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Introduction/Importance of Study: Accurate crop identification and classification are 
crucial for effective agro-based planning and ensuring food availability. Reliable classification 
helps optimize agricultural productivity and resource management. 
Novelty Statement: This study innovatively compares pixel-based and object-based 
approaches for machine learning-oriented classification methods to develop crop-type maps in 
Rahim Yar Khan, Pakistan. 
Material and Method: Utilizing the Google Earth Engine (GEE) cloud computing platform, 
pre-processing steps were applied to Synthetic Aperture Radar Sentinel-1 and Sentinel-2 data. 
Integration of Sentinel-1 (VV, VH) and Sentinel-2 satellite bands enabled the computation of 
various indices and the production of composite images for subsequent analysis. The primary 
objective was to evaluate the effectiveness of these approaches in classifying major crops: 
cotton, rice, and sugarcane. Time-specific images were employed to leverage crop seasonality; 
for instance, an August composite image was prioritized for cotton, while September 
composites were used for rice and sugarcane classification. The study utilized two object-based 
segmentation approaches: Simple Non-Iterative Clustering (SNIC) on the GEE platform and 
Object-Based Image Analysis (OBIA) using Multi-Resolution Segmentation in E-Cognition 
software. The Random Forest (RF) machine learning algorithm was applied to both pixel-
based and object-based approaches. Field sample data, including cotton, rice, sugarcane, 
orchards, and other crops, were used for classification, validation, and accuracy assessment. A 
comparative analysis was conducted to evaluate the performance of pixel-based and object-
based methods. 
Result and Discussion: The RF algorithm applied to pixel-based approaches using Sentinel-1 
and Sentinel-2 imagery bands with composite indices demonstrated superior results. The pixel-
based RF classification achieved 98% accuracy with a kappa coefficient of 92%. In 
comparison, RF applied to SNIC in GEE achieved 96% accuracy with a kappa coefficient of 
95%, while OBIA in E-Cognition attained an accuracy of 89%. 
Concluding Remarks: The study concludes that tuning the segmentation parameters in both 
E-Cognition and SNIC algorithms can enhance the accuracy of object-based classification. 
Keywords: Sentinel-1, Sentinel-2, Google Earth Engine (GEE), Random Forest (RF), Simple 
Non-Iterative Clustering (SNIC), Vegetation Indices, Crop classification, Object Based Image 
Analysis (OBIA) 
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Introduction: 
Agriculture is universally recognized as a cornerstone of human existence, significantly 

influencing the economy [1]. Monitoring agricultural areas is crucial for addressing global 
challenges such as rising food demand driven by population growth and climate change [2]. 
Accurate crop classification is essential for estimating crop production, with timely and precise 
information on crop types being in high demand [3][4]. To tackle these issues, both spatial and 
temporal data on crop distribution are required. Remote sensing is frequently employed to 
map crop distribution efficiently on a global scale [5]. Multi-spectral and multi-temporal 
remote sensing data are utilized to create crop maps, demonstrating their capability to assess 
vegetation status over time [6]. Traditionally, crop-type classification has relied heavily on 
single-source optical satellite data. However, the increasing acceptance of multi-source satellite 
imagery reflects advancements in sensor technology and processing power. In the realm of 
crop type classification, combining optical and radar data is particularly advantageous as it 
leverages the strengths of both sensor types [7]. Sentinel-2 data provides a unique combination 
of high spectral and spatial resolution with a short revisit period of 5 days. Meanwhile, 
Sentinel-1 (SAR) data meets the stringent requirements for effective crop monitoring. SAR 
data's frequency and polarization offer superior insights into topography, soil moisture, 
roughness, and canopy structure, even under cloud cover [8]. Optical data, on the other hand, 
utilizes electromagnetic radiation in the visible, near-infrared, and shortwave infrared ranges to 
provide vital information on moisture content, leaf colors, and overall vegetation health [9]. 
Combining multiple sensors with various spatial and temporal resolutions can enhance data 
availability and accuracy [10]. Spectral bands from multi-spectral time-series data, along with 
vegetation indices such as NDVI, NDWI, NDMI, and BSI, have been used to improve crop 
type classification accuracy [11]. 

