
 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |876

LULC-NEAT: Land Use Land Cover Classification Using
NeuroEvolution of Augmenting Topologies

Sumayyea Salahuddin1, Nasru Minallah1, Muhammad Athar Javed Sethi1, Muhammad Ajmal2,
Maryam Mahsal Khan3
1Department of Computer Systems Engineering, University of Engineering and Technology
Peshawar, 25000, Pakistan.
2Department of Agricultural Engineering, University of Engineering and Technology Peshawar,
25000, Pakistan.
3Department of Computer Science, CECOS University of IT and Emerging Sciences Peshawar,
25000, Pakistan.
*Correspondence: Sumayyea Salahuddin; Email: sumayyea@uetpeshawar.edu.pk
Citation| Salahuddin. S, Minallah. N, Sethi. M. A. J, Ajmal. M, Khan. M. M, “LULC-NEAT:
Land Use Land Cover Classification Using Neuro Evolution of Augmenting
Topologies”, IJIST, Vol. 6 Issue. 2 pp 876-896, June 2024
DOI| https://doi.org/10.33411/ijist/202462879899
Received| June 06, 2024 Revised| June 26, 2024 Accepted| June 27, 2024 Published| June
28, 2024.

Introduction/Importance of Study: NEAT's potency in optimizing neural networks for
accurate LULC classification, aimed at better environmental stewardship, is shown.
Novelty statement: LULC-NEAT introduces NeuroEvolution of Augmenting Topologies for
optimizing neural networks in land use land cover classification.
Material and Method: The EuroSAT RGB benchmark satellite dataset was preprocessed and
evaluated using NEAT to create diverse feed-forward neural networks (FFNNs) with varying
hidden layers.
Result and Discussion: The NEAT-evolved FFNN architecture with two hidden layers
showed excellent and high accuracy percentages during the training and testing, respectively.
Although high training accuracy implies successful feature learning, it also indicates probable
overfitting. However, the high accuracy obtained in testing, 99.83%, shows the excellent
generalization ability of the model toward unseen data and thus does not overfit. The results
were cross-validated with the state-of-the-art CNN models, and the experiments prove that
NEAT can be effectively used for LULC classification.
Concluding Remarks: The study supports that NEAT can effectively evolve neural networks
for high-accuracy LULC classification, providing a robust alternative to traditional CNN models.
Keywords: Satellite Image Classification; Neuroevolutionary of Augmenting Topologies
(NEAT); Deep Learning; Convolutional Neural Network (CNN); EuroSAT.

mailto:sumayyea@uetpeshawar.edu.pk
https://doi.org/10.33411/ijist/202462879899

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |877

Introduction:
Efficient land use land cover (LULC) classification using machine learning (ML)

techniques is a recent and well-debated venue [1], [2]. Talukdar et al. [1] compared six ML
methods such as the support vector machine (SVM), random forest (RF), spectral angle mapper
(SAM), Mahalanobis distance (MD), artificial neural network (ANN), and fuzzy adaptive
resonance theory-supervised predictive mapping (Fuzzy ARTMAP). They found the RF as the
best ML LULC classifier, which needs attention for assessment in other morphoclimatic
conditions in the future. Abdi [2] collated the performance of four ML techniques such as SVM,
RF, extreme gradient boosting (XGBoost), and deep learning (DL) using Sentinel-2 images. A
dataset consisting of multitemporal scenes of summer, winter, autumn, and spring of south-
central Sweden was formed and, divided into 70% training and 30% testing subsets using
stratified random sampling. They found the SVM as an overall accurate approach followed
closely by XGBoost, RF, and DL respectively.

LULC automation is inevitable as the geographic region to be covered is extensive and
analysts available to perform probes are few. Remotely sensed datasets are not only vast but also
incredibly detailed, often comprising terabytes of data collected from various sources such as
satellite imagery, aerial photography, and ground surveys. Usually, satellite application requires
manual labeling of objects and structures in the imagery to be valuable in disaster management
[3], law enforcement [4], and environmental monitoring [5]. Even though RF [1] and SVM [2]
algorithms have shown promising results, classic object detection and classification algorithms
are often imprecise and unreliable for these applications. The sheer volume and complexity of
these datasets make manual analysis impractical and time-consuming. Automation allows for the
efficient and accurate classification, analysis, and interpretation of big data through advanced
ML and artificial intelligence (AI) techniques. This increases the scale of applications while
simultaneously reducing the time and effort required by human analysts, enabling them to focus
on more strategic tasks and deriving insights rather than just gathering and studying data. DL is
a family of advanced ML algorithms that have shown assurance for the automation of such
tasks. ANNs have gained extreme popularity in DL [6], [7], [8], where these deep ANNs have
won competitions in ML, computer vision (CV), pattern recognition (PR), and natural language
processing (NLP). However, many existing ML issues can be resolved using smaller neural
networks. Neuroevolution [9] is an AI technique that can play a significant role in these cases to
determine an optimized network architecture and connection weights. NeuroEvolution of
Augmenting Topologies (NEAT) [10] algorithm authorizes the optimized evolution of complex
neural network architectures using a genetic algorithm.

The EuroSAT RGB dataset serves as a benchmark colored dataset constructed from
Sentinel-2 satellite images [11], [12], [13]. This dataset finds extensive use in ML and DL and is
the basis for investigating and practicing the design, estimating, and employing neural networks
for LULC classification [14], [15]. In this study, we propose LULC-NEAT, which is an ANN
implemented using the NEAT algorithm [10], [16] for the EuroSAT RGB dataset to classify
LULC satellite images. In the following sections, we present a review of different studies related
to EuroSAT RGB dataset using DL and its applications in this domain.

Helber et al. [12] introduced the EuroSAT dataset to tackle the problem of LULC
classification by Sentinel-2 satellite images. The dataset was patch-based and consisted of ten
classes from 27,000 labeled and georeferenced images. The two types of images are available:
RGB and multispectral MS. The classes are as follows: industrial and residential buildings, annual
and permanent crops, highways, rivers, sea/lakes, pastures, forests, and herbaceous vegetation.
The dataset was evaluated on a few deep neural networks such as ResNet-50 and GoogleNet.
GoogleNet achieved 98.18% of accuracy for EuroSAT RGB and ResNet-50 was the best model
with 98.57% of accuracy. For EuroSAT MS: the combination of short-wave infrared (SWIR)

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |878

bands results in 97.05% of accuracy for ResNet-50, whereas the combination of color-infrared
(CI) bands gives 98.30% of accuracy for RGB using ResNet-50. Li et al. [17] described a new
variation of the convolutional neural network (CNN) called the Deep Discriminative
Representation Learning with - Attention Map (DDRL-AM), which was applied on the
EuroSAT RGB data, yielding an accuracy of 98.74%.

To boost the efficiency of small neural networks for satellite image classification, Chen
et al. [18] developed a knowledge distillation model and experimentally validated it on different
datasets. Their proposed framework achieved 94.74% accuracy on the EuroSAT RGB dataset,
87.03% accuracy on the NWPU-RESISC dataset, and 84.38% on the UC-Merced dataset.
Sonune et al. [19] evaluated both ML and DL techniques on the EuroSAT RGB dataset. He
concluded that the RF achieved 61.46% accuracy, ResNet-50 achieved 94.25% accuracy, and
Visual Geometry Group 19 (VGG-19) achieved 97.66% accuracy. It was also found that the DL
techniques outperformed the ML approach on the EuroSAT RGB dataset. But the performance
of RF can be improved by hyper tuning its parameters (such as the number of trees, etc.).

