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his research investigates how different phase relationships can enhance our 
understanding of drought effects on moisture deficiency in desert ecosystems—a 
significant and damaging environmental issue impacting natural ecosystems, economies, 

health, agriculture, and society. The primary objective is to examine the variance in lag times 
between fixed and dynamic lag windows correlated with the NDVI (Normalized Difference 
Vegetation Index), aiming to develop an optimal methodology for drought analysis in the Thar 
Desert. Utilizing remote sensing data, the study explores the complex drought dynamics of the 
Thar Desert by analyzing 22 years of CHIRPS rainfall time series data and MODIS NDVI 
product. The research involves cross-correlating rainfall with NDVI, comparing lag time 
differences between fixed lag windows (16, 32, 48, 64 days) and dynamic lag windows (ranging 
from 4 to 64 days with incremental steps) against 22 years of MODIS NDVI data. Preliminary 
results indicate that dynamic lag windows of 4, 8, 12, 16, and 64 days exhibit the highest 
correlation with NDVI, with a lag time of 40 days showing the maximum correlation. These 
findings suggest that dynamic lag windows more effectively capture the temporal variability of 
drought impacts on vegetation compared to fixed lag windows in the Thar Desert. Further 
analysis with a sub-dynamic lag window, incorporating the highly correlated lag episodes of both 
dynamic and fixed windows (i.e., 40 days and 48 days), revealed that a lag phase of 42 days 
provides the highest correlation with vegetation. Additionally, the study identifies a significant 
drought event in 2002, highlighting the sensitivity of the dynamic lag approach in detecting 
extreme drought occurrences. This research not only advances drought analysis methodologies 
for arid regions but also underscores the need for future studies to explore the applicability of 
dynamic lag windows in diverse regions and assess their predictive capacity for forecasting 
drought-induced vegetation changes. 
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Introduction: 
Climate change, a global phenomenon with far-reaching effects, poses significant 

challenges, particularly in developing countries. The Intergovernmental Panel on Climate 
Change (IPCC) has reported a notable increase in global surface temperatures since 1861 (IPCC 
2019) [1]. Among various environmental phenomena, drought stands out due to its substantial 
risks to human health, agriculture, natural ecosystems, economics, and societal structures. Given 
its extensive consequences, understanding drought dynamics, especially in arid regions, is crucial. 
The Thar Desert in Southern Asia exemplifies a dry habitat where drought exerts considerable 
stress on biological and socioeconomic processes. 

Drought is challenging to measure and quantify due to its operation across multiple 
spatial and temporal scales. A defining characteristic of drought is moisture deficiency resulting 
from abnormal weather patterns [2]. To develop effective mitigation and adaptation strategies, 
it is essential to understand drought dynamics and their impact on moisture availability in desert 
ecosystems. Precipitation, a key parameter for monitoring natural disasters like drought [3], 
influences most parts of the Earth. Historically, site-based precipitation measurements were vital 
for meteorological drought monitoring. However, the advent of remote sensing precipitation 
products has improved the efficiency and spatial-temporal coverage of rainfall mapping and 
drought monitoring [4]. Satellite remote sensing provides a valuable tool for studying droughts 
and their impacts on ecosystems. The global scale of available observations has advanced our 
understanding of drought biophysics and led to the development of new drought indicators for 
research and practical applications [5]. 

Precipitation is critical for defining drought indices, but the sparse and uneven 
distribution of rain gauges limits long-term and reliable in situ observations. Remote sensing 
techniques enhance precipitation data at various temporal and spatial resolutions [4], [6]. Unlike 
many other natural hazards, drought develops gradually as an accumulated result of prolonged 
water scarcity [7]. The massive volume of remote sensing and meteorological data presents new 
challenges to existing empirical and theoretical methods, necessitating adjustments for specific 
regions [7]. The correlation between annual maximum NDVI (Normalized Difference 
Vegetation Index) and annual effective precipitation is similar to that between maximum yearly 
NDVI and growing season precipitation. Precipitation significantly impacts vegetation in certain 
areas, particularly meadows and meadow-grasslands, but is less effective in forested and desert 
regions [8]. Remote sensing observations have been employed to monitor drought-related 
variables from a climatological perspective and to assess and quantify drought impacts from an 
ecosystem perspective [5]. Identifying variations in rainfall lag-time relationships among land 
cover types using a remote sensing-based integrated drought index enables more accurate 
drought prediction and aids in developing targeted drought adaptation strategies [9]. A novel 
approach using the phase spectrum of cross-spectral density measures the time lag in vegetation 
response to precipitation, offering valuable insights for early drought detection [10]. By analyzing 
predicted lag time relationships, remote sensing datasets can provide advance warnings of 
droughts across landscapes [9]. These lag time relationships enhance remote sensing-based 
integrated drought monitoring and predictions tailored to land cover types. Understanding how 
vegetation activity responds to varying precipitation levels, including corresponding time lags, 
provides crucial information for drought-prone areas [10]. A similar study using fixed lag 
windows to assess the relationship between rainfall and vegetation moisture conditions found 
that a 64-day lag time exhibited the strongest correlation coefficient [2]. 