The pixel-based approach to integrating Sentinel-1 and Sentinel-2 data often suffers 
from the salt-and-pepper effect in classification results, which can undermine the integrity of 
crop field analysis [12][13]. Image segmentation technology divides an image into numerous 
segments, and many studies have highlighted that segmentation methods like Simple Non-
Iterative Clustering (SNIC) offer a promising alternative to traditional pixel-based classification 
techniques. SNIC, being a highly advanced super-pixel segmentation algorithm, is noted for its 
speed and low memory consumption, making it highly suitable for crop mapping [14][15]. 
Machine learning techniques, such as Random Forest (RF), can further enhance crop type 
identification [16]. RF is a widely used classifier known for its accuracy and efficiency [17], 
often outperforming other classifiers [18]. While Support Vector Machine (SVM) is also a 
competent classifier, it can be more complex due to the need for selecting and tuning various 
input parameters and kernels [19]. Most classification techniques rely on high-quality training 
data and appropriate feature combinations, which significantly impact the consistency of 
classification outcomes [20]. 

Recent studies have conducted comparative analyses of Pixel-Based and Object-Based 
Algorithms, utilizing integrated Sentinel-1, Sentinel-2, and NDVI Data on Google Earth 
Engine (GEE) for crop identification. GEE, as a cloud computing platform, facilitates the 
automation of crop classification techniques. This study aims to compare pixel-based and 
object-based approaches by employing machine learning algorithms such as Random Forest 
(RF) on the integration of time series data from Sentinel-1, Sentinel-2, and NDVI. The 
primary objective is to assess the effectiveness of the object-based segmentation approach 
(using GEE and E-Cognition) versus the pixel-based approach in classifying cotton, rice, and 
sugarcane. 
Objectives: 

Specifically, the study aims to achieve three main objectives: 
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• To illustrate how integrating Sentinel-1 and Sentinel-2 data can improve classification 
accuracy. 

• To assess the accuracy of crop type identification using machine learning algorithms, 
such as Random Forest (RF). 

• To compare the accuracy of crop classification using pixel-based versus object-based 
approaches, including the application of the Simple Non-Iterative Clustering (SNIC) 
algorithm, utilizing Google Earth Engine (GEE). 

Material and Methods: 
Study Area: 

Rahim Yar Khan, a prominent city in southern Punjab, Pakistan, spans an area of 
11,880 square kilometers, constituting 5.79% of Punjab's area and 1.4% of Pakistan's total 
area. It is located along the banks of the River Indus and is divided into four Tehsils. The city 
lies between latitudes 27° 56' and 28° 52' N and longitudes 70° 00' and 70° 32' E. The climate 
of the area is classified as arid subtropical continental, with a mean annual rainfall of 97.2 mm, 
predominantly occurring during the late summer monsoon season. Summer temperatures 
average 33.6°C, reaching daily maxima of 40.3°C, while winter temperatures average 14.5°C, 
with daily minima of 5.7°C. A map of the study area and its location within Punjab, Pakistan, is 
shown in Figure 1. 

 
Figure 1: Study Area Map of Rahim Yar Khan in Punjab, Pakistan. 

Analysis Framework: 
The overall methodology employed in this study is illustrated in Figure 2. 

Field Survey Data: 
Field information, or ground truth data, were gathered through GPS and visual 

observation. This data collection took place in Rahim Yar Khan during August and September 
2019. The major crops identified were sugarcane, rice, and cotton, while other land-use classes 
included orchards, built-up areas, barren land, water bodies, and other crops. Field sample 
points were recorded with GPS and photographic evidence during the Kharif season. Seventy 
percent of these points were used for classification purposes, while the remaining thirty 
percent were reserved for validation. The latitude and longitude of each sample were also 
documented. The distribution of all field sample points is shown in Figure 3. 



