted labels were then compared to the true labels [8]. 

Kappa Coefficient (KC) = N ∑ ri = 1𝓍ii −  ∑ ri = 1(𝓍i +  𝓍 + i)N2 −  ∑ ri =
 (𝓍i +  𝓍 + i) (6) 

Classified maps were evaluated using the F1-Score method, Eq (7), which calculates 
accuracy assessment statistics for each class based on confusion matrices. The F1 score, which 
is the harmonic mean of recall and precision, serves as a crucial metric for assessing both user 
accuracy and producer accuracy [24]. This metric provides a more comprehensive evaluation of 
the classification model's performance compared to independent producer and user accuracy 
indicators. 
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F1 =  
2 ×PA ×UA

PA+UA
     (7) 

Where PA represents producer accuracy, and UA represents user accuracy. 

 
Figure 3: Sample Area of Rahim Yar Khan District 

Result and Discussion: 
Agricultural crops in the Rahim Yar Khan district were mapped at a 10-meter resolution 

by integrating Sentinel-2 and Sentinel-1 satellite data using the Random Forest (RF) machine 
learning method on the Google Earth Engine (GEE) cloud computing platform. Multispectral 
data from Sentinel-2, along with VV and VH cross-polarizations from Sentinel-1, were utilized 
for crop classification. The resulting maps accurately depict cropland and various land cover 
types, demonstrating the effectiveness of this approach in categorizing crops such as sugarcane, 
cotton, rice, orchards, water bodies, deserts, and built-up areas. Various combinations of optical 
data from Sentinel-2 and microwave data from Sentinel-1 were tested using RF for crop 
classification (Table 3). These combinations included optical bands from Sentinel-2, the VH 
polarization band from Sentinel-1, the VV polarization band from Sentinel-1, a combination of 
VH and VV polarization bands from Sentinel-1, and a combination of optical bands from 
Sentinel-2 with both VH and VV polarization bands from Sentinel-1. Area statistics for different 
crops from the Crop Reporting Service (CRS) for 2022 were used as a reference for comparison 
with the satellite-based crop predictions. 
Table 3: Area of different crops (in km2) predicted by using different combination of Sentinel-

1 and Sentinel-2 imagery and crop area from crop reporting service for the year 2022. 

Class Name Sentinel-
2 

Sentinel-
1 VH 

Sentinel-
1 VV 

Sentinel-1 
VH+VV 

Combined Multi-
sensor Year 2022 

CRS 
2022 

Sugarcane 1762.7 2581.4 3290.3 2707.1 1834.7 2165.0 
Cotton 1717.6 1355.6 836.3 1474.2 1578.6 1897.9 
Rice 212.3 989.4 835.7 781.6 204.4 283.2 
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Other Crop 2450.2 1695.9 1588.5 1704.9 2891.5 834.2 
Orchard 58.5 199.4 213.9 137.1 54.31 196 
Water Bodies 502.2 587.1 388.7 360.3 305.4 - 

Desert 5386.6 4942.8 5088.2 5231.3 5524.0 - 
Built up 504.3 234.0 343.9 189.1 192.8 - 

Table 3 shows that the combination of Sentinel-1 and Sentinel-2 data estimates the 
sugarcane area as 1834.71 km², which is relatively close to the 2165.07 km² estimate provided 
by the Crop Reporting Service (CRS). In contrast, for other band combinations, there is a 
significant discrepancy between the satellite-based crop area estimates and those from CRS. 
Similarly, for cotton and rice, the satellite-based crop area estimates using the Sentinel-1 and 
Sentinel-2 combination are also close to the CRS estimates, as shown in Table 3. 

