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he Rapid population growth is a global phenomenon that reshapes landscapes and 
impacts environmental conditions. This study aims to analyze the effects of urbanization 
on Land Use Land Cover (LULC) changes and their impact on Land Surface 

Temperature (LST) in District Mardan from 2002 to 2022, while also predicting future LULC 
and LST changes for the year 2042. Utilizing remotely sensed data and Geographic Information 
Systems (GIS), the study evaluates the correlation between the conversion of natural landscapes 
to built-up areas and the resulting changes in LST. The primary objectives are to investigate 
LULC changes over the past two decades, examine how these changes influence LST, and 
forecast future LULC and LST trends using the CA-Markov model in IDRISI SILVA software 
for 2042. The analysis of LULC changes from 2002 to 2022 reveals a significant increase in built-
up areas and a decrease in vegetation. Built-up land expanded from 10.10% in 2002 to 16.28% 
in 2022, representing a 6% increase, while vegetation cover decreased by nearly 10% of the total 
land cover. Concurrently, LST data show that areas experiencing high temperatures have 
increased since 2002. In 2002, 37% of the total area had temperatures below 30°C, whereas this 
figure dropped to 28% by 2022. Correlation between LULC and LST indicates that barren 
surfaces and built-up regions experience higher temperatures, while areas with vegetation and 
water exhibit lower and more moderate temperatures. The CA-Markov model forecasts that 
built-up land will increase by 19% by 2042, continuing the current trend, while vegetation areas 
are expected to decrease by an additional 4% from their 2022 levels. The LST analysis suggests 
a further increase in high-temperature areas, with a predicted 3% decrease in low-temperature 
regions. This research highlights the historical trajectory of urbanization and its thermal effects 
in District Mardan, providing critical insights for sustainable land-use planning and strategies to 
mitigate urban heat island effects in the coming decades. 
Keywords: LULC; GIS; Land Surface Temperature; Urban Expansion; CA-Markov Chain 
Analysis. 

     

 
 

   

    
 

T 



                              International Journal of Innovations in Science & Technology 

June 2024|Special Issue                                                                            Page |353 

Introduction: 
The modification of Earth's terrestrial surface by human activities is widely referred to 

as Land Use Land Cover (LULC) change [1]. LULC is influenced by a combination of ecological 
factors, such as the geological structure, altitude, and slope, as well as socio-economic, 
technological, and institutional factors that significantly impact land-use patterns in a given area. 
LULC encompasses various ways in which land is utilized, including agriculture, conservation, 
development, recreation, wildlife habitats, and urbanization. It also reflects the outcomes of 
human-environment interactions shaped by socioeconomic dynamics and climate change 
processes [2]. Changes in land use and land cover play a crucial role in altering the environment 
on both local and global scales [3]. These changes result from human activities, rapid urban 
growth, and economic development [4]. 

Cities have existed since the early human settlements in Mesopotamia between 4000 BC 
and 3000 BC, and now more than half of the world's population resides in urban areas. As 
societies strive for sustainability, there is a shift towards urban living, with people becoming 
more like 'metro sapiens' [5]. Urbanization significantly affects local weather and climate. Urban 
climate studies have long examined the differences in ambient air temperature between cities 
and their surrounding rural areas, a phenomenon known as the Urban Heat Island (UHI) effect 
[5]. The UHI effect arises primarily from changes to the land surface, with urban temperatures 
typically being 2–5 degrees Celsius higher than those in rural areas [6]. The intensity of land 
surface temperature is closely linked to land use and land cover patterns, including building 
roofs, paved surfaces, vegetation, and bare ground [7]. The replacement of vegetative cover with 
built-up infrastructure contributes to the UHI effect, negatively impacting urban residents' daily 
lives and activities. Research on LST patterns and their relationship with land cover has been 
conducted in cities such as Guangzhou and urban clusters in the Zhejiang Delta, China, using 
satellite-derived radiant temperature data to study surface temperature heat islands [8]. 

The CA-Markov model is a spatial transformation tool that integrates the stochastic 
temporal Markov approach with the stochastic spatial cell automata strategy to simulate 
temporal and spatial land use changes [9]. This model directs temporal changes in land use 
classes through the Markov chain process, utilizing transition matrices [10]. Spatial changes are 
managed by transition potential maps, neighborhood configurations, and local transition rules 
during the CA modeling process [11]. The CA-Markov model benefits from the Markov chain 
for predicting land use change quantities and the dynamic spatial simulation provided by the CA 
model [12]. Additionally, the CA-Markov model addresses the limitations of inadequate 
socioeconomic, statistical, and historical data [14]. 
Objectives: 

• To analyze the land use and land cover (LULC) of the study area and assess changes 

from 2002 to 2022. 