                                 International Journal of Innovations in Science & Technology 

June 2024|Special Issue                                                                           Page |260 

 
Figure 2: Methodological Flow Chart of the Study 

 
Figure 3: Field Sample Points of Cotton, Rice and Sugar Cane taken from all over the Study 

Area 
Image Datasets and Pre-Processing: 

Sentinel-1 and Sentinel-2 satellite data highlight the significance of crop classification, 
particularly in regions experiencing rapid changes [21]. In this study, Synthetic Aperture Radar 
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(SAR) images from Sentinel-1 and optical images from Sentinel-2 were utilized. These sensors 
were selected primarily due to their availability and cost-free access. Both temporal, spectral, 
and spatial resolutions of the data were accessed via the Google Earth Engine (GEE) 
platform. Sentinel-1, operating in the C-band SAR, provides multiple imaging modes with 
resolutions ranging from 10 to 60 meters. The S1_GRD dataset of Sentinel-1 was employed, 
which emits microwave signals to capture reflected energy, resulting in SAR images based on 
signal delays. These images are valuable for monitoring Earth's surface changes and are usable 
in all weather conditions. Overall, Sentinel-1 SAR is essential for environmental, disaster, and 
scientific applications [22]. 

Sentinel-2 data also played a crucial role in this study. Sentinel-2A features 13 bands 
with wavelengths ranging from 443 to 2190 nm and high-resolution optical sensors with 
spatial resolutions of 10 m, 20 m, and 60 m, as detailed in Table 1. The Sentinel-2 bands used 
in this study are listed in Table 2. Specifically, bands B08 and B04 were employed to calculate 
the Normalized Difference Vegetation Index (NDVI) as shown in Equation 1, bands 8A and 
B11 were used to compute the Normalized Difference Water Index (NDWI) as shown in 
Equation 2, bands B08 and B11 were utilized for the Normalized Difference Moisture Index 
(NDMI) as shown in Equation 3, and bands B11 and B04 were used to derive the Bare Soil 
Index (BSI) as shown in Equation 4. These indices, combined with Sentinel-2 bands, were 
used to enhance the classification process [11]. 

Table 1: General Specification of Sentinel-1 and Sentinel-2. 

Description Sentinel-1 (SAR) Sentinel-2 

Resolution 10 m 10,20 ,60m 
Band Type C-Band Coastal Aerosol, Blue, Green, Red, NIR and SWIR 
Revisit Time 6 days 5 Days 
Orbit Height 693km 786km 
Orbit Inclination 98.180 98.630 

Spectral Range 3.75-7.5cm 0.44-2.19µm 

Table 2: Sentinel-2 bands utilized in this study. 

Band Number Sentinel-2 
Bands 

Central 
Wavelength(nm) 

Spatial 
Resolution(m) 

Band 2 Blue 490 10 
Band 3 Green 560 10 
Band 4 Red 665 10 
Band 5 Red Edge 705 20 
Band 6 Red Edge 740 20 
Band 7 Red Edge 783 20 
Band 8 NIR 842 10 
Band 8A Red Edge 865 20 
Band 11 SWIR 1610 20 
Band 12 SWIR 2190 20 

NDVI = 
B08−B04

B08+B04 --------------------- (1)
 

NDWI = 
B8A−B11

B8A+B11   ------------------ (2) 

NDMI = 
B08−B11

B08+B11  ------------------- (3) 

BSI = 
B11−B04

B11+B04 ------------------------ (4) 
The initial step involves acquiring and pre-processing satellite imagery datasets from 

Sentinel-1 and Sentinel-2 platforms using Google Earth Engine (GEE). For Sentinel-1 data, 
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images were selected based on crop growth periods (e.g., August 2019 for cotton, September 
2019 for rice and sugarcane), and included VV and VH polarizations, Interferometric Wide 
(IW) mode, and both ascending and descending orbits to ensure comprehensive imaging. 
After retrieval, each Sentinel-1 image undergoes pre-processing to enhance data quality. This 
includes removing border noise to improve accuracy by masking areas with incorrect or 
missing data and applying speckle filtering using a focal median filter to reduce noise effects 
and enhance image clarity. 

