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he frequency of droughts is increasing as global temperatures rise. To effectively monitor 
drought conditions, it is crucial to use the appropriate index. In this study, the 
Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) were 

applied to evaluate droughts. The tool "DrinC" was used to calculate the RDI for 3-, 6-, and 12-
month periods (Oct-Dec, Oct-March, and Oct-Sept) from 1981 to 2020. RDI values between -
1.0 and -2.5 indicated moderate to extreme droughts across all districts. The RDI for 3, 6, and 
12 months highlighted significant drought years, including 1984, 1992, 1994, 2010, 2011, 2015, 
and 2019, showing reduced productivity during these periods. Dry conditions were prevalent at 
most stations between 1981 and 2020. In South-Eastern Sindh, Pakistan, this study also assessed 
changes in Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), 
and Soil Moisture Index (SMI) over the last four decades (1981-2020). Satellite data analysis 
showed that NDVI peaked in 1988 (+0.53) and hit its lowest in 2021 (+0.48). Similarly, SMI 
ranged from +1.1 in 1988 to +0.98 in 2021, while LST increased from 35.1°C in 1988 to 53.4°C 
in 2021. A negative correlation between SPI and RDI was observed through linear regression, 
confirming the effectiveness of both indices in assessing drought severity. These findings can 
inform the development of drought preparedness plans, helping to mitigate the impact of 
drought on various economic sectors. 
Keywords: Climate change, RDI, SPI, Remote Sensing, NDVI, LST, SMI, Geospatial 
Techniques. 
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Introduction: 
Drought is described as a prolonged period of below-average natural water availability 

occurring on a regional scale, and it can happen anywhere in the world [1][2]. Due to global 
warming caused by increased greenhouse gases, the frequency of droughts is expected to rise. 
Global warming is predicted to cause spatial and temporal fluctuations in water demand and 
availability [3]. Drought is a severe natural disaster that impacts multiple economic sectors and 
severely affects the lives of the poor worldwide. Most scientists agree that drought has multiple 
causes. Its definition varies: agriculturists associate it with insufficient moisture (often called 
"effective precipitation") [4], which negatively impacts crop yields, meteorologists define it as 
prolonged low rainfall, and hydrologists as reduced water runoff. Climate change, the main 
driver of drought, highlights the roles of evapotranspiration (ET), rainfall, and water runoff [5]. 
Droughts, often complex and global in nature, frequently affect large populations and vast areas 
[6]. 

Climate change projections suggest that rising global temperatures will influence 
evapotranspiration and specific air moisture levels, affecting atmospheric water storage and 
directly impacting the intensity, duration, and distribution of rainfall [7]. Meteorological drought, 
which affects weather and climate processes, can lead to hydrological drought by reducing 
surface and groundwater levels, lowering water supply, and degrading water quality. The cyclical 
drought pattern in Africa over many years has caused various severe consequences, such as 
mortality, crop failures, and food shortages [8]. According to one researcher [9], these conditions 
have led to malnutrition in several regions, causing hunger, disease, and population 
displacement. Between 1900 and 2010, drought was directly responsible for over ten million 
deaths. In Europe, the droughts of 2003 and 2006 reduced agricultural output, hindered 
navigation, and caused fatalities. The Mediterranean region's last major drought, lasting until 
2008, had long-term effects by depleting groundwater resources and storage conditions. 