• To investigate the spatial distribution and variations in land surface temperature (LST) 
across the study area and evaluate the impact of LULC changes on LST. 

• To forecast future LULC changes and LST for the year 2042 using the CA-Markov 
model. 

Novelty Statement: 
The title of the current study explores a novel concept where changes in land use and 

land cover (LULC) are driven by human activities, particularly due to population growth in the 
study area from 1981 to 2023, as reported by census data. As the population increases, 
corresponding changes in LULC are expected, which in turn impact the land surface 
temperature (LST) of the area. The primary objective of this research is to investigate the 
dynamics of LULC and the factors influencing LST. This study aims to analyze recent LULC 
dynamics and predict future trends based on current data using the CA-Markov model. 
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Material and Methods: 
Study Area: 

The study area, Mardan District, is located in the Peshawar Valley and has historical 
significance as part of the ancient Gandhara Kingdom. Originally part of the Peshawar District 
until 1937, Mardan became an independent district in that year. Geographically, the district is 
situated between latitudes 34° 04′ 40′′ N and 34° 31′ 51′′ N, and longitudes 71° 49′ 05′′ E and 72° 
26′ 04′′ E. It is bordered to the north by Buner and Malakand districts, to the east by Swabi and 
Buner districts, to the south by Nowshera District, and to the west by Charsadda and Malakand 
districts, as depicted in Figure 1. The total area of the district is 1,632 km². According to the 
1998 census, the population was 1,460,100. This number increased to 2,373,399 in the 2017 
census and reached 2,744,898 by the 2023 census. 

Climatic conditions in the study area are based on data from the Risalpur station, which 
is nearby and has similar topographic features. The average temperature is 22.2°C, and the 
annual precipitation averages 559 mm. Stream flows generally move from north to south, with 
most draining into the Kabul River. Key streams include Kalpani, which originates in Baizai and 
flows south to join the Kabul River, and other significant streams such as Baghiari Khawar, 
Muqam Khawar from Sudham Valley, and Naranji Khawar from the Narangi Hills. The primary 
source of irrigation water is the canal system, with the upper Swat Canal serving most of the 
district and the lower Swat Canal irrigating the southwestern parts. Additional irrigation sources 
include tube wells and lift irrigation (GOP, 1998). 

 
Figure 1: Location Map of the Study Area 

Data Collection and Analysis: 
The first step in the process is data acquisition, where satellite imagery is sourced from 

the USGS, specifically Landsat 7 and 8, to assess Land Use Land Cover (LULC) and Land 
Surface Temperature (LST). The second step involves analysis using the CA-Markov Chain 
model to simulate the 2042 scenario. The CA-Markov model, implemented in IDRISI Silva 
software, operates on a cellular automata basis. This model uses historical data trends and 
changes to predict future scenarios. Markov Chain analysis identifies past changes in the data, 
which the CA-Markov model then uses to simulate future conditions. The third step is analyzing 
the results of the CA-Markov simulation, focusing on LULC changes and their direct impact on 
LST. The fourth step involves correlating LST with various spectral and satellite indices, 
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including NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference 
Built-up Index), NDWI (Normalized Difference Water Index), SAVI (Soil-Adjusted Vegetation 
Index), and BI (Brightness Index). Finally, the fifth step consists of extracting and analyzing 
changes from previous studies and comparing them with data from the subsequent study year. 

 
Figure 2: Flow Chart 

Image Classification: 
The Maximum Likelihood Classification (MLC) algorithm is a widely used method for 

classification in remote sensing. This algorithm requires a signature file with a `.gsg` extension 
as input. The MLC approach involves modifying and correlating the signature of each class to 
accurately classify raster images into distinct categories. By applying MLC, a classified image is 
generated, with the results automatically categorized as a raster layer in ArcMap. 
Extraction of LST from Thermal Band: 

To determine Land Surface Temperature (LST), it is necessary to convert sensor 
measurements into physical quantities. Sensors record the intensity of electromagnetic radiation 
for each pixel as digital numbers (DNs). These DNs must be converted into meaningful real-
world units such as radiance (Watts), reflectance, or brightness temperature. The following 
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procedure was used to extract land surface temperature from the thermal bands of Landsat 
imagery. 
Conversion of Digital Number (DN) to Spectral Radiance: 

Every object with a temperature above absolute zero emits thermal electromagnetic 
energy. The data captured by thermal sensors can be converted to at-sensor radiance using the 
radiance rescaling factors provided in the metadata file. 

