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Introduction/Importance of Study: Accurate crop identification and classification is 
significant for productive agro-based planning and food availability.  
Novelty Statement: This study compares pixel and object-based approaches for machine 
learning oriented classification methods to develop crop-type maps in Rahim Yar Khan, 
Pakistan.  
Material and Method: Using the Google Earth Engine (GEE) cloud computing platform, 
pre-processing steps were applied to synthetic aperture radar Sentinel-1 and Sentinel-2 data. By 
integrating Sentinel-1 (VV, VH), Sentinel-2 satellite bands and different indices were 
computed from Sentinel-2 imagery, composite images were also produced for subsequent 
assessment. The main objective was to assess the effectiveness of the approached to classify 
the major cotton, rice and sugarcane. Time specific images were also use to exploit to 
seasonality of the crops, for example, composite image of August was prioritized to distinguish 
cotton, while September composite image was used for rice and sugarcane classification. The 
study employs two approaches for object-based segmentation: the Simple Non-Iterative 
Clustering (SNIC) in GEE platform and Object based Image Analysis (OBIA) using Multi-
resolution segmentation in E-Cognition software. Random Forest (RF) machine learning 
algorithm was used over the composite image for both pixel and object based approaches. The 
study utilized field sample data collected for classification, validation, and accuracy assessment. 
The ground survey data includes cotton, rice, sugarcane, orchard, and other crops. 
Comparative analysis was carried out to assess the performance of pixel-based and object-
based approaches. 
Result and Discussion: RF on pixel-based approach of Sentinel-1 and Sentinel-2 imagery 
bands with indices composite showed superior results. RF on pixel based approached 
classification achieved 98% accuracy and kappa 92%, while RF on SNIC in GEE achieved 
96% accuracy and kappa 95%, and OBIA in E-Cognition achieved accuracy of 89%. 
Concluding Remarks:  We also conclude that the tuning of segmentation in both E-
Cognition and SNIC algorithm can improve the accuracy of object-based classification.  
Keywords: Sentinel-1, Sentinel-2, Google Earth Engine (GEE), Random Forest (RF), Simple 
Non-Iterative Clustering (SNIC), Vegetation Indices, Crop classification, Object Based Image 
Analysis (OBIA) 
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Introduction: 
Agriculture is widely accepted as the essential foundation of human  existence, 

possessing significant influence over economy [1]. Monitoring agricultural  areas is essential to 
reduce global  issues  including  rising food demand due to population growth, and climate 
change [2].Crop classification plays a vital role in estimating crop production, the accurate and 
timely information on crop types is in high demand [3][4]. To address these challenges, both 
spatial and temporal data on crop distribution is required. Remote sensing is commonly used 
to quickly and effectively map crop distribution  globally[5]. To create crop maps, multi-
spectral and  multi-temporal  remote sensing data  has been in use, demonstrating  their  
capacity to  evaluate vegetation status  across  time[6]. Crop-type classification depend heavily 
on single-source optical satellite data for many years. The potential of using multi-source 
satellite imagery has become more widely accepted as sensor technology and processing power 
increase. In the context of crop type classification, the combination of optical and radar data is 
especially attractive since it enables the explanation of the advantages of both sensor types[7]. 
Sentinel-2 data offered a unique combination of high spectral and spatial resolution with a 
short revisit duration (5 days). Sentinel-1 (SAR) data provides the ability to fulfill the strict data 
requirements required for effective crop monitoring. SAR data frequency and polarization 
offer a better representation of condition of topography, soil moisture, roughness, and canopy 
structure even when there is a cloud cover [8]. However, optical data makes use of 
electromagnetic radiation in the visible, near-infrared, and shortwave infrared range. This 
allows scientists to obtain crucial data regarding the moisture content, leaf colors, and general 
health of the vegetation [9]. To improve data availability and  accuracy,  multiple sensors with 
various spatial and  temporal  resolutions can be combined [10]. A range of spectral bands 
from multi-spectral time-series data can be used for the classification. Vegetation  indices such 
as NDVI,NDWI,NDMI,BSI generated from  multi-spectral  images have also been used  
along with time-series data to enhance the  information  and  improve  the accuracy of  crop 
types [11]. 