Even with the possibility of increased precipitation and rising temperatures, droughts 
may still pose a significant challenge [10]. These could severely affect Pakistan's agro-climatic 
regions, particularly in arid areas. Sindh and Baluchistan are likely to face two to three water 
crises annually and are more vulnerable to drought than Punjab, Khyber Pakhtunkhwa, and 
Baluchistan. Various indicators are commonly used to assess drought, including the crop 
moisture index, vegetation condition index (VCI), temperature condition index (TCI), deciles 
index, and the standard water-level index (SWI) [11]. These indices estimate drought using large 
datasets, each offering a slightly different perspective. The standard precipitation index (SPI) is 
one of the most widely applied tools in regional drought studies [12]. The World Meteorological 
Organization (WMO) recommends using both the reconnaissance drought index (RDI) and the 
SPI to characterize drought conditions [13]. These tools allow drought visualization across 
different timescales. The RDI was chosen for this study because it accounts for water scarcity 
by incorporating both temperature and precipitation data [14]. The RDI is particularly useful for 
research on smaller spatial scales, while the SPI is more beneficial for studies across various 
timeframes. 

Often, drought goes unnoticed for several years before its impact suddenly becomes 
evident [15]. People only recognize it once the damage has already begun. In Sindh, the 
frequency of droughts has increased due to changing weather patterns and rising pollution levels. 
To assist disaster mitigation managers and other stakeholders, this study examines historical 
drought variations in Sindh's districts, helping place current droughts in context. 
Material and Methods: 
Study Area: 

The Sindh province of Pakistan is located in the southeast of the country, encompassing 
23 districts. It lies between latitudes 25.8943° N and longitudes 68.5247° E, covering about 18% 
of Pakistan’s total land area (140,914 km²). Sindh is bordered by the provinces of Baluchistan to 
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the north and Punjab to the northeast, and it shares its eastern boundary with the Indian states 
of Rajasthan and Gujarat. The province experiences extreme temperatures, with winter highs 
averaging 27.08°C and summer peaks reaching 43.32°C, alongside an average annual rainfall of 
128.80 mm. 

 
Figure 1: Map of Study Area 

Data Acquisition: 
Our research utilized temperature and average precipitation data from the 

meteorological department, covering the years 1981 to 2020. We calculated the Standard 
Precipitation Index (SPI) and Reconnaissance Drought Index (RDI). The DrinC (Drought 
Indices Calculator) tool was used to easily compute these indices for one year, six months, nine 
months, and three months, using gamma and log-normal methods, respectively. A relationship 
was observed between the RDI and SPI. However, according to a researcher [16], the RDI is 
derived by fitting the gamma distribution to annual rainfall and PET data. Geographic 
Information System (GIS) methods are critical for agricultural modelling, particularly for 
analyzing variables such as temperature, soil, and rainfall over space and time [17]. GIS 
interpolation techniques were employed to study the spatial distribution and frequency of 
droughts in the study area [18]. In this investigation, we used the IDW (Inverse Distance 
Weighting) interpolation method. Researchers also used vegetation and land surface temperature 
data to calculate the Soil Moisture Index. Landsat 8 satellite images, with a spatial resolution of 
30m, were sourced from the USGS Earth Explorer website for this study. The red and near-
infrared (NIR) bands were used to estimate the Normalized Difference Vegetation Index 
(NDVI), while the thermal infrared (TIR) bands were necessary for computing land surface 
temperature (LST) [19]. 
Standardized Precipitation Index (SPI): 

The Standard Precipitation Index (SPI) was developed by fitting a probabilistic model 
to geographic rainfall data to monitor drought conditions [20]. This drought indicator helps 
distinguish between dry and wet seasons over various time periods in different parts of the 
world. SPI enables the calculation of drought frequency for any specific location over time [17]. 
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The World Meteorological Organization (WMO) recommends using the SPI to measure rainfall 
amounts over a defined period. By transforming rainfall data into a normally distributed 
function, the average SPI for a given region and period is set to zero [21]. 