Lλ =ML Qcal +AL    (1) 
Where \( L_\lambda \) represents the TOA spectral radiance (Watts/(m² * sr * µm)); 

\( ML \) is the band-specific multiplicative rescaling factor from the metadata 
(RADIANCE_MULT_BAND_x, where x denotes the band number). 

AL =Band-specific additive rescaling factor from the metadata 
(RADIANCE_ADD_BAND_x, where x is the band number); 

Q = Quantized and calibrated standard product pixel values (DN) 
Conversion to At-Satellite Brightness Temperature: 

Band data can be converted from spectral radiance to top-of-atmosphere brightness 
temperature using the thermal constants provided in the metadata file, as described by Equation 
2. 

Tb = K*2 / ln (k 1 / Lλ + 1)   (2) 
Where \( T \) or \( BT \) represents the top-of-atmosphere brightness temperature (K); 

\( L_{\lambda} \) denotes the TOA spectral radiance (Watts/(m² * sr * µm)); \( K1 \) is the 
band-specific thermal conversion constant from the metadata (K1_CONSTANT_BAND_x, 
where \( x \) is the thermal band number); and \( K2 \) is the band-specific thermal conversion 
constant from the metadata (K2_CONSTANT_BAND_x, where \( x \) is the thermal band 
number). 
Land Surface Temperature: 

Land surface temperature was retrieved using a single-channel algorithm, which utilizes 
a single thermal band from the dataset. Since the temperature obtained through this method is 
referenced to a blackbody, corrections for land surface emissivity are necessary. Emissivity can 
be derived from the Normalized Difference Vegetation Index (NDVI). The emissivity-corrected 
land surface temperature was calculated using the procedure outlined in Equation 3. 

LST=Tb / [1+ {(λ * Tb / ρ) * lnє}]  (3) 
Where Tb = At - Satellite temperature; w = wavelength of emitted radiance; p= h * c / 

s (1.438 * 10-2 m K); h =Planck’s constant (6.626 * 10 -34 Js); s = Boltzmann Constant; c = velocity 
of light (2.998 * 108 m/s); e = Emissivity. 

Land surface emissivity (LSE) is defined as the ratio of the energy radiated from a 
material's surface to the energy radiated from a blackbody (a perfect emitter) at the same 
temperature, wavelength, and viewing conditions. It can be calculated using the following 
equation: 

LSE = 0.004 * PV + 0.986   (4) 
Where PV means proportion of vegetation and can be calculated using equation 5: 

PV = √ (NDVI – NDVImin / NDVImax – NDVImin) 
Here's the modified and refined paragraph: 

To convert the retrieved land surface temperature (LST) from Kelvin to Celsius, subtract 
273.15 from the temperature in Kelvin. This conversion is based on the relationship where 0 
degrees Celsius equals 273.15 Kelvin. The conversion can be performed using Equation 5. 

LST - 273.15    (5) 
Result and Discussion: 
Spatio-Temporal LULC Trend: 

Figures 3 and 4 illustrate the changes in land use and land cover (LULC) in the Mardan 
district from 2002 to 2022. Figure 3 shows significant changes in the built-up area in the city's 
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central region in 2002, indicating the early stages of urban expansion. By 2022, as depicted in 
Figure 4, there was a notable increase in the built-up area, primarily concentrated in the district 
center. This period also saw a decrease in vegetation, likely due to reduced rainfall. Additionally, 
smaller built-up areas began to appear throughout the region, suggesting irregular urban sprawl. 
The substantial growth in built-up areas can be attributed to numerous housing developments 
in Mardan and neighboring cities between 2002 and 2022. This rapid urbanization led to a 
significant reduction in plant cover, highlighting the trade-off between urban expansion and 
green spaces. Table 1 provides a quantitative summary of the major LULC changes between 
2002 and 2022, based on the Maximum Likelihood Classification (MLC) algorithm. The data 
reveals a considerable increase in the built-up area, from 165.47 km² (10.10% of the total area) 
to 266.70 km² (16.28%). Concurrently, there were decreases in vegetative areas, with a slight 
increase or stability in barren terrain. Water bodies expanded from 25.03 km² (1.53%) to 49.61 
km² (3.03%), while barren land increased slightly from 518.60 km² (31.67%) to 528.46 km² 
(32.27%). Vegetative areas decreased from 928.76 km² (56.70%) to 793.09 km² (48.42%). 