This study utilizes remote sensing technologies to investigate the complex dynamics of 
drought in the Thar Desert. By integrating datasets from CHIRPS rainfall time series and 
MODIS NDVI products, the research employs Google Earth Engine for a comprehensive 20-
year analysis. The primary goal is to enhance understanding of drought-induced moisture 
deprivation and its effects on vegetation in the Thar Desert, focusing on fixed and dynamic lag 
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windows. Additionally, the study evaluates the potential effects of a sub-dynamic lag window 
derived from the highest correlation of fixed and dynamic lag windows. Examining the lag time 
between rainfall episodes and subsequent vegetation response is crucial for determining drought 
impact. The research compares temporal dynamics of drought-induced vegetation changes 
captured by dynamic lag windows (ranging from 4 to 64 days) with fixed lag windows (16 to 64 
days). This study explores both fixed and dynamic lag windows and investigates a sub-dynamic 
lag window between the 40 and 48-day lag phases to identify the strongest correlation with 
vegetation dynamics. By examining the relationship between rainfall and NDVI across different 
time intervals, the study aims to determine optimal techniques for drought analysis tailored to 
the Thar Desert's unique features. 
Objective: 

This research thoroughly investigates the effects of varying rainfall patterns on plant 
health, focusing on the consequences of drought in desert ecosystems, particularly the Thar 
Desert. The study aims to evaluate the resilience of dry region ecosystems by examining the 
relationship between rainfall and changes in vegetation. This involves analyzing fixed and 
dynamic lag windows, representing the time between rainfall episodes and subsequent changes 
in plant cover. 
Materials and Methods: 
Study Area: 

The research area encompasses the Thar Desert, which spans approximately 200,000 
square kilometers across the Indian states of Rajasthan, Gujarat, Punjab, and Haryana, and the 
southern parts of Pakistan, including Sindh province. Located between latitudes 24° to 28° 
North and longitudes 66° to 77° East, the Thar Desert features a varied topography of large 
dunes, rocky outcrops, and patches of vegetation. The region experiences extreme temperatures, 
with summers exceeding 50°C and winters dropping to around 5–10°C, accompanied by 
minimal precipitation averaging between 100 and 500 millimeters annually. Rainfall is highly 
variable, with about 90% occurring during the southwest monsoon season from July to 
September [11]. 

May and June are the hottest months, with temperatures reaching up to 122°F (50°C), 
while January is the coldest month, with mean minimum temperatures ranging from 41 to 50°F 
(5 to 10°C) and frequent frost. Dust storms and high-velocity winds, reaching 87 to 93 miles 
(140 to 150 km) per hour, are common in May and June. The Thar Desert's history of recurrent 
drought events exacerbates environmental degradation and water scarcity, highlighting the need 
for sustainable development and adaptation strategies [11]. 

 
Figure 1: Study area map of Thar desert of the Southern Asia 

Data sets: 
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MODIS Data: 
This study utilized biweekly (16-day) composite NDVI data at a 250m resolution from 

MODIS (MOD13Q1) on the Terra platform for the period 2000-2022 [12]. The data was 
processed using Google Earth Engine (GEE), a cloud-based platform offering extensive 
geospatial data, analytical tools, and computational resources for analyzing and visualizing 
satellite imagery and other geospatial information. GEE supports various programming 
languages, including Python and JavaScript, and provides a comprehensive suite of tools for data 
processing, including machine learning algorithms for image classification and time-series 
analysis [13]. The current study used JavaScript API in Earth Engine Code Editor. 

NDVI =
NIR−Red

NIR+Red
   Equation 1 

 
Figure 2: MODIS 1q31 NDVI Raster Image of the Thar desert. 