Applying a pixel-based approach to integrated Sentinel-1 and Sentinel-2 data suffers 
from the salt-and-pepper phenomenon of the classification results, which reduces the integrity 
of the crop field [12][13]. The technology of image segmentation partitions an image into 
numerous segments. Many studies indicate that image segmentation methods like Simple Non-
Iterative Clustering (SNIC) offers a promising approach for analyzing high-resolution remote 
sensing images outperforming traditional pixel-based classification techniques. SNIC is the 
most advanced super pixel segmentation algorithm. It provides the benefits of faster speed and 
less consumption of memory. It has plenty of potential for crop mapping[14][15].Machine 
learning approach, Random Forest (RF), can be employed for better identification of different 
types of crop [16]. RF  is one of the mostly used classifiers for classification, because of its 
great accuracy and efficiency[17] since it typically outperforms other classifiers[18]. Although 
SVM is a good classifier, it looks a little more complicated because it needs different input 
parameters and kernels to be chosen and adjusted[19]. The majority of these classification 
techniques depend on good training data and appropriate feature combinations, having an 
immediate impact on the uniformity of the classification outcomes [20]. 

Comparative analyses have been conducted in recent studies to evaluate Pixel-Based 
and Object-Based Algorithms, utilizing integrated Sentinel-1, Sentinel-2, and NDVI Data on 
Google Earth Engine for crop identification. GEE serves as a cloud computing platform, 
facilitating the automation of crop classification techniques. The objective of this study is to 
conduct a comparative analysis between pixel-based and object-based approaches, leveraging 
machine learning algorithms such as Random Forest (RF) on the integration of time series data 
from Sentinel-1, Sentinel-2, and NDVI. The main objective was to evaluate the efficiency of 
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the object-based segmentation approach (in GEE and E-Cognition) and Pixel-based approach 
to see which method is best for classifying cotton, rice and sugarcane. 
Objectives: 

Specifically, the study seeks to achieve three main objectives;  

• To demonstrate how integrating Sentinel-1 and Sentinel-2 data can enhance 
classification accuracy. 

• To evaluate the accuracy of crop types by using machine learning algorithm such as 
RF. 

• To compare the accuracy of crops using pixel-based and object-based with the 
application of the Simple Non-Iterative Clustering (SNIC) algorithm approaches using 
Google Earth Engine (GEE). 

Material and Methods: 
Study Area: 

Rahim Yar Khan is a famous city in the south of Punjab (Pakistan), covers an area of 
11,880 Square Kilometers and makes 5.79% area of Punjab and 1.4% area of Pakistan. It is 
situated on the bank of River Indus, divided into four Tehsils, lies between 27° 56/ to 28° 52/ 
N latitudes and 70° 00/ to 70° 32. The area's climate is categorized as arid subtropical 
continental, characterized by a mean annual rainfall of 97.2 mm, predominantly occurring 
during the late summer monsoon season. Summer temperatures average 33.6°C with a daily 
maximum of 40.3°C, while winter temperatures average 14.5°C with a daily minimum of 
5.7°C. Map of the study area and its location in Punjab, Pakistan is shown in Figure 1. 

 
Figure 1: Study Area Map of Rahim Yar Khan in Punjab, Pakistan. 

Analysis Framework: 
Overall methodology adopted in this study is shown in Figure 2. 

Field Survey Data: 
Field information or Ground Truth Data were collected using GPS and visual 

observation. The ground truth was collected during the month of August and September in 
2019 in Rahim Yar Khan. Major crops were found as Sugarcane, Rice & Cotton, and other 
land-use classes were Orchard, Built-up, Barren-Land, Water-bodies and Other-crops. Field 
sample points were collected in Rahim Yar Khan with the help of GPS and pictures in Kharif 
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season in the months of August and September and 70 percent of the points were used for the 
purpose of classification and 30 sample points were used for validation purposes. Latitude 
longitude of each sample was also recorded. Distribution of all the field sample points is 
shown in Figure 3. 