Naushad et al. [14] fine-tuned the pre-trained networks such as the Visual Geometry
Group 16 (VGG-16) and Wide Residual Networks (Wide ResNet-50) on the EuroSAT RGB
dataset. The network performance and execution time are improved using early stopping,
adaptive learning rate, gradient clipping, and data augmentation. The results showed that the
VGG-16 without data augmentation obtained 98.14% accuracy, VGG-16 with data
augmentation obtained 98.55% accuracy, Wide ResNet-50 without data augmentation achieved
99.04% accuracy, and Wide ResNet-50 with data augmentation achieved 99.17% accuracy. Thus,
the Wide ResNet-50 with data augmentation outperformed the other three networks for the
EuroSAT RGB dataset. Jain et al. [20] presented different variations of RSDnet that used the
distillation network (BYOL) for satellite image classification. The RSDnet-3 variation with three
channels achieved 90% accuracy for the EuroSAT RGB dataset. Stateczny et al. [21] presented
a technique for LULC classification using images obtained from remote sensing. They used
Haralick texture features, a directed gradient histogram, a local Gabor binary pattern histogram
series, and Harris Corner Detection. An Improved Mayfly Optimization (IMO) technique was
employed for efficient feature subset selection. For the actual classification, the Multiplicative
Long Short-Term Memory (mLSTM) network was used. The developed IMO-mLSTM
approach achieved a 98.52% accuracy rate on the EuroSAT RGB dataset. Aksoy et al. [22]
showed that injecting traditional features into small-scale CNN models increases their accuracy,
unlike models without this feature injection. The proposed method was tested on the EuroSAT
RGB dataset. The chosen features were the sample mean, grey-level co-occurrence matrix
(GLCM) features, Hu moments, local binary patterns, histogram of oriented gradients (HOG),
and color invariants. The chosen DL models were SqueezeNet, MobileNetV2, ShuffleNetV2,
VGG16, and ResNet50V2. When relying solely on DL models, the results were as follows:
SqueezeNet achieved a maximum accuracy of 0.6778, while ShuffleNetV2 demonstrated a
maximum accuracy of 0.8502. When all traditional features were injected into the DL models,
the results were as follows: SqueezeNet reached a maximum accuracy of 0.7618, and
ShuffleNetV2 demonstrated a maximum accuracy of 0.8998. Thus, an impressive improvement
in accuracy can be observed.

Rangel et al. [23] compared CNNs against transformer-based methods using EuroSAT
RGB dataset for enhanced accuracy and efficiency in LULC analysis. The convolutional models
were AlexNet, ResNet-50, ResNeXt, DenseNet, MobileNetV3, EfficientNetV2, and
ConvNeXt. The transformer models were ViT, Swin Transformer, and MaxViT. Results were
obtained both when trained from scratch and when retrained with pre-trained weights (obtained
from models pre-trained on ImageNet). All models show improved accuracy when retrained
with pre-trained weights compared to being trained from scratch. Transformer-based models
(ViT32, SwinB, and MaxViT) showed notable improvements, with MaxViT achieving the

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |879

highest accuracy overall of 0.99. Yadav et al. [24] classified satellite images based on their
topologies and geographical features utilizing the CNNs on the EuroSAT RGB dataset. The
three pre-trained baseline models are ResNet-50, ResNet-101, and GoogleNet. Additional
sequence layers were incorporated into them in relation to CNNs, and the data is pre-processed
using LAB channel operations. The GoogleNet model achieved the highest accuracy (99.68%),
precision (99.42%), recall (99.51%), and F1-Score (99.45%) when applied to the preprocessed
dataset. It was reported that increasing the number of layers in a CNN does not always lead to
improved results for a medium-sized dataset. GoogleNet, a 22-layer CNN, outperformed the
50-layer ResNet-50 and the 101-layer ResNet-101 in terms of both speed and accuracy. Table 1
lists the comparison of LULC classification studies for the EuroSAT RGB dataset. Among these
approaches, the GoogleNet with preprocessing by Yadav [24] and the Wide ResNet-50 with
data augmentation by Naushad [14] outperformed all the other approaches.

Table 1: Comparison of LULC Classification Studies for the EuroSAT RGB Dataset.

Authors Year Model Accuracy

Chen et al. [18] 2018 Knowledge distillation 94.74%
Helber et al. [12] 2019 Google Net 98.18%
Helber et al. [12] 2019 ResNet-50 98.57%
Li et al. [17] 2020 DDRL-AM 98.74%
Sonune et al. [19] 2020 Random Forest 61.46%
Sonune et al. [19] 2020 ResNet-50 94.25%
Sonune et al. [19] 2020 VGG19 97.66%
Naushad et al. [14] 2021 VGG16 (Without Data Augmentation) 98.14%
Naushad et al. [14] 2021 VGG16 (With Data Augmentation) 98.55%
Naushad et al. [14] 2021 Wide ResNet-50 (Without Data Augmentation) 99.04%
Naushad et al. [14] 2021 Wide ResNet-50 (With Data Augmentation) 99.17%
Jain et al. [20] 2022 RSDnet-3 90.00%
Stateczny et al. [21] 2023 IMO-mLSTM
Aksoy et al. [22] 2023 SqueezeNet 98.52%
Aksoy et al. [22] 2023 SqueezeNet + All Traditional Features 67.78%
Aksoy et al. [22] 2023 ShuffleNetV2 76.18%
Aksoy et al. [22] 2023 ShuffleNetV2 + All Traditional Features 89.98%
Rangel et al. [23] 2024 ViT32 (Retrained with Pre-trained Weights) 97.20%
Rangel et al. [23] 2024 SwinB (Retrained with Pre-trained Weights) 98.70%
Rangel et al. [23] 2024 MaxViT (Retrained with Pre-trained Weights) 99.00%
Yadav et al. [24] 2024 GoogleNet (With Preprocessing) 99.68%

Over the years, artificial neural networks (ANNs) have demonstrated strong
performance in solving LULC classification tasks. Table 1 indicates that numerous DL models
have been developed to improve the classification accuracy using a large number of layers and
parameters. It should be noted that there are other alternatives: the classification of LULC can
be carried out using small neural networks with fewer parameters, for example, implemented by
Aksoy et al. [22], Yadav et al. [24], and neuroevolution, which also allows developing an optimal
architecture of a neural network and determining connection weights. For this task, it is
recommended to use the NEAT approach, since it quickly adapts the structure and weights of
neural networks, which reduces premature convergence and maintains a variety of potential
solutions. Thus, NEAT can significantly improve LULC classification, create more optimal and
efficient neural networks. The aim of current study is to enhance the accuracy of LULC
classification using NEAT. Following are specific objectives aligned with the overall aim:

• To assess NEAT in classifying different LULC categories on the baseline EuroSAT
RGB satellite dataset.

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |880

• To fine-tune the LULC-NEAT approach by adjusting different hyperparameters, such
as population size, number of layers, and activation functions, to achieve optimal
classification accuracy.

• To provide a comprehensive analysis of the results produced by the LULC-NEAT
approach, focusing on classification accuracy, computational efficiency, and robustness.

• To compare performance of the LULC-NEAT with leading CNN models such as
GoogleNet and Wide ResNet-50 for LULC classification and presenting the results of
the comparison.

Material and Methods:
Over the years, the classification of LULC has been done using Neural Networks.

Table 1 depicts various architectures employed for satellite image classification [12], [14], [17],
[18], [19], [20]. It is clear that the architectures based on neural networks and their variations did
really excellent. For this reason, we implemented neural network models via NEAT and
compared them with CNNs. The models underwent fine-tuning on the EuroSAT RGB dataset
and were trained using Python’s TensorFlow framework.
Dataset:

In this section, we provide EuroSAT dataset characteristics, training and testing split,
and the applied pre-processing steps [11], [12], [13].

• Source: It is a novel patch-based dataset derived from Sentinel-2 satellite [25].
Sentinel-2 satellite provides free and open-source imagery founded by the
Copernicus Program run in partnership with the European Space Agency (ESA)
[26].

• Bands: There are two versions of the dataset: a) RGB containing Red, Green, and
Blue frequency bands only, and b) multispectral containing thirteen spectral bands.
The EuroSAT RGB is utilized in this study.