X stands for precipitation during a certain time period, and stands for probability density. 
f (x)=1/ ((_0)) x (-1) e(-x/) x>0 1 where and are the parameters defining the form and scale of 
respectively. SPI readings that are positive or negative represent greater or lesser rainfall than 
the norm. High negative SPI readings point to a very dry condition. 
Reconnaissance Drought Index (RDI): 

In 2005, Tsakiris and Vangelis developed the Reconnaissance Drought Index (RDI) for 
drought monitoring and assessment [17]. The RDI is based on the combination of total 
precipitation (P), which is observed, and potential evapotranspiration (PET), which is estimated. 
Due to its effectiveness, Hargreaves' method for estimating PET has been widely applied in 
semi-arid and arid regions [22]. The RDI can be calculated in three forms: the initial value RDI 
(k), the normalized RDI (nor), and the standardized RDI (std). These values are used in an 
equation, assuming a log-normal distribution, to assess and manage drought conditions. 

RDIst (i) = y (i) - y / y   2 
According to a researcher [23], \ (y(i) \) represents the natural logarithm of \ (ak (i) \), 

where \ (y \) is the arithmetic mean and \ (\sigma(y) \) is the standard deviation. Positive RDI 
values indicate wetter-than-average conditions, while negative RDI values signal drier conditions 
compared to the regional norm. Drought intensity is classified as moderate with an RDI of -1.0 
and severe with an RDI of -2.0. 

Table 1: Classification of droughts according to SPI and RDI values [17] 

RDI and SPI Classes 

≥ 2.00 Extremely wet 
1.5 to 1.99 Severely wet 
1.0 to 1.49 Moderately wet 
0.0 to 0.99 Normal 

0.0 to −0.99 Mild drought 
−1.00 to −1.49 Moderate drought 
−1.50 to −1.99 Severe drought 

≤ −2.00 Extreme drought 

Calculation of LST NDVI and Soil Moisture Index (SMI): 
The formula for calculating the Soil Moisture Index (SMI) [24] provides an accurate 

representation of the relationship between Land Surface Temperature (LST) and the 
Normalized Difference Vegetation Index (NDVI). 

: 𝑆𝑀𝐼 = (𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇) / (𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇min)   3 
The maximum and minimum surface temperatures for a given NDVI are referred to as 

LST max and LST min, respectively, where LST represents Land Surface Temperature. These 
values can be derived from satellite images, allowing us to determine the surface temperature of 
individual pixels at specific NDVI values. By solving the relevant equations, we can calculate 
both the maximum and minimum LSTs for the specified conditions. 

𝐿𝑆𝑇𝑚𝑎𝑥 = 𝑎1 ∗ 𝑁𝐷𝑉𝐼 + 𝑏1      4 

𝐿𝑆𝑇𝑚𝑖𝑛 = 𝑎2 ∗ 𝑁𝐷𝑉𝐼 + 𝑏2      5 
The cold and warm sides of the dataset are defined by the current slopes and intercepts, 

where \(a\) and \(b\) are the actual variables obtained from regression analysis. Equation (1) is 
used to convert the digital number (DN) into radiance (LW/m²/sr), which is the first step in 
calculating the Soil Moisture Index (SMI). 

L = 𝐿𝑆𝑇𝑚𝑖𝑛 + (((𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛) / (𝑄𝐶𝐴𝐿𝑚𝑎𝑥 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛)) * (DN − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛)) 6 
The maximum and minimum quantization values, QCAL max and QCAL min, along 

with the Digital Numbers, are used to calibrate the number of pixels. Parameters LST min and 
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LST max are employed to measure spectral radiance. To determine the maximum and minimum 
values of Land Surface Temperature (LST), both NDVI and LST inputs must be evaluated. 
Using the thermal channels from Landsat 5 and Landsat 8, the equation calculates LST in Kelvin 
(K). 

LST = 𝑇𝑏 / [1 + (λ * 𝑇𝑏/𝐶2) * ln (ε)]     7 
In the equation, \ (T_b \) represents the satellite's brightness temperature, \ (\lambda 

\) is the wavelength of the emitted radiation, \ (C_2 = 1.4388 \times 10^2 \text{ m K} \) is a 
constant, and \( \epsilon \) denotes emissivity. The Normalized Difference Vegetation Index 
(NDVI), derived from satellite data, is a metric used to evaluate plant health. By utilizing a high-
resolution radiometer, scientists can assess whether vegetation is thriving or deteriorating. This 
method helps track changes in temperature, land use, and plant types. It can also be applied in 
risk analyses to identify plant groups that are vulnerable to drought and areas with inadequate 
water supply. 