 
Figure 2: Methodological Flow Chart of the Study 

 
Figure 3: Field Sample Points of Cotton, Rice and Sugar Cane taken from all over the Study 

Area 
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Image Datasets and Pre-Processing: 
Sentinel-1 and Sentinel-2 satellite data emphasize the importance of crop classification, 

especially in areas having  rapid changes [21]. In this study, SAR images and optical images 
from the Sentinel-1 and Sentinel-2 sensors were used respectively. These two sensors were 
chosen mainly because they were readily available and free of cost. Temporal, spectral, and 
spatial resolutions. Sentinel-1 and Sentinel-2 data were both acquired using the Google Earth 
Engine (GEE) platform. Sentinel-1, operating in C-band SAR, offers multiple imaging modes 
with resolutions from 10 to 60 meters. In google earth engine S1_GRD dataset of Sentinel 1 
was used. It emits microwave signals to capture reflected energy, generating SAR images based 
on signal delays. These images provide valuable data on Earth's surface changes, usable in all 
weather conditions. Overall, Sentinel-1 SAR is crucial for monitoring Earth's dynamics in 
environmental, disaster, and scientific applications [22]. 

Sentinel-2 is the second datasets that was used in this study. Sentinel-2A has 13 bands 
with a wavelength range of 443 to 2190 nm and high-resolution optical equipment with spatial 
resolutions of 10 m, 20 m, and 60 m as shown in table 1 and sentinel-2 bands used in this 
study are shown in table 2. Furthermore, Sentinel-2's bands B08 and  B04 were used to create 
the normalized difference vegetation index (NDVI) as shown in eq1, bands 8A and B11 were 
used to create normalized difference water index NDWI as shown in eq 2, bands B08 and B11 
were used to create normalized difference moisture index NDMI as shown in eq 3, bands B11 
and B04 were used to create bare soil index (BSI) as shown in eq 4, which was then coupled 
with Sentinel-2 bands to enhance the classification method[11]. 

Table 1: General Specification of Sentinel-1 and Sentinel-2. 

Description Sentinel-1 (SAR) Sentinel-2 

Resolution 10 m 10,20 ,60m 
Band Type C-Band Coastal Aerosol, Blue, Green, Red, NIR and SWIR 
Revisit Time 6 days 5 Days 
Orbit Height 693km 786km 
Orbit Inclination 98.180 98.630 

Spectral Range 3.75-7.5cm 0.44-2.19µm 

Table 2: Sentinel-2 bands utilized in this study. 

Band Number Sentinel-2 
Bands 

Central 
Wavelength(nm) 

Spatial 
Resolution(m) 

Band 2 Blue 490 10 
Band 3 Green 560 10 
Band 4 Red 665 10 
Band 5 Red Edge 705 20 
Band 6 Red Edge 740 20 
Band 7 Red Edge 783 20 
Band 8 NIR 842 10 
Band 8A Red Edge 865 20 
Band 11 SWIR 1610 20 
Band 12 SWIR 2190 20 

NDVI = 
B08−B04

B08+B04 --------------------- (1)
 

NDWI = 
B8A−B11

B8A+B11   ------------------ (2) 

NDMI = 
B08−B11

B08+B11  ------------------- (3) 

BSI = 
B11−B04

B11+B04 ------------------------ (4) 
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The initial step involves acquiring and pre-processing satellite imagery datasets from 
Sentinel-1 and Sentinel-2 platforms in Google Earth Engine (GEE). The filtering criteria for 
Sentinel-1 data involved selecting images based on crop growth periods (e.g., August 2019 for 
cotton, September 2019 for rice and sugarcane), using VV and VH polarizations, 
Interferometric Wide (IW) mode, and both ascending and descending orbits to ensure 
consistent imaging. Following retrieval, each Sentinel-1 image undergoes pre-processing to 
enhance data quality, including border noise removal to improving data quality by masking 
areas with inaccurate or missing data, and speckle filtering using a focal median filter to 
mitigate noise effects and reduce speckle, which improves image quality. 