 
Figure 3: LULC of District Mardan 2002 

Spatio-Temporal Changes in LULC from 2002 to 2022: 
Over the 20-year period from 2002 to 2022, the Mardan district experienced significant 

changes in land use and land cover (LULC) across various categories. This research utilizes 
statistical data and geographical maps to illustrate the evolution of the landscape, focusing on 
areas where changes have occurred and excluding regions that remain unchanged. 
Barren Land (BA) to Built-up Land (BU): 

Between 2002 and 2022, approximately 50.70 km², or about 3.10% of the total area, of 

undeveloped land was converted into built-up land. This transition highlights the growth of 

urban areas and infrastructure improvements over the past 20 years. The expansion of 

residential, commercial, and industrial developments, driven by economic growth and 
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population increase, is the primary factor behind this increase in built-up areas. These changes 

are illustrated on the map as orange patches, indicating urbanization in regions previously 

unused or sparsely vegetated. 

 
Figure 4: LULC of District Mardan 2022 

Table 1: Temporal changes of LULC from 2002 to 2022 

LULC 2002 2022 

Classes Names Area in Km² % Area in Km² % 

Water Bodies 25.03 1.53 49.61 3.03 
Vegetation 928.76 56.71 793.09 48.42 
Built-up 165.47 10.10 266.70 16.28 
Barren Land 518.60 31.66 528.46 32.27 

Barren Land (BA) to Vegetation Land (VG): 

Approximately 177.63 km², or 10.85% of the total area, has transformed from barren 

land to vegetated land. This significant change is likely due to reforestation efforts, agricultural 

expansion, or natural vegetation restoration. Increasing plant cover is essential for improving 

ecological balance, enhancing biodiversity, and reducing soil erosion. This shift reflects a 

growing recognition of the value of green spaces and their benefits. 

Barren Land (BA) to Water Bodies (WB): 

A less pronounced but notable change is the conversion of around 12.38 km² (0.76% of 

the total area) of barren land into water bodies. This transformation may result from new water 

management projects, such as ponds or reservoirs, designed to meet irrigation needs and 

improve water availability. Although less dramatic than other changes, this shift is significant for 

managing the district's water resources. 
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Vegetation Land (VG) to Barren Land (BA): 

Conversely, 95.59 km², or 5.84% of the total area, has transitioned from vegetated land 

to barren land. This deterioration could be attributed to natural disasters, overgrazing, 

unsustainable agricultural practices, or deforestation. Addressing these issues requires efforts to 

rehabilitate degraded areas and implement sustainable land management practices. 

Vegetation Land (VG) to Built-up Land (BU): 

Red patches on the map represent approximately 146.16 km² (8.93% of the total area) 

of land that has been converted from vegetation to built-up areas. This development reflects 

ongoing urban sprawl, with housing and commercial spaces expanding into formerly agricultural 

or wooded areas. While indicative of economic growth, it underscores the importance of 

planning urban development to balance expansion with environmental preservation. 

Water Bodies (WB) to Barren Land (BA): 

A small but notable change involves the conversion of around 1.97 km² of water bodies 

to barren land, accounting for 0.12% of the total area. This transformation may be due to 

reduced water levels, sedimentation, or the drying up of water bodies, potentially influenced by 

climate change. Preserving existing water bodies is crucial for maintaining hydrological balance 

and supporting local ecosystems. 

Water Bodies (WB) to Vegetation Land (VG): 

Finally, the conversion of about 0.96 km² (0.06% of the total area) of water bodies into 

vegetation indicates areas where water bodies have either diminished or been filled in, leading 

to vegetative growth. While this shift may benefit native species, it highlights the need to monitor 

changes in water resource availability. 