• Image Size and Spatial Resolution: The size of each image is 64 × 64, while the
spatial resolution is 10 meters.

• Classes: It has ten classes covering industrial and residential buildings, annual and
permanent crops, highways, rivers, sea and lakes, pastures, forests, and herbaceous
vegetation. Figure 1 shows some sample images from this dataset.

• Image Count: There are 2000 to 3000 images per class with a total of 27000
labeled and georeferenced images. Thus, the dataset is imbalanced.

• Training and Testing Split: The dataset was reduced into a compact, balanced
dataset of 1000 images using a random sampling technique containing 100 images
per class. The dataset was then split into 70% and 30% for training and testing
using a stratified sampling approach.

• Pre-processing: Operations such as normalization (i.e. rescaling in the range of
0-1), splitting (70/30), and label encoding were applied.

Artificial Neural Networks (ANNs):
The ANNs consist of interconnected processing units known as neurons, where each

neuron has a connection weight known as a synaptic weight. There are three types of neurons:
input, hidden, and output. The number of input neurons is determined by the number of
features in the dataset, while the number of output neurons is based on the number of classes
being predicted for a particular problem. The quantity of hidden neurons can be adjusted to
meet the desired level of functionality. Due to the generic nature of NN, they are known as the
universal function approximators and are used to solve highly complex, non-linear problems
besides regression and classification problems. They emulate the behavioral and adaptive
abilities of the central nervous system [27], [28]. The ANN architecture is a particular network

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |881

formed by a precise structure of nodes and connections between them. Usually, the architecture
is fixed and specified before training. There can be numerous solution architectures for a given
problem, but the most efficient might not be obvious. The weights of specified network
architecture must be tuned to minimize the loss function and to reach an optimized form. Figure
2 shows a sample ANN architecture consisting of three input nodes, one hidden layer with four
neurons, and two output nodes. Backpropagation (BP) is a popular algorithm to train the ANN
[29]. It determines the error between the actual output and the network output, propagates it
back through the network from the output layer to the hidden layer, and adjusts the weights and
biases accordingly. It is based on gradient descent, an optimization technique that adjusts the
weights in proportion to the negative gradient of the error surface. But, its limitations are slow
convergence, getting stuck in local minima, and sensitivity to input data [30]. Alternatively, the
genetic algorithm can be used as a search heuristic to determine the neural network weights
[31][32].

Figure 1: Sample EuroSAT RGB Dataset Images with Spatial Resolution 64×64×3.

Genetic Algorithm (GA):
In 1975, John Holland presented a metaheuristic inspired by natural evolution theory

known as a genetic algorithm (GA) [33]. It solves complex problems and focuses on
optimization. It takes a population of possible solutions for a given task and selects the fittest
individuals to produce the children for the next generation. It is an iterative process, which
continues until the population with the best solutions has been reached [34]. The five-phase GA
process is shown in Figure 3 that starts with an initial population of solutions with a set of genes
encoded as binary, integer, float, or permutation. A fitness function computes the fitness score
of each chromosome, and the fittest individuals are selected based on their fitness scores. The
crossover point is chosen randomly within the gene, and offspring are created by swapping
parent genes among themselves. After crossover, the offspring chromosomes may undergo
mutation, where random changes are introduced to some genes. Once the population satisfies
the stopping criteria, the genetic algorithm terminates with an optimal solution. Unlike gradient

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |882

descent and Backpropagation, GA bypasses the local minima problem and can give better
weights.

Figure 2. A Sample Neural Network Architecture.

Figure 3. Flow Chart of Genetic Algorithm with Sample Initial Population.

Neuroevolution (NE):
Neuroevolution (NE) is an AI technique that uses evolutionary algorithms to evolve

ANNs and yield better architectures, weights, parameters, and rules [9]. It follows population-
based optimization and assigns a fitness score to each genome based on phenotype (i.e. actual
neural network) performance. The optimization loop then begins, allowing innovation, testing,
and classification to lead to a neural network that solves the applied problem exquisitely.
Figure 4 illustrates the process of NE inspired by GA and broadening its principles to the
domain of neural network optimization, combining the strengths of evolutionary computation
with the power of neural networks. The population is segregated into species so that all members
of the same species have similar genomes. Speciation prevents the loss of diversity in the
population and premature convergence. Recombination (or crossover) and mutation generate
new candidate neural networks. These are trained by standard methods (e.g., backpropagation
or other training algorithms such as stochastic gradient descent (SGD), adaptive moment
estimation (ADAM), momentum, etc.). The trained neural networks are used to solve the
problem. The performance of each neural network is evaluated using a fitness function on its
ability to carry out the task. The fittest genomes are chosen for creating the next generation
according to fitness assessments. Poorly performing genomes are removed from the pool, and

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |883

the genomes are clustered into species to retain diversity. The best genomes are selected as
parents to produce the next generation, and they associate with each other through genetic
operations. Genetic operations, fitness evaluations, and selection are performed repeatedly until
the neural networks evolve to accomplish the task optimally.

Figure 4: Flow Chart of Neuroevolution.

NeuroEvolution of Augmenting Topologies (NEAT):
The NEAT utilizes an optimization approach derived from NE. In the fixed architecture

of NE, the objective is to optimize the connection weights only that set up the network
functionality. The question NEAT raise is: can evolving both weights and architectures give an
edge over just evolving weights on the fixed architecture? In a feed-forward neural network with
fixed architecture, depending on the task at hand, the loss function is determined and then
adjusted using a gradient-based approach like Adam or SDG. NEAT on the other hand says
why not learn or search the suitable architectures and then tune their connection weights
accordingly [35]. So, it starts with simplistic possible neural networks with direct connections
between input and output neurons and their connection weights. It creates the initial population
of such neural networks. These networks are then evolved using crossover and mutation to
search for better and improved networks by tuning the parameters, thereby creating new
populations [36], [37]. This arises technical challenges such as how to genetically represent
dissimilar architectures to crossover in a significant way to avoid suboptimal solutions, how to
save the architectural changes that can be optimized in a few generations disappearing
prematurely from the population, and how to keep minimal architectures throughout evolution
without a specialized fitness function? The NEAT solves these challenges by using direct
encoding, global historical markings, and speciation [10].

For every neural network in the population, NEAT keeps the genome known as
genotype in the background that corresponds directly to a network known as phenotype. The
genome consists of node genes (that express artificial neurons) and connection genes (that
express synaptic weights). Node genes list input, hidden, and output nodes (or neurons). The
connection genes illustrate global innovation number (or historical marker), from gene, to gene,
weight, and activeness of connections. The connection genes can be active or inactive and can
be recurrent or non-recurrent. The combination of genotype and phenotype is known as a
chromosome [35]. Figure 5 shows the sample NEAT chromosome encoding a neural network.
There are two input nodes, one hidden node, and one output node. There are six connection

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |884

specifications, one of which is recurrent (from node 4 to node 3) with innovation number 7,
and one is inactive (from node 1 to node 4) with innovation number 1.

Figure 5: A Sample of NEAT Genotype and Phenotype.