Following the processing of Sentinel-1 data, Sentinel-2 data was filtered based on crop 
phenology periods and selecting images with less than 20% cloud cover. Pre-processing 
involved cloud masking using the Quality Assessment (QA) band, geometric and radiometric 
correction. Radiometric correction adjusts satellite imagery to accurately represent surface 
reflectance, correcting for sensor and atmospheric influences. Geometric correction aligns 
images to remove spatial distortions caused by Earth's curvature and sensor orientation, 
ensuring precise spatial analysis and map overlay capabilities. Pre-processing also involves 
computation of indices such as NDVI, NDWI, NDMI, and BSI, clipping images to the study 
area, and averaging band values over the date range to enhance data consistency. 

After pre-processing both datasets, the reduced mean images were stacked to create a 
composite image, integrating data from Sentinel-1 (VV and VH bands), Sentinel-2 (selected 
spectral bands), and indices. This process was applied to the month of August 2019 for cotton 
and September 2019 for rice and sugarcane as shown in Table 3. 

Table 3: Composite Image Dates for Classification of Crop-Type. 

Crop-Type Start-Date End-Date 

Cotton 01-08-2019 30-08-2019 
Rice & Sugarcane 01-09-2019 30-09-2019 

This unified representation enhances the accuracy of crop classification analyses. 
Finally, the resulting stacked image is visually depicted on a map for ease of interpretation and 
analysis. 
Google Earth Engine Based Classification: 

 
Figure 4: Spectral-Signatures of Different Crop Classes 

Sentinel-1 SAR and Sentinel-2 image data were acquired using Google-Earth-Engine 
and then performed per-processing steps on both sentinel-1 and sentinel-2 data. Speckle-
filtering and border-noise removal were applied to sentinel-1 data. Radiometric and geometric 
corrections were applied to sentinel-2 data. NDVI indices were derived from sentinel-2 data. 
After per-processing steps, reducers were applied to sentinel-1, sentinel-2 and indices. After 
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that composite images were created using sentinel-1, sentinel-2 and NDVI data and clipped 
the study-area. Then pixel-based and object-based classification were performed using 
Random Forest algorithm to the integrated data. Simple non-iterative algorithm was used for 
object-based classification in GEE. E-Cognition was used for multi-resolution segmentation 
and OBIA. Accuracy assessment of all three methods was performed using confusion matrix 
and calculate overall accuracy, producer accuracy and Kappa. Classification was performed 
after thoroughly assessing the spectral classes of different crop types using sentinel different 
bands. Sentinel-2 Red edge band specially helps in identifying different crop types. The 
spectral signature for all the crop fields in sentinel-2 imagery are shown in Figure 4. 
SNIC Image Segmentation: 

The traditional pixel-based classification technique could result in "salt and pepper" 
noise. By using a pixel's neighboring information to segment the image into distinct regions or 
objects based on specific parameters, the object-based approach reduces this issue. The SNIC 
image segmentation technique in GEE was utilized in this study to segment images. [23]. First, 
initialization is done for the centroid pixels on the image's regular grid. Next, the dependence 
of each pixel with respect to the centroid is determined by measuring the distance between 
pixels in the five-dimensional space of color and spatial coordinates. Ultimately, the distance 
creates efficient, compact, and almost uniform polygons by integrating the normalized spatial 
and color distances[24].The SNIC algorithm's primary parameters are "image," "size," 
"compactness," "connectivity," "neighborhood size," and "seeds."  

The "size" parameter determines the spatial extent of super-pixels or segments within 
the image. Larger sizes result in fewer but larger segments, while smaller sizes yield more but 
smaller segments. The "compactness" regulates the shape of the segments, influencing how 
closely they adhere to a regular shape such as a square. A higher compactness value leads to 
more regular, compact segments, while lower values allow for more irregular shapes. The 
"connectivity" parameter defines how neighboring pixels influence each other during 
segmentation. A value of 4 implies 4-connectivity, where pixels are connected horizontally and 
vertically, while 8-connectivity considers diagonal connections as well. The choice between 4 
and 8 connectivity depends on the spatial arrangement of features in the imagery. The "seeds" 
parameter specifies the initial seed points from which the segmentation process begins. It is 
particularly relevant when the shape of objects varies significantly within the image.  