 
Figure 5: Maps of LULC change from 2002 to 2022 
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Table 2: Change in LULC statistics from 2002 to 2022 

Class 2002 Class 2022 Change Classes Change Area Sq.km Change % 

Barren Land Barren Land No change 273.17 16.69 
Barren Land Built-up BA To BU 50.70 3.10 
Barren Land Vegetation BA To VG 177.63 10.85 
Barren Land Water Bodies BA To WB 12.38 0.76 
Built-up Built-up No change 161.23 9.85 
Vegetation Barren Land VG To BA 189.09 11.55 
Vegetation Built-up VG To BU 128.82 7.87 
Vegetation Vegetation No change 620.76 37.92 
Water Bodies Barren Land WB To BA 15.76 0.96 
Water Bodies Vegetation WB To VG 2.72 0.17 
Water Bodies Water Bodies No change 4.60 0.28 

Observed LST from 2002 to 2022 Using Landsat Data: 
Since 2002, the Land Surface Temperature (LST) in Mardan district has shown a 

significant increase. Figures 6 and 7 illustrate that in 2002, the average temperature in the region 
was between 28 and 31°C and 31 and 33°C. By 2022, the most common temperature ranges had 
shifted to 31–33°C, 33–35°C, and 35–41°C. Initially, in 2002, LST values ranged from 25°C to 
36°C, indicating considerable temperature variability across the area. However, by 2022, this 
range had expanded significantly to between 20°C and 41°C. This dramatic rise highlights the 
increasing temperatures, particularly in urban areas, and underscores the growing warmth of the 
district. 

 
Figure 6: LST Map of 2002 

The data for 2022, as shown in Figure 8, reveal a temperature increase that extends 
across the city's borders, elevating temperatures over a large portion of the area. Around one-
third of the city experienced temperatures between 31 and 35°C and 35 and 41°C. Over time, 
regions with higher temperatures have expanded, while those with lower temperatures have 
diminished. In 2002, most of the region had temperatures between 20 and 28°C, but by 2022, 
Mardan City saw temperatures ranging from 35 to 41°C. This represents a temperature increase 
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of up to 12°C over a 20-year period. Table 3 provides an overview of LST changes between 
2002 and 2022. The proportion of areas with temperatures between 20 and 23°C decreased by 
about 3% during this period, while there was a notable 4% increase in areas with high LSTs (35–
41°C). This suggests significant surface warming in Mardan City over the past few decades. 

Table 3: Temporal trend of LST observed in 2002 & 2022 

LST 2002 2022 

Classes Names Area in km2 % Area in km2 % 

20.454 - 28.719 147.94 9.03 100.05 6.11 
28.72 - 31.116 466.99 28.51 360.95 22.05 
31.117 - 33.182 511.98 31.26 493.15 30.13 
33.183 - 35.58 362.40 22.13 426.59 26.06 
35.581 - 41.531 148.54 9.07 256.14 15.65 

 
Figure 7: LST Map of 2022 

Spatio-Temporal Changes in LST from 2002 to 2022: 
The examination of Land Surface Temperature (LST) changes in District Mardan, 

Khyber Pakhtunkhwa, from 2002 to 2022 reveals significant transitions across various 
temperature classes. Understanding these changes is crucial for effective environmental 
management and policymaking. 
Transition from Barren Land (BA) to Built-up Land (BU): 

Approximately 50.70 km², or about 3.10% of the total area, of previously undeveloped 
land has been converted into built-up areas between 2002 and 2022. This shift highlights urban 
growth and infrastructure development over the past 20 years, driven primarily by economic 
expansion and population growth. The map illustrates these changes with orange patches 
representing areas where urbanization has replaced unused or sparsely vegetated land. 
Transition from Barren Land (BA) to Vegetation Land (VG): 

Approximately 177.63 km², or 10.85% of the total area, has transitioned from barren to 
vegetated land. This change could be attributed to reforestation efforts, agricultural expansion, 
or natural vegetation restoration. Increasing plant cover is vital for improving ecological balance, 
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enhancing biodiversity, and reducing soil erosion. This shift reflects a growing awareness of the 
importance of green spaces. 
Transition from Barren Land (BA) to Water Bodies (WB): 

There has been a noticeable but less dramatic change, with around 12.38 km² (0.76% of 
the total area) of barren land converted into water bodies. This change may result from new 
water management projects such as ponds or reservoirs designed to meet irrigation needs and 
enhance water availability. While less significant compared to other changes, these modifications 
are important for local water resource management. 
Transition from Vegetation Land (VG) to Barren Land (BA): 