NDVI (Landsat 8 OLI): NIR=B5, R-B4    8 
NDVI (Landsat 5 TM): NIR=B4, R=B3    9 

Table 2: NDVI values for different types of cover 

NDVI Range Type of Cover 

NDVI ≤ 0 Bare soil or water 
0 to 0.2 Sparsely Vegetation 

0.2 to 0.4 Less vegetation 
0.4 to 0.6 Moderate Vegetation 
0.6 to 0.8 Dense vegetation 
0.8 to 1 Thick greenery 

Linear Regression Analysis: 
Linear regression is a statistical method used to analyze the relationship between two 

variables. It is the most frequently employed technique for investigating such relationships. 
Linear regression analysis, through its parametric approaches like the LR (slope) [25], reveals the 
typical rate of change over time for the variables of interest. If the average periodic change curve 
of the factors is positive, the trend in the dataset increases, and if negative, it decreases [26]. The 
RDI and SPI are useful for assessing meteorological droughts spanning three, six, nine, or twelve 
months. In the Sindh region, a significant correlation was found between RDI and SPI. 
Results and Discussion: 
Spatio Temporal Analysis of RDI: 

The three distinct RDI periods (3, 6, and 12 months) were combined using inverse 
distance weighting (IDW) interpolation to create a geographical description of drought [27]. 
IDW data is reliable and avoids autocorrelation, as it is gathered for specific areas and time 
periods [28]. Geographic displays of RDI values were generated using ArcGIS 10.8, illustrating 
the length of the drought (Figures 9–11). The geospatial analysis focused on periods with RDI 
values. The interpolated images were produced based on the available data at the time. 
Analysis of Three Months RDI Values: 

The analysis reveals significant variation in RDI values across geographical areas affected 
by drought. Data indicate that Sindh experienced extreme drought only in 1993 and 2010, not 
across the entire study region. Severe droughts were widespread in 1984, 1988, 1992, 2010, and 
2011. Numerous moderate droughts occurred in 1984, 1988, 1989, 1991, 1992, 1993, 2009, 2010, 
2011, 2012, 2015, and 2019. Other years ranged from somewhat dry to exceptionally wet 
conditions. The Sindh region saw above-average rainfall in 2013 and 2020. 
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Figure 2: RDI-3 spatial-temporal patterns of drought for the years (1981–2020) based on RDI 

values 
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Figure 3: RDI-6 spatial-temporal patterns of drought for the years (1981–2020) based on RDI 

values 
Analysis of Six Months RDI Values: 

Based on the regional analysis of RDI-6 results, the study area experienced widespread 
drought effects ranging from mild to severe in approximately 22 out of 40 years. Extreme 
drought conditions were reported in the years 2007, 1984, and 2011. Over the past 16 years, 
most cities have experienced above-average rainfall, with the Sindh region being notably rainy 
each year. Extremely rainy weather was observed across the entire study region in 1990. 
Analysis of 12 Months' RDI Values: 

The spatial analysis of RDI-12 data indicates that the study area faced a range of mild-
to-extremely wet drought conditions for about 27 years. Above-average rainfall was recorded in 
1982, 1993, 1999, 2012, and 2015. Extreme and severe drought conditions were noted in 1987, 
1991, 1992, 1997, 2002, 2010, and 2014. Moderate droughts occurred in 1986, 1991, 1997, and 
2014. Notably, all districts experienced above-average rainfall in 1982 and 2015. 
Correlation Between SPI and RDI: 