The image that takes part in segmentation is referred to as a "image" among them. In 
this study, integrated Sentinel-1, Sentinel-2 and NDVI time series images with different time 
intervals composites from 01-08-2019 to 30-08-2019 for cotton and 01-09-2019 to 30-09-2019 
for rice and sugarcane were segmented. According to the requirements of the study area, 
segmentation sizes of 5, 10, 15, and 20 were examined, with size 15 producing the best 
classification accuracy. The ideal neighborhood size was also determined to be 128. The 
majority of the parcels in the research region are rectangular in shape, the "compactness" 
requirement was set to 0, and "connectivity" was assessed at both 4 and 8. Since the research 
area portions were essentially rectangles, no particular "seeds" were established.  
Random Forest: 

A powerful non-parametric machine learning classifier, the Random Forest (RF) 
algorithm was created by Breiman (2002) and is widely used in crop classification RF leverages 
bootstrap aggregation (bagging) to create numerous decision trees, which are then combined 
by a majority voting technique to yield more accurate predictions. Its non-parametric 
characteristics, minimal generalization mistakes, and noise robustness validate its applicability 
to crop classification problems. Furthermore, RF's popularity is largely due to its capacity to 
handle high-dimensional remote sensing data and identify important variables[25]. 

The GEE platform has the RF classification algorithm installed. The RF classifier was 
trained using the training data, and the classification error was assessed using the verification 
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data. Two parameters need to be set when employing the RF models in GEE, the minimum 
size of a terminal (min leaf), and the number of decision trees to generate per class. The crop 
classification was performed with various settings for min leaf and number of trees. The 
overall classification accuracy served as the basis for selecting the ideal parameters[26]. The 
number of features was set to the square root of the entire number of features in this paper, 
and the number of trees was set to 100. 
OBIA Multi-Resolution Segmentation: 

OBIA technology divides a huge image into smaller image objects with similar 
properties through a segmentation process. Consequently, compared to pixel-based 
techniques, it can employ more properties like spectral, shape, and texture. Object-oriented 
image processing requires image segmentation as a crucial step, and the accuracy of object-
oriented algorithms' extraction is greatly impacted by the segmentation work[27].In this study, 
we applied multi-resolution segmentation in E-Cognition using various scales (30, 70, 90, 120) 
and different levels of compactness (0.5) and shape (0.3, 0.5, 0.8). This advanced segmentation 
technique was used to improve the accuracy of object-based crop classification. By 
experimenting with these parameters, we were able to refine the segmentation process, which 
led to more precise delineation of crop fields. This method significantly enhanced the accuracy 
of object-based classification, highlighting the benefits of using sophisticated segmentation 
tools in combination with Random Forest for optimal crop mapping outcomes. 
Confusion Matrix and Accuracy Assessment: 

In this study, cross-validation was used to evaluate the model's performance. This 
involved dividing the datasets into training and validation sets, with a portion of the training 
data reserved for testing the model's parameters. The model's performance was then evaluated 
on validation data set to determine how well it generalized. Specifically, the datasets were split 
into a 70% training set and a 30% validation set. Following classification, the accuracy of the 
model was analyzed using a confusion matrix and assessed using the kappa coefficient for 
consistency. The confusion matrix is an organized list of reference and map data calculated for 
the purpose of computation. By image comparison, we can qualitatively evaluate the 
classification results, while quantitative evaluation can be achieved with statistical techniques 
like the Kappa index and confusion matrix [22]. Overall accuracy (OA) is the proportion of 
correctly classified sampled pixels, whereas the Kappa coefficient measures the accuracy of 
classification by accounting for the chance agreement between the prediction and reference 
data. PA represents the proportion of a given reference class that is correctly classified, 
whereas UA represents the possibility of correctly classifying a specific labeled sample. 
Producer accuracy, user accuracy, and overall accuracy were subsequently calculated to provide 
further insights into the model's performance. 

Table 4: Accuracy Assessment of Land-Cover Classes by using field data validation points. 