Approximately 95.59 km², or 5.84% of the total area, has shifted from vegetated to 
barren land. This degradation could be due to natural disasters, overgrazing, unsustainable 
farming practices, or deforestation. Addressing these issues through land rehabilitation and 
sustainable management practices is essential to counteract the loss of vegetation. 
Transition from Vegetation Land (VG) to Built-up Land (BU): 

Red patches on the map indicate areas that have been converted from vegetation to 
built-up land, covering approximately 146.16 km², or 8.93% of the total area. This reflects urban 
sprawl into formerly agricultural or wooded regions. While indicative of economic development, 
it underscores the need for well-planned urban expansion that balances growth with 
environmental preservation. 
Transition from Water Bodies (WB) to Barren Land (BA): 

Approximately 1.97 km², or 0.12% of the total area, has seen a conversion from water 
bodies to barren land. This shift may be due to water depletion, sedimentation, or the drying up 
of water bodies, potentially exacerbated by climate change. Protecting existing water resources 
is crucial for maintaining hydrological balance and supporting local ecosystems. 
Transition from Water Bodies (WB) to Vegetation Land (VG): 

Around 0.96 km², or 0.06% of the total area, has seen a conversion from water bodies 
to terrestrial vegetation. This may be due to the reduction in water bodies or infill processes, 
leading to vegetation growth. While beneficial for native species, this shift highlights the 
importance of monitoring changes in water resource availability. 
Land Surface Temperature (LST) Changes from 2002 to 2022: 

The data shows a general increase in LST in District Mardan. The shift from lower to 
higher temperature classes is particularly evident, with large areas transitioning from "Very Low" 
(VL) and "Low" (L) to "Medium" (M), "High" (H), and "Very High" (VH) temperature classes. 
Approximately 519.70 km² of the region has moved to warmer temperature classes, while about 
218.49 km² has cooled. This overall temperature rise, driven by urbanization and land use 
changes, is highlighted by the detailed LST class transitions in Table 3. 
Very Low LST Class to Other LST Classes: 

The "Very Low" (VL) temperature class saw minimal change, with 37.10 km² (2.27%) 
remaining in this category. However, shifts from VL to warmer classes indicate a trend toward 
increasing temperatures. For instance, 40.94 km² (2.50%) transitioned to "Low" (L), and 37.39 
km² (2.28%) to "Medium" (M). Notably, 25.44 km² (1.55%) shifted to "High" (H), and 6.04 km² 
(0.37%) to "Very High" (VH), reflecting areas with rapid warming, likely due to human activities 
such as urbanization and deforestation. 
Low LST Class to Other LST Classes: 

The "Low" (L) temperature class experienced diverse transitions. About 28.32 km² 
(1.73%) shifted from "Low" to "Very Low" (VL), suggesting some cooling, possibly due to 
reforestation or reduced human activity. A substantial area of 129.69 km² (7.92%) remained in 
the "Low" class, indicating stable temperatures. Shifts to "Medium" (M) covered 172.25 km² 
(10.52%), while 107.25 km² (6.55%) moved to "High" (H) and 30.44 km² (1.86%) to "Very 
High" (VH), indicating increased warming, possibly from new infrastructure development. 
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Moderate LST Class to Other LST Classes: 
The "Moderate" (M) temperature class displayed various transitions. About 21.06 km² 

(1.29%) cooled to "Very Low" (VL), possibly due to effective land management. Additionally, 
133.53 km² (8.16%) transitioned to "Low" (L), suggesting some cooling. However, 180.15 km² 
(11.01%) remained in the "M" class, showing minimal fluctuation. Substantial warming 
occurred, with 131.41 km² (8.03%) moving to "High" (H) and 48.22 km² (2.95%) to "Very High" 
(VH), likely due to industrialization and urbanization. 
High LST Class to Other LST Classes: 

The "High" (H) temperature class experienced notable transitions. Approximately 9.75 
km² (0.60%) cooled from "High" to "Very Low" (VL), indicating successful temperature 
reduction in some areas. Additionally, 50.90 km² (3.11%) shifted to "Low" (L), showing slight 
cooling. Transitions to "Medium" (M) covered 92.68 km² (5.66%), reflecting minor temperature 
decreases. However, 118.63 km² (7.25%) remained in the "H" class, while 88.94 km² (5.43%) 
transitioned to "Very High" (VH), indicating significant warming, likely due to increased 
urbanization. 
Very High LST Class to Other LST Classes: 