The scatter plot of SPI values versus RDI is illustrated in Figures 5-8. The plot reveals 
that differences between the two indices tend to increase with longer time lags. Despite this, 
there is a notable consistency between the indices across all time scales. Our analysis indicates 
that the two indicators used for drought identification perform exceptionally well. 
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Figure 4: RDI-12 spatial-temporal patterns of drought for the years (1981–2020) based on 

RDI values 

 
Figure 5: Comparison of SPI 3-, 6-, 9- and 12-months Vs. RDI Annual (Mirpurkhas) 

The RDI and SPI indices can be used to estimate drought duration over 3, 6, and 12 
months. Figure 5-8 illustrates the linear trend line derived from the strong correlation between 
RDI and SPI values in the Sindh region. The results highlight a significant relationship between 
these indices. Even with rainfall data alone, the algorithm applied to the graphs allows for 
accurate calculation of the RDI and forecasting of drought-prone seasons. In linear regression 
analysis, the yearly SPI and yearly RDI show a close fit, with an R² value of 0.998. Comparisons 
were made between the first three months, second three months, third and fourth months, first 
six months, and first nine months of the SPI and the annual RDI values. The best strategies are 
illustrated in the graphs. The calculations using SPI values from the first nine months, half-year, 
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and first quarter produced robust results with high R² values. These findings suggest that by 
providing the first three months of rainfall data and calculating the SPI for subsequent years, it 
is feasible to predict RDI drought indices. 

 
Figure 6: Comparison of SPI 3-, 6-, 9- and 12-months Vs. RDI Annual (Shanghar) 

 
Figure 7: Comparison of SPI 3-, 6-, 9- and 12-months Vs. RDI Annual (Tharparkar) 
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Figure 8: Comparison of SPI 3-, 6-, 9- and 12-months Vs. RDI Annual (Umerkot) 

Normalized Difference Vegetation Index (NDVI) Changes: 
The NDVI model was developed using Landsat images from 1988, 1998, 2008, 2018, 

and 2021, with vegetation cover assessed using ArcGIS software. NDVI values in the study area 
ranged from 0.99 to +0.53 in 1988, 0.78 to +0.81 in 1998, 0.99 to +0.99 in 2008, and 0.75 to 
+0.49 in 2018. By 2021, NDVI values had shifted to a minimum of 0.2 and a maximum of 
+0.48. Higher NDVI values typically indicate more productive areas, such as dense vegetation 
and forests, while lower values correspond to less productive regions like bare soil, water bodies, 
and built-up areas. The NDVI map reveals a notable decline in the most productive areas over 
time. Generally, forested regions exhibit higher NDVI values compared to bare soil, suggesting 
that the expansion of vegetation may have influenced the overall greenness of the area as 
detected by satellite. A significant change in NDVI values was observed between 1988 and 1998, 
demonstrating an overall increase in NDVI values in the selected district over time. 
Land Surface Temperature (LST) Changes: 

Figure 9 illustrates the spatial distribution and areal extent of Land Surface Temperature 
(LST) across the districts of Shanghar, Umerkot, Tharparkar, and Mirpurkhas for five distinct 
years—1988, 1998, 2008, 2018, and 2021—with a ten-year interval between each. The spatial 
patterns reveal significant variations in LST across the study area. In 1988, LST values ranged 
from 35.16°C to 17.39°C; in 1998, from 53.8°C to -69.40°C; in 2008, from 40.00°C to 24.38°C; 
in 2018, from 47.54°C to 25.4°C; and in 2021, from 53.44°C to 25.77°C. Over the period from 
1988 to 2021, the study area experienced a decrease in vegetation and an increase in built-up 
areas, leading to a rise in LST. The northern part of the region, such as Shanghar, retains a lower 
temperature due to its higher vegetation and agricultural land. Conversely, the central area, 
including Umerkot, shows increased LST due to accelerated urbanization and a decline in water 
bodies and vegetation. The discrepancy between estimated and recorded LST values is within 
acceptable limits, considering the constraints of RS-derived LST estimation. These results are 
valuable for future analyses, including LST simulation and temperature condition indexing. 
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Additionally, September, according to Pakistan's agricultural calendar, is a period of substantial 
vegetation cover, during which maximum LST values were assessed for the study area. 