When neural network architecture in the population crosses over with another network,
the important information may vanish. This is known as the competing conventions problem
[10]. To solve this problem, the NEAT uses global innovation numbers. These numbers are the
historical markers that maintain the historical origin of each gene throughout its evolution.
During the process of crossover, genes may either match or differs between the two parents.
Matching genes have the same innovation numbers in both parents. Disjoint genes are found
within the range of the other parent’s innovation numbers, while excess genes occur outside this
range. To construct an offspring, both parent genes are crossed over randomly from the
matching genes while for the excess or disjoint genes, a more fit parent is preferred. The NEAT
performs mutation by adding a new node, new connection between existing nodes, removing
an existing node, and removing the connection between existing nodes. Once mutated, these
changes in the connection genes are shown by fixed innovation numbers. These architectural
changes must be protected using population speciation [36]. The grouping of genomes into

species is done by calculating the compatibility distance δ between pairs of genomes using Eq.
1 considering:

δ =
c1E

N
+

c2D

N
+ c3. W̅ (1)

Here, E, D, W̅, N are the excess genes, disjoint genes, the average weight difference of

matching genes, and the number of genes in the larger genome, respectively. c1, c2, and c3 are
coefficients that control the relative importance of excess genes, disjoint genes, and average

weight difference. The genomes with compatibility distance δ above a threshold δt are placed
into a new species while lower are placed in existing species with the most matching and
compatible representative genome.
Convolution Neural Network (CNN):

The ANNs need meticulous consideration of the architecture and its thorough tuning
of the hyperparameters such as the number of hidden layers, number of nodes in a layer, number
of epochs, learning rate, batch size, activation function, backpropagation technique, and
regularization techniques [38], [39]. The standard Neural Network (ANN) is inefficient for high-
dimensional data. For example, if the dimension of a color image is 100x100x3 and there are

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |885

100 nodes in the first hidden layer, then there are 3 million weights parameters. When the image
dimension is doubled to 200×200×3 with the same number of nodes, the weight parameters
reach to 12 million. Therefore, an efficient solution is needed to handle this problem. The CNN
is the most popular DL technique to solve Image classification [40]. It has a convolutional layer
where filters (or kernels) scan the image and look for specific features, a pooling layer where the
image reduces into a smaller dimension, and a fully connected layer to classify it. Thus, CNN
provides feature learning, dimensionality reduction, and classification [41]. Figure 6 shows a
5-layer CNN with two convolutional layers, two pooling layers, and a fully connected layer. It
can be used to classify land cover in satellite images.

Figure 6: An Example of a Convolutional Neural Network.

Classification Based on NEAT:
In this paper, categorical LULC images were classified using the EuroSAT RGB Dataset.

The simplified framework of object categorization system is depicted in Figure 7. It consists of
four main steps: pre-processing, data encoding, model training and validation, and model
evaluation and prediction. First, the class labels are obtained as a list of strings, with each string
representing a directory in the dataset directory. Subsequently, the count for the images in each
category is acquired. Then, the following four steps are performed:

Figure 7. Methodology.

Pre-Processing:
First, a dictionary data is created that stores the full image path as the key and its

corresponding label as the value. This is done by first iterating through each label in the labels
list and then iterating through each image in the directory corresponding to that label. For each
image, the data dictionary is updated by adding a key-value pair, where the key is the full image
path and the value is the image label. Then two panda’s series X and y are created from the data
dictionary, where X contains the image paths and y contains the label. Next, the data is split into
training (70%) and testing (30%) sets using the Scikit-learn class Stratified Shuffle Split [42].
Subsequently, by iterating through the split data and for each training and testing set, the old
directory paths are replaced with the new directory paths for the training and testing sets using
the re library. Finally, two Numpy lists i.e. train_path_map and test_path_map was created
that contain the old and new paths for the training and testing images, respectively, in the form
of tuples (old path, new path). Next, the Keras class Image Data Generator is used to
generate the batches of image data for training and testing and represented as a tuple of two
Numpy arrays (images and labels). Operations such as normalization (i.e. rescaling in the range
of 0-1) and creation of a one-hot encoded vector for verifying the output of neural networks
were performed using Keras.
Data Encoding:

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |886

The data generated by the training and testing generators in the pre-processing stage was
extracted using the next () method [43], [44] and stored in variables X_train, y_train, X_test,
and y_test. The next () method returns a tuple containing two elements, the first is the
training/testing images and the second is the corresponding labels. The X_train and X_test is
4D array of shape (batch_size, height, width, channels) and the y_train and y_test is 2D array of
shape (batch_size, num_classes). The reshaping of images from a 4D array (batch_size, height,
width, channels) to a 2D array (batch_size, height*width*channels) is performed using the
reshape () method. The reshaped Numpy arrays are then converted to Python lists, with the
names lx_train, ly_train, lx_test, and ly_test respectively. It was accomplished by calling the
tolist () method on the X_train, y_train, X_test, and y_test arrays.
Model Training and Validation:

Once the images are in a list format, they are ready to be classified using the NEAT
algorithm. For EuroSAT RGB, the input nodes are set equal to 12288 and output nodes are set
equal to 10. One, two, & three hidden layer neural network architectures were tried with a
population size of five and ten for sigmoid and Rectified Linear Unit (RELU) [45] activation
functions. The fitness threshold was set equal to the batch_size. The training accuracy,
generation time, and average training accuracy were determined for each network.
Model Evaluation and Prediction:

Eventually, use the testing dataset to calculate the testing accuracy and average testing
accuracy of the NEAT-based neural networks.
Performance Metrics:

In this research study, a balanced EuroSAT RGB dataset was used for experiments with
each class having the same number of samples. Accuracy is a reliable metric for estimating the
performance of a technique on the balanced datasets. Additionally, computational time was used
to evaluate the technique’s efficiency.
Training Accuracy:

It is determined by comparing the model's outputs with the actual labels of the training
data. The training accuracy measures model's ability to predict the output correctly for a given
input during the training phase.
Testing Accuracy:

It is determined by comparing the model's predictions with the true labels of the testing
data. The testing accuracy measures how well the model generalizes to new, unseen data.
Overall Accuracy:

Overall accuracy is a measure of the model's ability to correctly classify instances, both
during the training and testing phases, out of the total number of instances. It can be calculated
using Eq. 2.

Overall Accuracy (OA) =
(Training Acc.+ Testing Acc.)

2
 (2)

Computational Time:
Computational time quantifies the time required for a model to train and test on a

dataset. It depends on factors including the hardware used, the dataset size, and the intricacy of
the model.
System Specifications:

For model training, the following specifications were used:

• Apple MacBook Pro (Retina, 13-inch)

• Processor: 2.9 GHz Intel Core i5 (Turbo Boost up to 3.3 GHz)

• Memory: 16 GB 1867 MHz DDR3

• Graphics: Intel Iris Graphics 6100 1536 MB

Results:

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |887

A brief and precise summary of our experimental results and their interpretation using
the NEAT-based neural network architecture is presented below.
Hyperparameter Tuning in NEAT– An Overview of Key Parameters:

NEAT has many parameters that control its implementation and various aspects of the
training process [16]. Table 2 shows various NEAT parameters used for the EuroSAT RGB
dataset. These values can be adjusted to fine-tune the training process and optimize the
performance of the final model.

Table 2: NEAT Parameters for LULC Classification using the EuroSAT RGB Dataset.

Parameters Values Description

fitness_criterion Max It is the criterion used to evaluate the fitness of a
network. Here, the setting is configured to 'max',
indicating that the network with the highest fitness
score will be regarded as the optimal one.

fitness_threshold Batch size It is the minimum fitness value required for a network
to be considered fit enough to be included in the
population of networks. Here, it is set to 'batch size',
which is 700 for training and 300 for testing.

pop_size 5 and 10 It specifies the number of networks in a population.
It affects the diversity and the exploration of the
solution space. Here, it is set to five and ten.

reset_on_extinction False It controls whether or not the algorithm should reset
the population if it becomes extinct. Here, it is
configured as 'False'.

activation_default Sigmoid It specifies the default activation function used for
nodes within the network. The current setting is
configured to use the 'Sigmoid' function.

activation_mutate_rate 0.0 It is the probability that the activation function of a
node will be randomly changed during mutation.
Here, it is set to '0'.

activation_options Sigmoid It lists the options for activation functions that can be
used in the network. Here, it is set to only 'Sigmoid'.

conn_add_prob 0.5 It is the probability that a new connection will be
added to the network during mutation. For this study,
it is set to '0.5'.

conn_delete_prob 0.5 It is the probability that a connection will be removed
from the network during mutation. Here, it is set to
'0.5'.

enabled_default True This controls the default status of a node, whether it
is enabled or not. Here, it is 'True'.

enabled_mutate_rate 0.01 It is the likelihood that the node’s status will be
randomly changed during mutation. Here, it is '0.01'.

feed_forward True It controls the type of network topology to use. Here,
it is set to True, which means the network is
feedforward.

initial_connection full_direct This parameter specified the initial connection of the
network. For this study, it is set to 'full_direct' which
means all input nodes are connected to all output
nodes.

node_add_prob 0.2 It is the probability that a new node will be added to
the network during mutation. For this study, it is 0.2.