Following the processing of Sentinel-1 data, Sentinel-2 data was filtered based on crop 
phenology periods, with a focus on images exhibiting less than 20% cloud cover. Pre-
processing included cloud masking using the Quality Assessment (QA) band, as well as 
geometric and radiometric correction. Radiometric correction adjusts satellite imagery to 
accurately reflect surface properties, accounting for sensor and atmospheric effects. Geometric 
correction aligns images to eliminate spatial distortions caused by Earth's curvature and sensor 
orientation, ensuring accurate spatial analysis and map overlay. Additionally, pre-processing 
involved computing indices such as NDVI, NDWI, NDMI, and BSI, clipping images to the 
study area, and averaging band values across the date range to enhance data consistency. 

After pre-processing both datasets, the mean images were stacked to create a 
composite image. This composite integrated data from Sentinel-1 (VV and VH bands), 
Sentinel-2 (selected spectral bands), and the computed indices. This process was applied for 
the months of August 2019 (for cotton) and September 2019 (for rice and sugarcane), as 
detailed in Table 3. 

Table 3: Composite Image Dates for Classification of Crop-Type. 

Crop-Type Start-Date End-Date 

Cotton 01-08-2019 30-08-2019 
Rice & Sugarcane 01-09-2019 30-09-2019 

This unified representation improves the accuracy of crop classification analyses. 
Ultimately, the stacked image is visually presented on a map to facilitate interpretation and 
analysis. 
Google Earth Engine Based Classification: 

 
Figure 4: Spectral-Signatures of Different Crop Classes 

Sentinel-1 SAR and Sentinel-2 image data were acquired through Google Earth 
Engine, followed by pre-processing steps for both datasets. For Sentinel-1 data, speckle 
filtering and border noise removal were applied. Sentinel-2 data underwent radiometric and 
geometric corrections, and NDVI indices were derived from this dataset. After pre-processing, 
reducers were applied to the Sentinel-1 and Sentinel-2 data, as well as the indices. Composite 
images were then created by integrating Sentinel-1, Sentinel-2, and NDVI data, and the images 
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were clipped to the study area. Pixel-based and object-based classifications were performed 
using the Random Forest algorithm on the integrated data. For object-based classification, the 
Simple Non-Iterative Clustering (SNIC) algorithm was utilized within Google Earth Engine 
(GEE). E-Cognition was employed for multi-resolution segmentation and Object-Based 
Image Analysis (OBIA). Accuracy assessments of the three classification methods were 
conducted using a confusion matrix to calculate overall accuracy, producer accuracy, and 
Kappa. The classification process involved a thorough evaluation of spectral classes for 
different crop types using various Sentinel-2 bands, with the Red Edge band proving especially 
useful for distinguishing crop types. The spectral signatures for all crop fields in Sentinel-2 
imagery are shown in Figure 4. 
SNIC Image Segmentation: 

The traditional pixel-based classification technique often results in "salt and pepper" 
noise. To address this, the object-based approach uses neighboring pixel information to 
segment the image into distinct regions or objects based on specific parameters, thereby 
reducing such noise. In this study, the Simple Non-Iterative Clustering (SNIC) image 
segmentation technique in Google Earth Engine (GEE) was employed [23]. The process 
begins with initializing centroid pixels on a regular grid across the image. Then, each pixel's 
distance from the centroid is measured in a five-dimensional space of color and spatial 
coordinates. This distance measurement enables the creation of efficient, compact, and nearly 
uniform polygons by integrating normalized spatial and color distances [24]. Key parameters of 
the SNIC algorithm include "image," "size," "compactness," "connectivity," "neighborhood 
size," and "seeds." 

The "size" parameter determines the spatial extent of super-pixels or segments within 
the image. Larger sizes produce fewer but larger segments, while smaller sizes result in more 
but smaller segments. The "compactness" parameter controls the shape of the segments, 
affecting how closely they adhere to regular shapes like squares. Higher compactness values 
lead to more regular, compact segments, whereas lower values allow for more irregular shapes. 
The "connectivity" parameter defines how neighboring pixels influence each other during 
segmentation. A value of 4 indicates 4-connectivity, where pixels are connected horizontally 
and vertically, while 8-connectivity includes diagonal connections as well. The choice between 
4 and 8 connectivity depends on the spatial arrangement of features in the imagery. The 
"seeds" parameter specifies the initial seed points from which the segmentation process 
begins, which is particularly relevant when object shapes vary significantly within the image. 