 

 
Figure 9: Spatio-temporal analysis of LST, NDVI and SMI in 1988, 1998, 2008, 2018 and 

2021 
Soil Moisture Index (SMI) Change: 

The Soil Moisture Index (SMI) ranges from 0 to 1, where 0 indicates the lowest soil 
moisture and 1 signifies the highest. This index reflects the relative amount of soil moisture on 
a given date. Without calibration of the soil moisture measurements, quantitative comparisons 
across different days within the chosen month of September are not possible. The graph 
indicates that soil moisture levels were high in 1988 and subsequent years; however, by 2018, 
the SMI had declined to 0.99, and it further decreased to 0.98 three years later. 
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Figure 10: Graph showing the trendline of SMI values for the month of September in the 

years 1988, 1989, 2008, 2018, and 2021. 
Relationship between LST and NDVI: 

Figure 11 illustrates the comparative analysis between NDVI and LST, highlighting a 
strong inverse relationship between the two. The trend line clarifies that as NDVI decreases, 
indicating reduced vegetation, LST increases. This negative relationship suggests that areas with 
greater vegetation biomass tend to have lower LST. The direct correlation between LST and 
NDVI reflects changes in land cover. Specifically, images with lower NDVI values, characteristic 
of barren soil in the Thar desert, show less vegetation and higher LST. Conversely, areas with 
higher NDVI values, indicating dense vegetation, experience lower LST due to the cooling effect 
of abundant plant cover. 

 

 
Figure 11: Graph showing the comparison between the trends of NDVI and LST values in 

the years 1988, 1989, 2008, 2018, and 2021. 
There is a significant direct correlation between LST and NDVI, enabling the prediction 

of LST through direct regression if NDVI values for the research area are known. Consequently, 
NDVI can be used to estimate precise LST values. Analysis from 1988 to 2021 reveals a decline 
in NDVI values due to urban expansion and reduced vegetation. This correlation also helps 
differentiate between high LST areas, typically characterized by bare soil, and low temperature 
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areas with more vegetation. The highest LST values correspond to the lowest NDVI, and vice 
versa. 
Conclusion: 

Droughts, driven by insufficient water resources, are among the most common natural 
disasters adversely affecting crop productivity. Between 1981 and 2020, RDI and SPI were 
assessed every three, six, and twelve months at four meteorological stations in Sindh, Pakistan. 
The drought characterization over this 40-year period revealed 4-6 years of moderate to severe 
drought. Specifically, the three-month RDI data indicated extreme, severe, and moderate 
drought episodes occurring every four to six years. The study also evaluated the accuracy and 
applicability of SPI and RDI in Sindh, highlighting how temperature deviations have led to 
reduced precipitation, extended dry spells, and diminished freshwater supplies for irrigation, 
directly impacting agricultural development. 

The SPI measures deviations from the long-term average of a normally distributed 
variable, being positive when precipitation exceeds the average and negative otherwise. Low SPI 
values indicate dry conditions. Regression results show a strong correlation between SPI and 
RDI, allowing for the estimation of annual RDI drought indicators from initial three-month 
precipitation data. The continuous decline in RDI time-series data indicates increasing drought 
severity. Long-term droughts pose a risk to water resource management, particularly affecting 
groundwater quality. In summary, the study highlights significantly low NDVI and SMI values 
along with high LST across the study period. These findings provide crucial insights for ongoing 
land monitoring and are essential for policymakers aiming to enhance land resource management 
strategies. The results will aid regional policymakers in developing comprehensive land 
management plans at both regional and national levels. 
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