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |888

node_delete_prob 0.2 It is the likelihood that a node will be removed from
the network during mutation. For this study, it is 0.2.

num_hidden 1, 2, and 3 This parameter controls the number of hidden layers
in the network. Neural network architectures with
one, two, and three hidden layers were attempted.

num_inputs 12288 This parameter specifies the number of input nodes
in the network. The shape of an individual image in
EuroSAT RGB is 64x64x3, which on reshaping gives
a 12288 elements list. Hence, the number of input
nodes is set to 12288.

num_outputs 10 This parameter specifies the number of output nodes
in the network. As there are ten different classes in
EuroSAT RGB among which neural network has to
categorize an image, so for this study, it is set to 10.

Data Splitting and Evaluation in NEAT– Training, Testing, and Fitness Threshold:
As mentioned earlier that the EuroSAT RGB dataset was reduced into a compact,

balanced dataset of 1000 images using random sampling and then split into 70% and 30% for
training and testing sets using stratified sampling. This means that a single batch of 700 images
will be utilized for training and another batch of 300 images will be employed for testing.
Therefore, the fitness threshold is 700 for the training and 300 for testing dataset and their
details are shown in Table 3 and Table 4.
Experiment 1– The Effectiveness of Training Accuracy in the NEAT Evolved Neural
Networks:

With the help of training dataset, experiment 1 was performed to assess how various
parameters impact the training accuracy of the NEAT evolved Neural Networks for LULC
classification using EuroSAT RGB dataset. Table 3 presents a summary of the results from
seven experimental models (M1-M7). The variations in population size (5 and 10), hidden layers
(1, 2, 3), and activation functions (sigmoid and relu) were observed for the fixed number of
generations, which represents the number of times the NEAT algorithm will repeat the process
of selection, reproduction and mutation of individuals in a given population to find the best
solution. It is a stopping criterion for the NEAT algorithm and was set to 25 in this study. This
number has been selected after extensive experimentation as the NEAT algorithm can converge
to a good solution before reaching the maximum number of generations. For four different runs
of the experiment, training accuracy for all models were obtained.

Table 3 shows that the maximum and average training accuracy achieved was 100% by
model M5. The best result was obtained using sigmoid as an activation function for a population
size of ten and neural networks with two hidden layers. Rectified Linear Unit (RELU) as an
activation function resulted in a drastically poor accuracy as shown by model M7 contrary to the
CNNs that give the best results on RELU instead of a sigmoid. It can be inferred that the NEAT
algorithm has the potential to generate efficient neural networks for classifying satellite images.
Experiment 2– The Effectiveness of Testing Accuracy in the NEAT Evolved Neural
Networks:

With the help of testing dataset, experiment 2 was performed to assess how various
parameters impact the testing accuracy of the NEAT evolved Neural Networks for LULC
classification using EuroSAT RGB dataset. For each model, four runs were performed and
testing accuracy was reported. The results of seven experimental models (M1-M7) are
summarized in Table 4. Testing accuracy is a measure of how well the network can correctly
predict the output from a set of testing dataset inputs. The model designated as M5, which
employed a population size of 10, two hidden layers, and the sigmoid activation function
depicted the highest average (99.83%) testing accuracy.

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |889

Experiment 3– Computational Time Comparison of the NEAT Evolved Neural
Networks:

In terms of both training accuracy and testing accuracy, excellent results were achieved
for the following two models:

• Best model (M5): The population size of 10 with two hidden layers and an activation
function of sigmoid achieved the highest average training accuracy of 100% and the
highest average testing accuracy of 99.83%. The overall accuracy is 99.91%.

• Runner-up model (M2): The population size of 5 with two hidden layers and an
activation function of sigmoid achieved the second highest average training accuracy of
99.49% and the second highest average testing accuracy of 99.42%. The Overall accuracy
for this case is 99.45%.

Table 3: Training Accuracy of NEAT evolved Neural Network Architectures for LULC
Classification using the EuroSAT RGB Dataset.

Mod.
No.

Pop
Size

Fitness
Thresh.

Act.
Function

Hidden
Layers

Training Accuracy Avg.
Training
Accuracy

 Run1 Run2 Run3 Run4

M1 5 700 Sigmoid 1 99.43 100 96.86 99.57 98.96
M2 5 700 Sigmoid 2 99.57 99.57 99.71 99.14 99.49
M3 5 700 Sigmoid 3 99.29 90.00 99.86 96.86 96.50
M4 10 700 Sigmoid 1 99.86 100 100 100 99.96
M5 10 700 Sigmoid 2 100 100 100 100 100
M6 10 700 Sigmoid 3 90.00 100 100 100 97.50
M7 5 700 Relu 1 19 17.57 16.71 33.14 21.60

Table 4: Testing Accuracy of NEAT evolved Neural Network Architectures for LULC
Classification using the EuroSAT RGB Dataset.

Mod.
No.

Pop
Size

Fitness
Thresh.

Act.
Function

Hidden
Layers

Testing Accuracy Avg.
Testing

Accuracy

 Run1 Run2 Run3 Run4

M1 5 300 Sigmoid 1 98.66 100 96.67 99.00 98.58
M2 5 300 Sigmoid 2 99.67 99.67 100 98.33 99.42
M3 5 300 Sigmoid 3 98.00 90.00 100 96.00 96.00
M4 10 300 Sigmoid 1 99.67 99.33 100 99.33 99.58
M5 10 300 Sigmoid 2 100 100 99.33 100 99.83
M6 10 300 Sigmoid 3 90.00 100 100 100 97.50
M7 5 300 Relu 1 19 18 16.64 27.67 20.33

Time Per Generation:
It refers to the time taken by the NEAT algorithm to complete one generation of

training on the dataset. As an example, in the first run of the best configuration (M5), the time
taken for the first generation was 256.78 seconds, while in the first run of the runner-up
configuration (M2) the time taken for the first generation was 130.21 seconds. The reason for
the runner-up configuration's shorter time is its smaller population size, which includes 5
networks to train, as opposed to the best configuration's 10 networks to train.
Average Time Per Run:

It refers to the mean duration required for the NEAT algorithm to finish all generations
of training on the dataset for one run, calculated by taking the average of all runs. For best
configuration (M5), the average time of 1st, 2nd, 3rd, and 4th runs were 203.23, 144.92, 222.49, and
116.14 seconds, respectively. Thus, the average time per run was 171.69 seconds. For runner-

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |890

up configuration (M2), the average time of 1st, 2nd, 3rd, and 4th runs were 160.68, 139.97, 130.63,
and 130.16 seconds, respectively. The average time per run was 140.38 seconds.
Total Training Time Per Run:

It refers to the time it takes for the NEAT algorithm to complete all generations of
training on the dataset for one run. It is shown in Table 5 both in seconds and in hours. For
best configuration (M5), 1st, 2nd, 3rd, and 4th runs took one hour 41 seconds, one hour, one hour
54 minutes, and 48 minutes, respectively. For runner-up configuration (M2), 1st, 2nd, 3rd, and 4th
runs took one hour 12 minutes, 58 minutes, and 54 minutes, respectively. This showed that the
best configuration (M5) on average took slightly more time than the runner-up configuration
(M2).
Table 5: Time Analysis of the Best and Runner-up NEAT evolved Neural Network Models

for LULC Classification using the EuroSAT RGB Dataset.