In this study, the term "image" refers to the data used for segmentation. Integrated 
Sentinel-1, Sentinel-2, and NDVI time series images with different time intervals were used, 
specifically from 01-08-2019 to 30-08-2019 for cotton, and from 01-09-2019 to 30-09-2019 for 
rice and sugarcane. Segmentation sizes of 5, 10, 15, and 20 were tested, with size 15 yielding 
the best classification accuracy. The optimal neighborhood size was determined to be 128. 
Since the majority of parcels in the study area are rectangular, the "compactness" parameter 
was set to 0, and "connectivity" was evaluated at both 4 and 8. Given that the research area 
predominantly consists of rectangular portions, no specific "seeds" were established. 
Random Forest: 

The Random Forest (RF) algorithm, a powerful non-parametric machine learning 
classifier developed by [22], is widely employed in crop classification. RF utilizes bootstrap 
aggregation (bagging) to generate multiple decision trees, which are then aggregated through 
majority voting to enhance prediction accuracy. Its non-parametric nature, minimal 
generalization errors, and robustness to noise make it well-suited for crop classification tasks. 
Additionally, RF’s ability to handle high-dimensional remote sensing data and identify key 
variables contributes to its popularity [25]. The RF classification algorithm is available on the 
Google Earth Engine (GEE) platform. In this study, the RF classifier was trained using 
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training data, and classification accuracy was evaluated with verification data. Two key 
parameters were adjusted: the minimum size of a terminal node (min leaf) and the number of 
decision trees generated per class. Crop classification was performed with various settings for 
these parameters, and the optimal configuration was selected based on overall classification 
accuracy [26]. The number of features was set to the square root of the total number of 
features, and the number of trees was set to 100. 
OBIA Multi-Resolution Segmentation: 

Object-Based Image Analysis (OBIA) technology segments large images into smaller, 
homogeneous image objects based on their properties through a segmentation process. Unlike 
pixel-based methods, OBIA can incorporate additional properties such as spectral, shape, and 
texture information. Accurate segmentation is a critical step in object-oriented image 
processing, as it significantly influences the performance of object-based algorithms [27]. In 
this study, multi-resolution segmentation was applied using E-Cognition, with varying scales 
(30, 70, 90, 120) and levels of compactness (0.5) and shape (0.3, 0.5, 0.8). This advanced 
segmentation technique was employed to enhance the accuracy of object-based crop 
classification. By adjusting these parameters, we refined the segmentation process, resulting in 
more precise delineation of crop fields. This approach notably improved the accuracy of 
object-based classification, demonstrating the advantages of combining sophisticated 
segmentation tools with Random Forest for optimal crop mapping results. 
Confusion Matrix and Accuracy Assessment: 

In this study, cross-validation was employed to assess the model's performance. This 
process involved dividing the datasets into training and validation sets, with a portion of the 
training data reserved for testing the model's parameters. The model's performance was 
evaluated on the validation dataset to determine its generalization capability. Specifically, the 
datasets were split into 70% for training and 30% for validation. After classification, the 
model's accuracy was analyzed using a confusion matrix and assessed with the kappa 
coefficient for consistency. The confusion matrix provides an organized comparison of 
reference and map data for computation. Qualitative evaluation of the classification results was 
conducted through image comparison, while quantitative assessment was achieved using 
statistical methods like the kappa coefficient and confusion matrix [22]. Overall Accuracy 
(OA) represents the proportion of correctly classified pixels, while the Kappa coefficient 
measures classification accuracy by accounting for chance agreement between prediction and 
reference data. Producer Accuracy (PA) indicates the proportion of correctly classified pixels 
within a reference class, and User Accuracy (UA) reflects the likelihood of correctly classifying 
a specific labeled sample. Producer accuracy, user accuracy, and overall accuracy were 
calculated to provide a comprehensive assessment of the model's performance. 