Land-Cover OA PA UA Kappa F-Score 

PB-Cotton 0.9809 0.6187 0.6113 0.9207 0.6150 
OB-Cotton 0.9667 0.9671 0.9684 0.9587 0.9677 
OBIA-Cotton 0.8508 0.8245 0.8254 0.8023 0.8167 
PB-R&S 0.9696 0.7493 0.7590 0.9083 0.7541 
OB-R&S 0.9411 0.9291 0.9531 0.9241 0.9409 
OBIA-R&S 0.8911 0.8543 0.8623 0.8743 0.8832 

Result and Discussion: 
The classification accuracy by integrating sentine-1, sentinel-2 and NDVI data by using 

Random Forest was evaluated for both pixels based and object-based approaches shows in the 
Table 4. Pixel based approach for cotton and rice achieved overall accuracy and kappa of 
0.9809, 0.9696 and 0.9207, 0.9083. Object based approach for cotton and rice achieved overall 
accuracy and kappa of 0.9667, 0.9411 and 0.9587, 0.9241. OBIA approach for cotton and rice 
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achieved overall accuracy and kappa of 0.0.8508, 0.8543 and 0.802, 0.8743. The object-based 
classification through SNIC approach produce better results as compared to pixel-based 
classification in Google earth engine and OBIA in E-Cognition developer. Although all the 
approaches produce best results because of integration of SAR and optical data. Final output 
maps for all three approaches are shown in Figure 5 and Figure 6.  

 
Figure 5: Classification maps for the image acquired in August (kharif crops focusing on 

Cotton) using the three different approaches; a) pixel-based using Random Forest classifier 
Google Earth Engine, b) object-based using Simple non iterative clustering SNIC and 

Random Forest classifier in Google Earth Engine, c) object-based using Multi-resolution 
segmentation and Nearest Neighbor classifier in e-Cognition  

 
Figure 6: Classification maps for the image acquired in September (kharif crops focusing on 

Rice and Sugarcane) using the three different approaches; a) pixel-based using Random Forest 
classifier Google Earth Engine, b) object-based using Simple Non-Iterative Clustering SNIC 
and Random Forest classifier in Google Earth Engine, c) object-based using Multi-resolution 

segmentation and Nearest Neighbor classifier in e-Cognition 
This study delved into the comparative efficiency of pixel-based and object-based 

approaches in crop classification of cotton and rice, leveraging machine learning algorithms 
like Random Forest (RF) on integrated Sentinel-1, Sentinel-2, and indices such as NDVI, 
NDWI, NDMI and BSI data within Google Earth Engine (GEE). The results show significant 
variation in performance across the pixel and object-based approaches, focus on the strengths 
and limitations of each approach. The pixel-based approach attained high overall accuracy for 
both cotton (0.9809) and rice (0.9696). Although, the producer’s and user’s accuracy (PA, UA) 
were remarkably lower for cotton (0.6187 and 0.6113) respectively, propose that while the 
pixel-based method was effective in general classification, it struggled with accurately 
identifying cotton pixels. This variation points to possible issues with mis-classification and the 
challenges of employing a pixel-based method to capture the variability of agricultural 
landscapes. 

The object-based approach provides high accuracies, mainly for cotton, with an OA of 
0.9667 and Kappa of 0.9587. Both PA and UA were around 0.97, showing a robust 
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classification performance. For rice, the object-based approach also performed well, with an 
OA of 0.9411 and a Kappa of 0.9241, along with high PA and UA values (0.9291 and 0,9531) 
respectively. These results show the efficiency of object-based approach in capturing the 
spatial characteristics of the landscape, providing more accurate classification by considering 
groups of pixels (objects) rather than individual pixels. The segmentation process probably 
helped in reducing noise and improving the defining of crop boundaries, which is important in 
heterogeneous agricultural areas. 