 
Figure 4: Classified maps of Rahim Yar Khan District using Sentinel-1 and Sentinel-2 

(A)Crop Classification using Sentinel 2 Sensor Only (B) Crop Classification using Sentinel 1 
VH Channel (C) Crop Classification using Sentinel 1 VV Channel (D) Crop Classification 

using Sentinel-1 VH +VV Channel. 
To evaluate the accuracy of different combinations of Sentinel-1 and Sentinel-2 data for 

crop classification using the Random Forest (RF) method, various accuracy metrics were 
employed, including overall accuracy (OA), F1-score, Kappa coefficient (KC), user accuracy 
(UA), and producer accuracy (PA). These metrics were assessed for key crops (sugarcane, rice, 
cotton, orchards) and other land cover types in the Rahim Yar Khan District. Our results 
demonstrate high values for F1-score, user accuracy, and producer accuracy for the combination 
of Sentinel-1 and Sentinel-2 data compared to the other four combinations (Table 4). 

The integration of Sentinel-2 and Sentinel-1 data, applied at a 10-meter resolution using 
the RF machine learning approach on the Google Earth Engine (GEE) platform, yielded 
promising results. This approach produced accurate maps that effectively depicted crops and 
various land cover types by combining multispectral data from Sentinel-2 with VV and VH 
cross-polarization bands from Sentinel-1. The method successfully classified multiple land cover 
types, including water bodies, deserts, and built-up areas, as well as crops like rice, cotton, 
sugarcane, and orchards. This highlights the approach's effectiveness in distinguishing and 
categorizing agricultural areas. 

A comparative study using Crop Reporting Service (CRS) data for 2022 confirmed the 
accuracy of the satellite-based forecasts. For rice, cotton, and sugarcane, the crop area estimates 
from combining Sentinel-1 and Sentinel-2 data closely matched the CRS data. For instance, the 
estimated sugarcane area was 1834.71 km², which aligns well with the 2165.07 km² estimate from 
CRS. In contrast, other satellite data combinations showed significant discrepancies, 
underscoring the superiority of the integrated approach for accurate crop area calculations. 
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Table 4: Accuracy of Random Forest Algorithm Using Different Datasets on District Rahim 
Yar Khan 

The combined Sentinel-1 and Sentinel-2 approach consistently achieved high values 
across all accuracy evaluation metrics used in the study: overall accuracy (OA), F1-score, Kappa 
coefficient (KC), user accuracy (UA), and producer accuracy (PA). These results highlight the 
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potential of merging advanced machine learning algorithms with optical and microwave satellite 
data to enhance land cover categorization and agricultural monitoring. This integrated approach 
offers a reliable tool for resource management and planning in agricultural regions. 

The study's findings, which include timely and precise crop classification maps, 
significantly enhance agricultural management. By using these maps, farmers can better plan 
their planting, irrigation, and harvesting operations, thereby increasing yields and improving 
resource efficiency. For food security initiatives, the study provides a scalable and cost-effective 
method for monitoring and estimating crop output. Early identification of regions at risk for 
low yields or crop failure allows for prompt intervention, while accurate crop mapping supports 
resilient agricultural practices and policies, contributing to long-term food security by tracking 
agricultural trends and assessing the impact of climate change. 
Conclusion: 

The use of remote sensing (RS) has rapidly expanded in recent years, thanks to the 
availability of high spatial resolution Sentinel-2 and Sentinel-1 data, offered free of charge, and 
the high-performance cloud computing platforms like Google Earth Engine (GEE) for 
processing and analyzing large datasets. This study demonstrates that integrating the state-of-
the-art Random Forest (RF) machine learning method with Sentinel-2 and Sentinel-1 data results 
in a crop classification map with higher accuracy compared to traditional statistical classification 
methods and single-satellite data. The primary objective of the research was to map and classify 
crop cover in Rahim Yar Khan District, Pakistan. Various combinations of satellite data were 
tested, including optical bands from Sentinel-2, VH polarization from Sentinel-1, VV 
polarization from Sentinel-1, a combination of VH and VV polarization bands from Sentinel-1, 
and a combination of optical bands from Sentinel-2 with VH and VV polarization bands from 
Sentinel-1. Our results indicate that the combination of Sentinel-1 and Sentinel-2 outperforms 
the use of individual optical or SAR imagery. For future research, incorporating very high-
resolution imagery from sources such as WorldView, GeoEye, and Pleiades, along with 
advanced machine learning methods like Support Vector Machine (SVM) and Artificial Neural 
Networks (ANN), could further enhance the accuracy of crop classification. 
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