 Best Configuration (M5) Runner-up Configuration (M2)

Gen. Time
per
gen.

(Run1)

Time
per
gen.

(Run2)

Time
per
gen.

(Run3)

Time
per
gen.

(Run4)

Time
per
gen.

(Run1)

Time
per
gen.

(Run2)

Time
per
gen.

(Run3)

Time
per
gen.

(Run4)

1 256.78 277.45 273.81 296.55 130.21 134.39 134.38 141.43
2 248.47 256.85 260.64 277.05 128.94 129.02 131.46 142.79
3 250.97 261.06 262.81 280.28 131.71 133.04 128.91 138.39
4 244.19 255.34 250.15 271.37 166.76 132.36 129.11 136.41
5 237.91 245.11 252.41 295.00 135.70 131.97 126.89 134.58
6 242.80 242.36 232.71 311.01 135.81 127.24 159.83 138.82
7 252.41 258.09 248.97 290.54 137.81 118.55 131.08 134.31
8 240.86 252.26 226.59 280.65 130.61 122.65 128.79 136.28
9 257.62 267.82 267.72 319.16 171.66 118.88 126.27 154.22
10 244.33 266.74 227.53 281.94 129.78 119.95 130.33 133.10
11 249.86 256.84 240.41 168.67 120.42 128.28 127.41
12 241.69 265.80 235.09 129.53 119.35 126.76 137.75
13 248.01 255.12 234.55 171.29 120.47 127.15 124.93
14 246.01 262.15 231.73 136.73 494.52 127.03 131.26
15 229.70 239.49 164.22 122.72 163.24 125.65
16 256.32 235.81 143.62 121.57 122.99 125.18
17 230.25 237.89 274.47 120.52 116.22 114.82
18 237.46 233.01 142.47 117.78 205.44 116.14
19 224.50 236.59 133.29 119.78 121.06 117.66
20 211.84 231.46 139.19 117.60 116.97 122.94
21 228.81 237.44 490.69 168.54 125.19 120.16
22 234.87 122.38 118.99 117.17 125.50
23 230.59 135.17 124.98 108.34 121.64
24 125.39 118.69 117.76 126.88
25 140.79 125.19 115.12 125.78

Avg. Time (s): 203.23 144.92 222.49 116.14 160.68 139.97 130.63 130.16
Tot. Time (s): 5080.86 3623.04 5562.33 2903.57 4016.94 3499.21 3265.75 3254.02
Tot. Time (hr.): 1.41 1.00 1.54 0.81 1.12 0.97 0.91 0.90

Discussion:

Analysis of LULC-NEAT Performance Based on Accuracy:
In essence, Table 3 from experiment 1 and Table 4 from experiment 2 demonstrates

that utilizing sigmoid as the activation function and increasing the number of hidden layers from

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |891

one to two has increased the training and testing accuracy. Using relu as the activation function,
on the other hand, decreased the training and testing accuracy. The training and testing accuracy
improved when the population size was increased from 5 to 10.
Analysis of LULC-NEAT Performance Based on Solution Convergence:

From the results of experiment 3 as shown in Table 5, it is evident that the NEAT
algorithm can converge to a solution in fewer generations than the set number of generations.
The M5 best configuration achieves this convergence in an average of 17 generations, likely due
to its larger population size of 10. In contrast, the runner-up M2 configuration requires an
average of 25 generations to converge, which can be attributed to its smaller population size of
5.
Analysis of LULC-NEAT Performance Based on Overall Accuracy and Average
Computational Time:

Table 6 shows the overall accuracy and computation time for LULC-NEAT in terms of
hyperparameters such as population size, activation function, and number of hidden layers. Both
models have high overall accuracy, but the second model with a population size of 10 has slightly
better testing and training accuracy. However, it takes more time to train. Depending on the
specific use and resources available, one model may be more suitable than the other.

Table 6: LULC-NEAT Overall Accuracy and Average Computation Time.

Population
Size

Activation
Function

Hidden
Layers

Average
Training
Accuracy

Average
Testing

Accuracy

Overall
Accuracy

Average
Computational

Time

5 sigmoid 2 99.49 99.42 99.45 58 m 30s
10 sigmoid 2 100 99.83 99.91 1 h 11 m 12 s

Comparison of LULC-NEAT with State-of-the-Art CNN Models:
Table 1 presented detail comparison of LULC classification studies on the EuroSAT

RGB dataset. The results indicated that the GoogleNet with preprocessing by Yadav [24] and
the Wide ResNet-50 with data augmentation by Naushad [14] were the most successful among
all the compared state-of-the-art CNN methods. LULC-NEAT is compared against both in
terms of overall accuracy and total time as indicated in Table 7.

Table 7: Comparison LULC-NEAT with State-of-the-art CNN Model.

Authors Number of
Hidden Layers

Model Overall
Accuracy

Total Time

Naushad et
al. [14]

>2 Wide ResNet-50 (With
Data Augmentation)

99.17% 2 h 7 min 53 s

Yadav et al.
[24]

22 GoogleNet (With
Preprocessing)

99.68% -

This study 2 LULC-NEAT
(Population Size =5)

99.45% 58 m 30s

LULC-NEAT
(Population Size =10)

99.91% 1 h 11 m 12 s

The overall accuracy of GoogleNet leveraging LAB color model during the pre-
processing stage as proposed by Yadav [24] is 99.68%, while the overall accuracy of the Wide
ResNet-50 model, as proposed by Naushad [14] is 99.17%, with a total time of 2 hours, 7
minutes, and 53 seconds. The LULC-NEAT model with a population size of 5 achieved an
overall accuracy of 99.45%, with a total time of 58 minutes and 30 seconds. Similarly, the LULC-
NEAT model with a population size of 10 achieved an overall accuracy of 99.91%, with a total
time of 1 hour 11 minutes, and 12 seconds. It is important to note that both LULC-NEAT
models are simple models with only two hidden layers than the GoogleNet and Wide ResNet-
50 CNN models. The LULC-NEAT models improve prediction from the GoogleNet and Wide

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |892

ResNet-50 CNN models because it is less complex with fewer parameters to learn. The
generalization and training times are also improved as shown in Table 7. Additionally, a model
with fewer layers may not overfit the training data as easily as a model with more layers. In some
cases, a simpler model can be more effective in capturing the underlying patterns in the data, as
it is less likely to be influenced by noise or irrelevant features. Another reason could be that the
model with fewer layers is well-suited for the specific task, dataset, and computational resources
available. The same reasoning was validated by Yadav et al. [24], who found that increasing the
number of layers in a CNN does not always lead to improved results for a medium-sized dataset.
In their study, they reported that GoogleNet, a 22-layer CNN, outperformed the 50-layer
ResNet50 and the 101-layer ResNet101 in terms of both speed and accuracy.
Comparison of LULC-NEAT with a Contemporary e-NEAT:

In 2022, Guilherme [46] proposed the e-NEAT framework, which introduced a novel
approach to tropical forest deforestation detection using pattern classifiers based on the NEAT.
The framework utilized artificial neural networks and an aggregation method to enhance the
classification results for Landsat-8 satellite images with minimal cloud cover captured near July
31, 2017. The e-NEAT achieved a balanced accuracy score of over 90% using a limited and
reduced training set. The dataset was limited by using a reduced training scenario, meaning that
each learning technique had only 91 segments to train the model, and 57,646 segments were
classified on the test set. The mask used for image seg-mentation excluded all non-forest areas
before August 1st, 2016.

The balanced accuracy measure in the e-NEAT considers both false positives and false
negatives and gives equal weightage to each type of error, making it an unbiased evaluation
method. This approach encourages diversity among the base classifiers, resulting in a better
performance of the classification models compared to those using single or multiple classifiers.
However, the e-NEAT has two limitations. Firstly, it only focuses on detecting newly deforested
regions and does not account for other types of land cover changes such as pasture, herbaceous
vegetation, annual and permanent crops, industrial and residential buildings, highway, sea and
lakes, rivers, etc. Secondly, the e-NEAT framework was tested with a restricted training set,
which may limit its generalizability to other datasets or scenarios.