Table 4: Accuracy Assessment of Land-Cover Classes by using field data validation points. 

Land-Cover OA PA UA Kappa F-Score 

PB-Cotton 0.9809 0.6187 0.6113 0.9207 0.6150 
OB-Cotton 0.9667 0.9671 0.9684 0.9587 0.9677 
OBIA-Cotton 0.8508 0.8245 0.8254 0.8023 0.8167 
PB-R&S 0.9696 0.7493 0.7590 0.9083 0.7541 
OB-R&S 0.9411 0.9291 0.9531 0.9241 0.9409 
OBIA-R&S 0.8911 0.8543 0.8623 0.8743 0.8832 

Result and Discussion: 
The classification accuracy of integrating Sentinel-1, Sentinel-2, and NDVI data using 

the Random Forest algorithm was evaluated for both pixel-based and object-based 
approaches, as shown in Table 4. The pixel-based approach achieved an overall accuracy and 
kappa of 0.9809 and 0.9696 for cotton, and 0.9207 and 0.9083 for rice. The object-based 
approach achieved an overall accuracy and kappa of 0.9667 and 0.9411 for cotton, and 0.9587 
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and 0.9241 for rice. The OBIA approach resulted in an overall accuracy and kappa of 0.8508 
and 0.8543 for cotton, and 0.802 and 0.8743 for rice. The object-based classification using the 
SNIC approach produced better results compared to the pixel-based classification in Google 
Earth Engine and the OBIA in E-Cognition Developer. Despite all approaches yielding strong 
results due to the integration of SAR and optical data, the final output maps for each method 
are presented in Figures 5 and 6. 

 
Figure 5: Classification maps for the image acquired in August (kharif crops focusing on 

Cotton) using the three different approaches; a) pixel-based using Random Forest classifier 
Google Earth Engine, b) object-based using Simple non iterative clustering SNIC and 

Random Forest classifier in Google Earth Engine, c) object-based using Multi-resolution 
segmentation and Nearest Neighbor classifier in e-Cognition  

 
Figure 6: Classification maps for the image acquired in September (kharif crops focusing on 

Rice and Sugarcane) using the three different approaches; a) pixel-based using Random Forest 
classifier Google Earth Engine, b) object-based using Simple Non-Iterative Clustering SNIC 
and Random Forest classifier in Google Earth Engine, c) object-based using Multi-resolution 

segmentation and Nearest Neighbor classifier in e-Cognition 
This study examined the comparative efficiency of pixel-based and object-based 

approaches for classifying cotton and rice, utilizing machine learning algorithms like Random 
Forest (RF) on integrated Sentinel-1, Sentinel-2, and indices such as NDVI, NDWI, NDMI, 
and BSI data within Google Earth Engine (GEE). The findings reveal notable differences in 
performance between the pixel-based and object-based methods, highlighting the strengths 
and limitations of each approach. 

The pixel-based approach achieved high overall accuracy for both cotton (0.9809) and 
rice (0.9696). However, the producer’s accuracy (PA) and user’s accuracy (UA) for cotton were 
notably lower (0.6187 and 0.6113, respectively), suggesting that while the pixel-based method 
was effective for general classification, it struggled with accurately identifying cotton pixels. 
This discrepancy indicates potential issues with misclassification and the difficulties of using a 
pixel-based method to capture the variability of agricultural landscapes. 
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In contrast, the object-based approach demonstrated high accuracy, particularly for 
cotton, with an overall accuracy (OA) of 0.9667 and a Kappa of 0.9587. PA and UA for cotton 
were around 0.97, reflecting robust classification performance. For rice, the object-based 
method also performed well, with an OA of 0.9411 and a Kappa of 0.9241, along with high 
PA and UA values (0.9291 and 0.9531, respectively). These results underscore the object-based 
approach's ability to capture the spatial characteristics of the landscape by considering groups 
of pixels (objects) rather than individual pixels, which helps reduce noise and improve the 
definition of crop boundaries in heterogeneous agricultural areas. 