Changes in the "Very High" (VH) temperature class highlight significant impacts. 
Around 3.03 km² (0.19%) cooled from "VH" to "Very Low" (VL), potentially due to effective 
environmental restoration. A transition from "VH" to "Low" (L) covered 6.13 km² (0.37%), 
while 11.89 km² (0.73%) shifted to "Medium" (M). Significant cooling was noted with 43.85 km² 
(2.68%) moving to "High" (H), but a large area of 81.82 km² (5.00%) remained in the "VH" 
class, showing minimal temperature change. 

Table 4: LST Changes in Classes from 2002 - 2022 

Class 2002 Class 2022 Change Classes Change Area SqKm Change % 

VL VL VL To VL 37.10 2.27 
VL L VL To L 40.94 2.50 
VL M VL To M 37.39 2.28 
VL H VL To H 25.44 1.55 
VL VH VL To VH 6.04 0.37 
L VL L To VL 28.32 1.73 
L L L To L 129.69 7.92 
L M L To M 172.25 10.52 
L H L To H 107.25 6.55 
L VH L To VH 30.44 1.86 
M VL M To VL 21.06 1.29 
M L M To L 133.53 8.16 
M M M To M 180.15 11.01 
M H M To H 131.41 8.03 
M VH M To VH 48.22 2.95 
H VL H To VL 9.75 0.60 
H L H To L 50.90 3.11 
H M H To M 92.68 5.66 
H H H To H 118.63 7.25 
H VH H To VH 88.94 5.43 

VH VL VH To VL 3.03 0.19 
VH L VH To L 6.13 0.37 
VH M VH To M 11.89 0.73 
VH H VH To H 43.85 2.68 
VH VH VH To VH 81.82 5.00 
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Measurement of Coefficient of Determination for LST with Normalized Satellite 
Indices: 

Table 7 illustrates the annual fluctuations in Land Surface Temperature (LST) for the 
Mardan region in 2002 and 2022, as derived from various normalized satellite indices. The data 
reveals a significant increase in LST variability over the past two decades. This annual fluctuation 
is notably more pronounced when compared to indices such as the Normalized Difference 
Built-up Index (NDBI), Soil Adjusted Vegetation Index (SAVI), Normalized Difference 
Vegetation Index (NDVI), and Bare Soil Index (BI). 

 
Figure 8: LST Changes in Classes from 2002 – 2022 

LST and indicators like SAVI, NDBI, and BI exhibited a statistically significant positive 
association from 2002 to 2022, particularly in Mardan City. This suggests that as urbanization 
and soil exposure increased, so did LST, indicating higher temperatures in areas with less 
vegetation and more built-up infrastructure. Conversely, a negative correlation was observed 
between LST and NDVI and NDWI, indicating that cooler temperatures were more common 
in regions with greater vegetation and water resources. This trend highlights how the presence 
of greenery and water bodies can mitigate urban heat. 

There have been unfavorable trends in LST in Mardan's western and higher regions. The 
significant temperature increases in areas with diminished vegetation underscore the crucial role 
of green cover in moderating urban heat. Conversely, a small area in Mardan’s eastern and lower 
regions showed an inverse correlation with NDVI, suggesting that the limited vegetation made 
it challenging to accurately assess LST patterns in these areas. 

Overall, the robust annual relationship between LST and the various indices underscores 
the complex interplay between surface temperatures, vegetation cover, and urban expansion. By 
2022, the association between LST and these indicators demonstrated a 75.4% increase in 
positive trends, highlighting the significant impact of environmental factors and urbanization on 
Mardan's temperature variations. 
LST and NDVI: 

2002: A substantial negative correlation (R² = -0.6530) was observed between LST and 
NDVI, indicating that higher NDVI values, which reflect denser vegetation, were associated 
with lower LST levels. This suggests that vegetation plays a role in cooling the surface. 
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2022: The negative correlation persisted but weakened to −0.5453, suggesting that the 
cooling effect of vegetation has diminished, likely due to increased urbanization reducing 
available green space. 
LST and NDWI: 

2002: A somewhat positive correlation (R² = 0.4140) was noted between LST and 
NDWI. This might seem unusual since water bodies generally have a cooling effect; however, 
this positive association could be attributed to urban heat islands near water bodies, leading to 
higher temperatures in these areas. 