In contrast to e-NEAT, the LULC-NEAT provides a novel solution to the first
limitation by considering diversified land covers and demonstrates good performance. However,
since the purpose of this study was to show the potential of NEAT for solving LULC
classification, it employed only the balanced EuroSAT RGB dataset. In the future, the LULC-
NEAT will be improved for the multispectral dataset instead of the RGB dataset and most
importantly could be implemented for real-world Sentinel-2 Satellite images of a specific region
with sufficient training and testing datasets. Additionally, performance metrics such as precision,
recall, f1-score, confusion matrix, and overall accuracy will be used. Also, in the future, the
power of graphics processing units (GPUs) and DL will be employed for LULC-NEAT to
achieve better results with respect to both accuracy and speed.

Conclusion:
In this study, NEAT was implemented to solve the LULC classification problem. The

results show that the NEAT algorithm has the potential to produce efficient results for satellite
images. The proposed algorithm performed extremely well. The results of the experiment using
NEAT evolved FFNN with two hidden layers on a balanced dataset showed a high training
accuracy of 100% and a good testing accuracy of 99.83%. This indicates that the algorithm has
learned the features of the training data very well and has the ability to generalize to new unseen
data. The comparison with state-of-the-art CNN models demonstrated the robustness of the
proposed approach. However, the concern of overfitting due to a training accuracy of 100%
should be monitored in future experiments. Additionally, the effectiveness of the proposed

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |893

technique will be further evaluated using multispectral datasets, real-world satellite images, and
temporal datasets by utilizing the computational power of GPU-based implementation of
NEAT. Performance metrics such as precision, recall, F1-score, and confusion matrix, in
addition to overall accuracy, will be employed to quantify the performance of the proposed
approach in comparison to existing state-of-the-art DL models. Applying NEAT to LULC
classification contributes to advancing AI techniques in remote sensing and GIS, which is likely
to inspire new methods and applications. The success of NEAT in LULC classification may
only encourage its applications in other interdisciplinary fields of environmental monitoring,
urban planning, agriculture, or disaster management where such classification challenges are real.
Abbreviations: Abbreviations used in this article are listed below:

ADAM Adaptive Moment Estimation

ANN Artificial Neural Network

CI Color Infrared

CNN Convolutional Neural Network

CV Computer Vision

DL Deep Learning

DDRL-AM Deep Discriminative Representation Learning with Attention Map

Fuzzy ARTMAP Fuzzy Adaptive Resonance Theory-supervised Predictive Mapping

GLCM Grey-Level Co-occurrence Matrix

GPU Graphics Processing Unit

HOG Histogram of Oriented Gradients

LULC Land Use Land Cover

MD Mahalanobis Distance

ML Machine Learning

MS Multispectral

NE Neuroevolution

NEAT NeuroEvolution of Augmenting Topologies

NLP Natural Language Processing

PR Pattern Recognition

ResNet-50 Residual Network 50

RF Random Forest

RGB Red, Green and Blue

SAM Spectral Angle Mapper

SDG Stochastic Gradient Descent

SVM Support Vector Machine

SWIR Short Wave Infrared

TL Transfer Learning

VGG-16 Visual Geometry Group 16

VGG-19 Visual Geometry Group 19

Wide ResNet-50 Wide Residual Network 50

XGBoost Extreme Gradient Boosting

Acknowledgement: This work is financially supported by the National Center of Big Data and
Cloud Computer (NCBC), University of Engineering and Technology, Peshawar, under the
auspices of the Higher Education Commission (HEC), Pakistan.
Author’s Contribution: All authors have equally contributed towards the paper.
Conflict of Interest: The authors have no conflicts of interest to declare.
Project Details: NA

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |894

References:
[1] S. Talukdar, P. Singha, S. Mahato, Shahfahad, S. Pal, Y.-A. Liou, and A. Rahman, “Land-Use

Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A
Review,” Remote Sensing, vol. 12, no. 7, p. 1135, Apr. 2020, doi: 10.3390/RS12071135.

[2] A. M. Abdi, “Land cover and land use classification performance of machine learning algorithms
in a boreal landscape using Sentinel-2 data,” GIScience Remote Sens., vol. 57, no. 1, pp. 1–20,
Jan. 2020, doi: 10.1080/15481603.2019.1650447.

[3] K. Kaku, “Satellite remote sensing for disaster management support: A holistic and staged
approach based on case studies in Sentinel Asia,” Int. J. Disaster Risk Reduct., vol. 33, pp. 417–
432, Feb. 2019, doi: 10.1016/J.IJDRR.2018.09.015.

[4] “5 crimes solved using Google Earth | The Week.” Accessed: Jun. 30, 2024. [Online]. Available:
https://theweek.com/articles/491975/5-crimes-solved-using-google-earth

[5] M. Majeed, A. Tariq, M. M. Anwar, A. M. Khan, F. Arshad, F. Mumtaz, M. Farhan, L. Zhang,
A. Zafar, M. Aziz, S. Abbasi, G. Rahman, S. Hussain, M. Waheed, K. Fatima, and S. Shaukat,
“Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change
in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data,” Land,
vol. 10, no. 10, p. 1026, Sep. 2021, doi: 10.3390/LAND10101026.

[6] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nat. 2015 5217553, vol. 521, no. 7553,
pp. 436–444, May 2015, doi: 10.1038/nature14539.

[7] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61,
pp. 85–117, Jan. 2015, doi: 10.1016/J.NEUNET.2014.09.003.

[8] Y. Bengio, “Learning Deep Architectures for AI,” Found. Trends® Mach. Learn., vol. 2, no. 1,
pp. 1–127, Nov. 2009, doi: 10.1561/2200000006.

[9] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: From architectures to learning,” Evol.
Intell., vol. 1, no. 1, pp. 47–62, Jan. 2008, doi: 10.1007/S12065-007-0002-4/METRICS.

[10] K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks Through Augmenting
Topologies.” Evolutionary Computation, vol. 10, pp. 99–127, Jun. 2002, doi:
10.1162/106365602320169811.

[11] “GitHub - phelber/EuroSAT: EuroSAT: Land Use and Land Cover Classification with Sentinel-
2.” Accessed: Jun. 23, 2024. [Online]. Available: https://github.com/phelber/EuroSAT

[12] P. Helber, B. Bischke, A. Dengel, and D. Borth, “EuroSAT: A Novel Dataset and Deep Learning
Benchmark for Land Use and Land Cover Classification,” IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens., vol. 12, no. 7, pp. 2217–2226, Jul. 2019, doi: 10.1109/JSTARS.2019.2918242.

[13] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Introducing eurosat: A novel dataset and deep
learning benchmark for land use and land cover classification,” Int. Geosci. Remote Sens. Symp.,
pp. 204–207, Oct. 2018, doi: 10.1109/IGARSS.2018.8519248.

[14] R. Naushad, T. Kaur, and E. Ghaderpour, “Deep Transfer Learning for Land Use and Land
Cover Classification: A Comparative Study,” Sensors, vol. 21, no. 23, p. 8083, Dec. 2021, doi:
10.3390/S21238083.

[15] A. Loganathan, S. Koushmitha, and Y. N. K. Arun, “Land Use/Land Cover Classification Using
Machine Learning and Deep Learning Algorithms for EuroSAT Dataset – A Review,” Lect.
Notes Networks Syst., vol. 418 LNNS, pp. 1363–1374, 2022, doi: 10.1007/978-3-030-96308-
8_126.