The object-based approach in GEE, while producing good results, did not match the 
performance of the OBIA. For cotton, SNIC attained an OA of 0.9667 and a Kappa of 
0.9587, with PA and UA around 0.9671 and 0.9684. For rice, the SNIC results were lower as 
compared to cotton with an OA of 0.9411 and a Kappa of 0.9241, and PA and UA values of 
0.9291 and 0.9531, respectively. Although OBIA is effective, its relatively lower performance 
compared to the object-based approach suggests that while segmentation improves 
classification, the specific methodology and tools used can significantly impact results. Object-
based approach achieved high overall accuracy and kappa 0.9677 and 0.9589 as compared to 
OBIA overall accuracy and kappa 0.8911 and 0.8743, accurately classifying cotton and rice by 
leveraging spatial characteristics. Our results also indicate that pixel-based approach with 
different bands and indices produce better results than segmentation but it is also suggested to 
fine-tune the data. We recommend using hit and trial method while selecting the segment size 
and its compactness it significantly alters the results. While overall control in pixel base 
approach is better but segmentation results mainly depend on the output of segments created 
and then the accuracy of the samples on which classification is based. 
Discussion: 

The outcome of this research aligns with recent research studies that emphasize the 
benefits of combining advanced classification methods with multi-source satellite data for 
enhanced agricultural monitoring. Compared to pixel-based techniques, the object-based 
approach performed better, especially when utilizing Google Earth Engine's (GEE) SNIC 
algorithm. This finding aligns with recent research, including those conducted by [28][29], who 
discovered that by taking groups of pixels (objects) into consideration rather than individual 
pixels, object-based image analysis (OBIA) significantly reduces noise and improves 
classification accuracy. 

The object-based technique for rice and cotton yielded high kappa values and overall 
accuracy, indicating its robustness in capturing the spatial properties of crops. This is 
consistent with the results of[30], They found that in diverse agricultural environments, object-
based approaches greatly enhance the identification of crop boundaries. The pure object-based 
strategy used in GEE outperformed the OBIA approach, even though it was still effective. 
The difference demonstrates how the processing platform and segmentation method affect 
categorization results. Recent research by [31] highlights the significance of choosing the 
appropriate platform and segmentation parameters to get the best results. They showed that 
although OBIA has advantages, the accuracy with which segments are created and the quality 
of the training samples are critical factors in its effectiveness. 

The study also found a number of limitations, including problems with classification 
errors and poor data quality, which are frequent problems in remote sensing applications. 
Misclassification was probably caused by the presence of mixed pixels and the heterogeneity in 
crop growth phases. This result is consistent with the findings of [26], who observed similar 
challenges in classifying agricultural landscapes. Moreover, the combination of optical data 
(Sentinel-2) and SAR (Sentinel-1) proved helpful, as evidenced by the recent study of [29]. 
They discovered that because SAR and optical data are complementary, combining them 
improves the robustness and accuracy of land cover classification. In order to further enhance 
classification accuracy, future study could overcome these limits by investigating advanced 
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machine learning methods and combining new data sources, such as hyperspectral 
photography or drone-based observations. Utilizing deep learning methods as recommended 
by current research [32] may also provide significant improvements in managing complex 
agricultural landscapes. Overall, this study demonstrates how to improve crop classification 
accuracy by using advanced classification algorithms and multi-source satellite data, offering 
valuable insights for agricultural management and policy-making. 
Conclusion: 

Overall, integrating sentinel-1, sentinel-2 and composite images based on indices 
NDVI, NDWI, NDMI, and BSI proved beneficial across both approaches. The object-based 
approach in GEE, utilizing the SNIC algorithm, outperformed both the pixel-based and 
OBIA approach utilizing the multi-resolution segmentation in e-Cognition Developer. This 
dominance is likely due to the better handling of spatial information and the reduction of 
classification noise. While the pixel-based approach provided high overall accuracy, its lower 
PA and UA values emphasize its limitations in heterogeneous landscapes. The OBIA method, 
although useful, did not achieve the same level of accuracy as the object-based method in 
GEE, highlighting the importance of advanced segmentation techniques for improving 
classification accuracy. 

These findings emphasize the need for careful selection of classification methods 
based on the specific requirements and characteristics of the study area. Future research 
should continue to explore and refine object-based methods, particularly in the context of 
integrating multi-source remote sensing data, to further enhance classification accuracy and 
reliability in complex agricultural landscapes. 
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