While the object-based approach in GEE produced good results, it did not match the 
performance of the OBIA method. The SNIC approach attained an OA of 0.9667 and a 
Kappa of 0.9587 for cotton, with PA and UA around 0.9671 and 0.9684. For rice, SNIC 
results were lower, with an OA of 0.9411 and a Kappa of 0.9241, and PA and UA values of 
0.9291 and 0.9531, respectively. Although OBIA is effective, its slightly lower performance 
compared to the object-based approach suggests that while segmentation improves 
classification, the specific methodology and tools used can significantly impact results. The 
object-based approach achieved high overall accuracy and a Kappa of 0.9677 and 0.9589, 
compared to OBIA's overall accuracy and Kappa of 0.8911 and 0.8743. Our results indicate 
that pixel-based approaches with different bands and indices produced better results than 
segmentation alone, though fine-tuning data is crucial. We recommend using a trial-and-error 
method when selecting segment size and compactness, as these parameters significantly affect 
results. While the pixel-based approach offers better overall control, segmentation results 
depend on the quality of segments created and the accuracy of the samples used for 
classification. 
Discussion: 

The results of this research corroborate recent studies emphasizing the advantages of 
integrating advanced classification techniques with multi-source satellite data for enhanced 
agricultural monitoring. The object-based approach demonstrated superior performance 
compared to pixel-based methods, particularly when utilizing the SNIC algorithm within 
Google Earth Engine (GEE). This finding aligns with research conducted by [28][29], which 
highlighted that analyzing groups of pixels (objects) rather than individual pixels significantly 
reduces noise and improves classification accuracy. 

The object-based technique for classifying rice and cotton achieved high kappa values 
and overall accuracy, underscoring its effectiveness in capturing the spatial characteristics of 
crops. This is consistent with [30], who found that object-based approaches markedly improve 
crop boundary identification in varied agricultural settings. The object-based strategy in GEE 
outperformed the OBIA approach, illustrating the impact of processing platforms and 
segmentation methods on classification outcomes. Recent work by [31] emphasizes the 
importance of selecting appropriate platforms and segmentation parameters to achieve optimal 
results, noting that while OBIA offers advantages, the accuracy of segmentation and training 
samples are crucial for its effectiveness. 

The study also identified limitations, such as classification errors and poor data quality, 
which are common challenges in remote sensing applications. Misclassification likely resulted 
from mixed pixels and variability in crop growth stages, a finding consistent with [26], who 
reported similar issues in agricultural classification. Additionally, the integration of optical data 
(Sentinel-2) with SAR data (Sentinel-1) proved beneficial, as supported by [29], who found that 
combining these complementary data sources enhances classification robustness and accuracy. 
Future research could address these limitations by exploring advanced machine learning 
techniques and incorporating new data sources, such as hyperspectral imagery or drone-based 
observations. Employing deep learning methods, as suggested by [32], could further improve 
the management of complex agricultural landscapes. Overall, this study highlights the potential 
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for enhancing crop classification accuracy through advanced algorithms and multi-source 
satellite data, providing valuable insights for agricultural management and policy-making. 
Conclusion: 

Overall, integrating Sentinel-1, Sentinel-2, and composite images based on indices such 
as NDVI, NDWI, NDMI, and BSI proved advantageous across both pixel-based and object-
based approaches. The object-based approach in Google Earth Engine (GEE), utilizing the 
SNIC algorithm, outperformed both the pixel-based method and the OBIA approach with 
multi-resolution segmentation in e-Cognition Developer. This superiority is likely attributed to 
the superior handling of spatial information and the reduction of classification noise. While the 
pixel-based method achieved high overall accuracy, its lower producer and user accuracy 
values highlight its limitations in heterogeneous landscapes. Although the OBIA method was 
useful, it did not match the accuracy of the object-based method in GEE, underscoring the 
importance of advanced segmentation techniques for enhancing classification precision. 

These findings underline the necessity of selecting classification methods based on the 
specific needs and characteristics of the study area. Future research should focus on refining 
object-based methods, particularly in the context of integrating multi-source remote sensing 
data, to further improve classification accuracy and reliability in complex agricultural 
environments. 
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