Climate Data: 
The CHIRPS Daily (Climate Hazards Group InfraRed Precipitation with Station data) 

dataset was utilized to generate precipitation time series from 2002 to 2022 through Google 
Earth Engine (GEE). This dataset advances traditional interpolation techniques by 
incorporating high-resolution precipitation estimates derived from infrared Cold Cloud 
Duration (CCD) observations. Specifically, it employs a 0.05° climatology that integrates satellite 
data to enhance precipitation estimates in areas with sparse ground-based measurements. The 
dataset encompasses daily, pentad, and monthly CCD-based precipitation estimates dating back 
to 1981. It combines station data to produce preliminary precipitation products with a latency 
of approximately 2 days and final products with an average latency of around 3 weeks. 
Additionally, CHIRPS uses a novel blending procedure that incorporates the spatial correlation 
structure of CCD estimates to determine interpolation weights. Initially available at a spatial 
resolution of 0.05° (approximately 5 kilometers), the daily CHIRPS data was aggregated to a 
biweekly (16-day) interval and resampled to 250 meters to align with the resolution of the NDVI 
time series used in this study. 
Flow of Study: 
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Figure 3: Flow of the Study Diagram 

Methodology: 
The study was conducted in the drought-prone Thar Desert of Southern Asia to analyze 

phase relationships between historical rainfall and observed drought conditions over a 22-year 
period from 2001 to 2022, including a particularly severe drought in 2002. This region 
experiences significant impacts from fall droughts, which occur at the start of the growing season 
and depend on rainfall from the previous November to February. Drought observations were 
based on MODIS NDVI (Normalized Difference Vegetation Index) standard products, which 
provide 16-day interval data at a 250-meter resolution. The NDVI data, reflecting vegetation 
changes, follows an annual cycle of growth and decline. To address issues such as cloud cover 
and poor atmospheric conditions that can cause sudden, unrepresentative drops in NDVI, 
Savitzky-Golay filtering was employed to remove these anomalies, which are considered noise. 
Rainfall estimates were obtained from the CHIRPS (Climate Hazards Group InfraRed 
Precipitation with Station data) dataset, which offers a more comprehensive view compared to 
spatially limited climate station data. The CHIRPS daily rainfall data was aggregated into 16-day 
intervals and resampled from its original resolution of 0.5° to 250 meters. Subsequently, lagged 
precipitation was computed for fixed, dynamic, and sub-dynamic windows of 16, 32, ..., 64, 4, 
8, 12, ..., 64, and 36, 37, 38, ..., 44 days using Google Earth Engine (GEE). 
Correlation Between NDVI and Precipitation Series: 

To assess the relationship between rainfall and vegetation, the response between 
Precipitation and NDVI time series was analyzed using the Pearson Cross-Correlation (PCC) 
analysis. The Pearson correlation coefficient (often denoted as r) is a measure of the linear 
relationship between two variables. It ranges from -1 to 1, where 1 indicates a perfect positive 
linear relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear 
relationship. The formula for the Pearson correlation coefficient between two variables X and 
Y is given: 

𝐫 =
∑(𝐱𝐢−𝐱 )(𝐲𝐢−𝐲 )

√𝚺(𝐱𝐢−𝐱 )𝟐𝚺(𝐲𝐢−𝐲 )𝟐
   Equation 2 

Here’s a breakdown of the terms in the formula: 
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• xi and yi: Individual sample points for the variables X and Y. 

• x̅: The mean of the variable X. 

• y ̅: The mean of the variable Y. 

• 𝚺: The summation symbol indicates that the calculation is performed for all 
corresponding pairs of xi and yi. 
It standardizes the measure, ensuring that the coefficient is dimensionless and lies 

between -1 and 1. This analysis is for different lag times with different windows such as a 16-
day fix window (16,32,48,64) as temporal resolution of the series, then a dynamic window (4,8,12 
… 64), and a sub-dynamic window (36,37,38 … 44) with 16-day NDVI series over a study 
period of 2001-2021. 
Results:  

The results of this research revealed significant insights: while both fixed and dynamic 
lag windows demonstrated relationships with vegetation health, the highest correlations were 
observed with the dynamic lag windows. These dynamic windows adapt to changing climatic 
conditions, thereby providing a more nuanced understanding of vegetation responses. The 
correlation analysis between spatially averaged NDVI and precipitation indicated that vegetation 
moisture conditions vary considerably with lag time. Fixed lag windows, such as those of 16, 32, 
and 64 days (as shown in Figure 4), exhibited a relatively weaker association with vegetation 
health. In contrast, the strongest relationship was identified at a lag duration of approximately 
48 days. 