[16] “Welcome to NEAT-Python’s documentation! — NEAT-Python 0.92 documentation.”
Accessed: Jun. 30, 2024. [Online]. Available: https://neat-python.readthedocs.io/en/latest/

[17] J. Li, D. Lin, Y. Wang, G. Xu, Y. Zhang, C. Ding, and Y. Zhou, “Deep Discriminative
Representation Learning with Attention Map for Scene Classification,” Remote Sensing, vol. 12,
no. 9, p. 1366, Apr. 2020, doi: 10.3390/RS12091366.

[18] G. Chen, X. Zhang, X. Tan, Y. Cheng, F. Dai, K. Zhu, Y. Gong, and Q. Wang, “Training Small
Networks for Scene Classification of Remote Sensing Images via Knowledge Distillation,”
Remote Sensing, vol. 10, no. 5, p. 719, May 2018, doi: 10.3390/RS10050719.

[19] “Land Cover Classification with EuroSAT Dataset.” Accessed: Jun. 30, 2024. [Online].
Available: https://www.kaggle.com/code/nilesh789/land-cover-classification-with-eurosat-
dataset

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |895

[20] P. Jain, B. Schoen-Phelan, and R. Ross, “Self-Supervised Learning for Invariant Representations
from Multi-Spectral and SAR Images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol.
15, pp. 7797–7808, May 2022, doi: 10.1109/JSTARS.2022.3204888.

[21] A. Stateczny, S. M. Bolugallu, P. B. Divakarachari, K. Ganesan, and J. R. Muthu, “Multiplicative
Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification,”
Remote Sensing, vol. 14, no. 19, p. 4837, Sep. 2022, doi: 10.3390/RS14194837.

[22] M. Ç. Aksoy, B. Sirmacek, and C. Ünsalan, “Land classification in satellite images by injecting
traditional features to CNN models,” Remote Sens. Lett., vol. 14, no. 2, pp. 157–167, Feb. 2023,
doi: 10.1080/2150704X.2023.2167057.

[23] A. Rangel, J. Terven, D. M. Cordova-Esparza, and E. A. Chavez-Urbiola, “Land Cover Image
Classification,” Jan. 2024, Accessed: Jun. 23, 2024. [Online]. Available:
http://arxiv.org/abs/2401.09607

[24] D. Yadav, K. Kapoor, A. K. Yadav, M. Kumar, A. Jain, and J. Morato, “Satellite image
classification using deep learning approach,” Earth Sci. Informatics, vol. 17, no. 3, pp. 2495–
2508, Jun. 2024, doi: 10.1007/S12145-024-01301-X/METRICS.

[25] D. Phiri, M. Simwanda, S. Salekin, V. R. Nyirenda, Y. Murayama, and M. Ranagalage, “Sentinel-
2 Data for Land Cover/Use Mapping: A Review,” Remote Sensing, vol. 12, no. 14, p. 2291, Jul.
2020, doi: 10.3390/RS12142291.

[26] “S2 Mission.” Accessed: Jun. 30, 2024. [Online]. Available:
https://sentiwiki.copernicus.eu/web/s2-mission

[27] “Artificial Neural Network (ANN) with Practical Implementation | by Amir Ali | The Art of
Data Scicne | Medium.” Accessed: Jun. 23, 2024. [Online]. Available:
https://medium.com/machine-learning-researcher/artificial-neural-network-ann-
4481fa33d85a

[28] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed, and H. Arshad,
“State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p.
e00938, Nov. 2018, doi: 10.1016/J.HELIYON.2018.E00938.

[29] “Neural networks and back-propagation explained in a simple way | by Assaad MOAWAD |
DataThings | Medium.” Accessed: Jun. 23, 2024. [Online]. Available:
https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-
simple-way-f540a3611f5e

[30] S. Ruder, “An overview of gradient descent optimization algorithms,” Sep. 2016, Accessed: Jun.
23, 2024. [Online]. Available: http://arxiv.org/abs/1609.04747

[31] M. G. M. Abdolrasol, S. M. S. Hussain, T. S. Ustun, M. R. Sarker, M. A. Hannan, R. Mohamed,
J. A. Ali, S. Mekhilef, and A. Milad, “Artificial Neural Networks Based Optimization Techniques:
A Review,” Electronics, vol. 10, no. 21, p. 2689, Nov. 2021, doi:
10.3390/ELECTRONICS10212689.

[32] J. N. D. Gupta and R. S. Sexton, “Comparing backpropagation with a genetic algorithm for
neural network training,” Omega, vol. 27, no. 6, pp. 679–684, Dec. 1999, doi: 10.1016/S0305-
0483(99)00027-4.

[33] J. H. Holland, “Genetic Algorithms”, Scientific American, vol. 267, no. 1, pp. 66–73, Jul. 1992,
doi: 10.2307/24939139.

[34] “Introduction to Genetic Algorithms — Including Example Code | by Vijini Mallawaarachchi
| Towards Data Science.” Accessed: Jun. 30, 2024. [Online]. Available:
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-
e396e98d8bf3

[35] K. O. Stanley and R. Miikkulainen, “Efficient Evolution of Neural Network Topologies”.
Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002 (Cat.
No.02TH8600) 2002, doi: 10.1109/CEC.2002.1004508.

[36] K. O. Stanley, “Efficient Evolution of Neural Networks Through Complexification.” 2004.
Accessed: Jun. 30, 2024. [Online]. Available: https://nn.cs.utexas.edu/?stanley:phd2004

[37] “How I Built an Intelligent Agent to Play Flappy Bird | by Danny Zhu | Analytics Vidhya |
Medium.” Accessed: Jun. 23, 2024. [Online]. Available: https://medium.com/analytics-
vidhya/how-i-built-an-ai-to-play-flappy-bird-81b672b66521

 International Journal of Innovations in Science & Technology

June 2024|Vol 6| Issue 2 Page |896

[38] Y. Bengio, “Practical Recommendations for Gradient-Based Training of Deep Architectures,”
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 7700 LECTURE NO, pp. 437–478, Jun. 2012, doi: 10.1007/978-3-642-
35289-8_26.

[39] “Simple Guide to Hyperparameter Tuning in Neural Networks | by Matthew Stewart, PhD |
Towards Data Science.” Accessed: Jun. 23, 2024. [Online]. Available:
https://towardsdatascience.com/simple-guide-to-hyperparameter-tuning-in-neural-networks-
3fe03dad8594

[40] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaria, M.
A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep learning: concepts, CNN
architectures, challenges, applications, future directions,” J. Big Data, vol. 8, no. 1, pp. 1–74,
Mar. 2021, doi: 10.1186/S40537-021-00444-8.

[41] A. Vali, S. Comai, and M. Matteucci, “Deep Learning for Land Use and Land Cover
Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review,”
Remote Sensing, vol. 12, no. 15, p. 2495, Aug. 2020, doi: 10.3390/RS12152495.

[42] “StratifiedShuffleSplit — scikit-learn 1.5.0 documentation.” Accessed: Jun. 30, 2024. [Online].
Available: https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html

[43] “Built-in Functions — Python 3.12.4 documentation.” Accessed: Jun. 30, 2024. [Online].
Available: https://docs.python.org/3/library/functions.html#next

[44] “Image Data Generators in Keras. How to effectively and efficiently use… | by Manpreet Singh
Minhas | Towards Data Science.” Accessed: Jun. 30, 2024. [Online]. Available:
https://towardsdatascience.com/image-data-generators-in-keras-7c5fc6928400

[45] A. M. Fred Agarap, “Deep Learning using Rectified Linear Units (ReLU),” Mar. 2018, Accessed:
Jun. 23, 2024. [Online]. Available: https://arxiv.org/abs/1803.08375v2

[46] A. P. Guilherme, B. J. R. D. Fernanda, A. Fazenda, and F. A. Faria, “Neuroevolution-based
Classifiers for Deforestation Detection in Tropical Forests,” Proc. - 2022 35th Conf. Graph.
Patterns, Images, SIBGRAPI 2022, vol. 1, pp. 13–18, Oct. 2022, doi:
10.1109/SIBGRAPI55357.2022.9991798.

Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