 
Figure 4: Fix lag window correlation between NDVI and Precipitation 

Also, the dynamic lag windows shown in Figure 5, between 4 and 64 days showed the 
most association with vegetation health, with the strongest relationship seen at a lag duration of 
about 40 days. 
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Figure 5: Fix lag window correlation between NDVI and Precipitation 

The investigation continued with a deeper analysis to uncover the subtleties of the 
relationship between rainfall and vegetation dynamics. Specifically, the study explored a sub-lag 
window within the range of strongly associated lag phases observed in both fixed and dynamic 
windows (between 40 and 48 days). Remarkably, the analysis identified a 42-day lag period as 
the most crucial in terms of its correlation with vegetation dynamics. This finding underscores 
the intricate temporal variability in how drought impacts vegetation and highlights the 
importance of pinpointing specific time intervals for a more accurate understanding of 
ecosystem responses to external stresses. Figure 6 illustrates the correlation values of fixed, 
dynamic, and sub-dynamic lag windows across different lag days, providing a comprehensive 
view of their respective relationships with vegetation dynamics. By systematically varying the lag 
window duration from 4 to 64 days, the study assessed how different temporal scales affect the 
correlation between rainfall and NDVI.  

 
Figure 6:  Combined lag windows correlation between NDVI and Precipitation 
The time series comparison highlights the intricate relationship between the highly 

correlated 42-day precipitation lag series and the NDVI, which serves as a proxy for vegetation 
health. The research identified variations in vegetation dynamics in response to specific rainfall 
events across the 22-year study period. By analyzing these datasets, the study provides valuable 
insights into how drought affects desert ecosystems. Notably, a significant drought period with 
below-average annual precipitation rates was observed in 2002 and 2003. Additionally, the study 
can identify anomalies or deviations from typical patterns, which helps in recognizing severe 
drought events or rapid recovery periods. 
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Figure 7: Time series comparison of 42 days lag and 16 days NDVI 

The correlation table (Table 1) offers a detailed breakdown of lag days and their 
corresponding correlation values, covering the full range from 4 to 64 days. This in-depth 
analysis facilitates the examination of correlation trends across different temporal scales, 
revealing a pattern of increasing correlation from shorter to intermediate lag periods, followed 
by a decline in correlation beyond 42 days. 

Table 1: Comparison of Correlation between NDVI and different lag precipitation series 

Lag Time 
(Days) 4 8 12 16 20 24 28 32 36 37 38 

Correlation 
Coefficient 0.270 0.340 0.402 0.468 0.532 0.578 0.609 0.635 0.654 0.656 0.656 

Lag Time 
(Days) 39 40 41 42 43 44 48 52 56 60 64 

Correlation 
Coefficient 0.660 0.661 0.663 0.664 0.661 0.657 0.648 0.631 0.608 0.580 0.547 

The following inset chart offers a comparative analysis of correlation values against lag 
days for fixed, dynamic, and sub-dynamic lag windows. By plotting these correlation trends side 
by side, we can assess the relative performance of each lag window type in capturing drought-
induced vegetation changes. This comparative analysis facilitates the identification of optimal 
methodologies for drought analysis, considering both the temporal variability of vegetation 
responses and the adaptability 

 
Figure 8: Comparison of Correlation Coefficients for Different Lag Windows: Fix Lag 8a, 

dynamic 8b, and sub dynamic lag windows 8c of precipitation and NDVI 
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Figure 8 presents the correlation values for three distinct lag window types: fixed, 
dynamic, and sub-dynamic. In Subplot 8a, the fixed lag window is illustrated, with correlation 
coefficients varying across lag periods from 16 to 64 days. The data reveals a peak at 
approximately 48 days, indicating the strongest temporal correlation at this interval. Subplot 8b 
depicts the sub-dynamic lag window, covering lag times from 4 to 64 days. Here, the correlation 
coefficients rise up to around 40 days before gradually declining, suggesting that the sub-dynamic 
window performs better at shorter lag periods. Subplot 8c focuses on the dynamic lag window, 
with lag periods ranging from 36 to 44 days. The correlation coefficients within this range also 
peak at 42 days, highlighting its effectiveness for this specific duration. 

Additionally, Figure 9 provides a combined drought distribution image, offering a 
spatially detailed representation of drought occurrences across the Thar Desert over the 22-year 
study period. By classifying NDVI values into drought severity categories (no drought, mild 
drought, moderate drought, severe drought), this analysis maps the spatial and temporal 
variability of drought impacts on vegetation health. The distribution map facilitates the 
identification of significant drought events, including the severe drought of 2002, and 
emphasizes the role of extreme climatic events in influencing desert ecosystems. This spatial 
context enriches the interpretation of temporal dynamics observed in the time series data and 
correlation analyses. 

 
Figure 9: A spatially explicit representation of drought occurrences throughout the Thar 

Desert over a period of 22 years 
Discussions: 

The study explored the potential of various time delays between rainfall and plant 

response for early drought detection. Understanding the patterns and relationships between 

vegetation productivity and climatic conditions is essential for predicting the future impacts of 

climate change. While most researchers have used monthly precipitation data to correlate with 

NDVI, they have not seriously considered the varying lag phases of precipitation. A similar study 

in China examined the relationship between NDVI and precipitation by calculating accumulated 

precipitation over antecedent durations of 10, 60, and 150 days. This study found that a longer 

duration of antecedent precipitation resulted in slightly higher cross-power values for the annual 

component, but the time lag values for the annual component became negative with durations 

longer than 60 days. The study discovered an interesting twist when analyzing longer stretches 

of rain (up to 150 days) compared to shorter periods. Although more rain over a longer period 

generally meant healthier plants (higher correlation between rainfall and plant health), the lag 

time, which is the usual delay between rain and plant response, appeared to flip after 60 days. 
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Instead of plants gradually responding to rain, longer stretches of rain seemed to produce 

unexpected effects after 2 months. This suggests a more complex relationship between rain and 

plant health, particularly for extended droughts or very wet periods. Another study found low 

correlations between drought indices and monthly precipitation data. Thus, this study applied 

different lag windows of meteorological data to analyze 22 years of satellite data from the Thar 

Desert, focusing on plant health (using MODIS NDVI) and rainfall (from CHIRPS) 

relationships. Additionally, a study noted that the correlation between annual maximum NDVI 

and growing season precipitation is similar to that between annual maximum NDVI and annual 

effective precipitation. 

The primary finding of this study is that the timing of rainfall is more crucial than 

traditionally believed. "Lag time" refers to the process where plants respond gradually to 

precipitation. Although this lag is not fixed, the research demonstrated that understanding this 

precise lag time is vital for comprehending how droughts impact plant life. The study evaluated 

three methods for estimating lag time: fixed windows, which remain constant over the years, 

dynamic windows, which vary based on the climate, and sub-dynamic windows. Dynamic 

windows offered an even more accurate view of the association between plant health and rainfall. 

The optimal lag time in the Thar Desert appears to be approximately 40 days. The research 

found an even higher lag period of 42 days when comparing the most effective fixed and 

dynamic windows. This highlights the importance of precision in monitoring droughts. Similar 

results could improve drought coping strategies and serve as a foundation for additional studies 

to refine and extend these techniques to other areas. Enhancing our understanding of drought 

impacts on vegetation may help in making better decisions regarding adaptability and sustainable 

development in dry regions like the Thar Desert. 

Conclusions: 

This study offers an in-depth examination of drought dynamics in the Thar Desert, 

emphasizing the need for accurate and flexible techniques for understanding and managing 

drought's impact in desert areas. Utilizing data from satellite remote sensing, including MODIS 

NDVI products and CHIRPS rainfall time series, the research provided important insights into 

the temporal connection between precipitation and vegetation health. It found that dynamic lag 

windows respond more to changing climatic situations than fixed lag windows. Additionally, a 

greater association was observed when examining a sub-dynamic lag window, specifically the 

42-day lag phase, which underscores the complex temporal variability of drought impacts on 

vegetation. The study advanced our understanding of the temporal associations between 

precipitation and vegetation response through the application of fixed, dynamic, and sub-

dynamic lag windows. However, developing broader drought indicators to enhance prediction 

accuracy is essential. Extending the research to include temperature, evapotranspiration, and soil 

moisture could provide a more comprehensive view of drought dynamics. This thorough 

approach is necessary for discovering long-term and scalable drought mitigation solutions, 

ultimately improving resilience and sustainability in vulnerable regions globally. The study 

indicates that the most effective approach for analyzing droughts is to use dynamic lag windows, 

and it encourages further research into this method's efficacy in other areas. A 22-year regional 

analysis of drought patterns highlighted the importance of extreme weather conditions, such as 

the severe drought of 2002, in shaping arid ecosystems. Extending the study to include 

temperature, evapotranspiration, and soil moisture may provide a more thorough understanding 

of drought dynamics, which is crucial for identifying effective drought mitigation strategies and 

improving resilience in vulnerable areas worldwide. 
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