2022: The correlation weakened to 0.2142, reflecting a weak positive link. This variability 
might result from changes in land use near water bodies or specific meteorological conditions 
during the study period. 
LST and SAVI: 

2002: A strong negative correlation (R² = -0.7250) was found between LST and SAVI, 
suggesting that lower LST was associated with higher SAVI values, indicative of healthier 
vegetation with minimal soil impact. 

2022: The correlation weakened significantly to 0.1354, indicating that the role of soil-
adjusted vegetation in cooling the surface has diminished, possibly due to increased urbanization 
and reduced green space. 
LST and NDBI: 

2002: A very strong positive correlation (R² = 0.8910) was observed between LST and 
NDBI, reflecting the significant impact of urban areas on land surface temperatures. 

2022: The correlation increased to 0.9927, suggesting that built-up areas are contributing 
even more to higher temperatures, indicating an intensification of the urban heat island effect. 

Table 5: LST with Normalized Indices soil may be a factor in rising temperatures. 

LST and BI: 
2002: A strong positive correlation (R² = 0.7580) between LST and BI indicates that 

higher LST values are associated with areas of greater bare soil, reflecting the influence of bare 
soil on increasing surface temperatures.  

2022: The correlation weakened to 0.6564, showing a moderately favorable link between 
LST and BI. While bare soil still impacts LST, the effect appears diminished, likely due to 
increased urbanization and changes in land use. 
Calculation of LST from Urban Indices: 

The linear regression model used to predict Land Surface Temperature (LST) based on 
urban indices (UI) is illustrated in Figure 9. The model reveals a substantial connection between 
LST and UI, with an R² value of 0.89, indicating a significant relationship. This robust correlation 

Year Indi LST NDVI NDWI SAVI NDBI BI 

2002 

LST 1.0000 -0.6530 0.4140 -0.7250 0.5931 0.7580 

NDV -0.7320 1.0000 -0.7841 0.9085 -0.8671 -0.8282 

NDI 0.6321 -0.7746 1.0000 0.8510 -0.8157 -0.7819 

SAVI -0.7203 0.9078 -0.8487 1.0000 -0.8813 -0.9265 

NDB 0.8871 -0.8656 0.6555 -0.9288 1.0000 0.9477 

BI 0.7510 -0.8281 0.5979 -0.9228 0.9918 1.0000 

2022 

LST 1.0000 −0.5453 0.2142 0.1354 0.6672 0.6564 

NDV −0.5453 1.0000 −0.7087 1.0000 −0.7791 −0.8248 

NDI −0.1609 −0.7087 1.0000 −0.7214 0.1481 0.8252 

SAVI 0.7354 1.0000 −0.7214 1.0000 −0.7698 0.4390 

NDB 0.9927 −0.7791 0.1481 −0.7798 1.0000 0.6073 

BI 0.7564 −0.8248 0.8252 0.3247 0.2633 1.0000 



                              International Journal of Innovations in Science & Technology 

June 2024|Special Issue                                                                            Page |366 

suggests that despite potential saturation issues affecting indices like NDVI, the relationship 
between LST and UI remains strong. As UI values increase, LST also tends to rise. 

The linear regression model was validated using Landsat data from 2022, confirming its 
alignment with established temperature trends, as shown in Figure 8. The model compared 
temperatures derived from the model (Tmod) with those observed by satellites (Tsat). This 
analysis, which involved data from 300 locations within the study area, incorporated Landsat 8 
thermal data and UI temperature readings, as detailed in Figure 9. The successful comparison 
demonstrated the model's capability to accurately forecast temperature fluctuations. 

 
Figure 9: Linear Regression Model LST and UI 

 
Figure 10: Comparisons between TMOD and TSAT 

LST and LULC Prediction for 2042:  
Prediction and Distribution of LULC and LST in Mardan 2042: 
LULC 2042: 

Figure 11 presents the projections from the CA-Markov chain model, illustrating the 
expected changes in land use and land cover (LULC) by 2042. The model predicts a significant 
expansion of populated areas, encroaching upon natural landscapes, vegetation, and water 
bodies. If current trends persist, green spaces are likely to be increasingly replaced by urban 
infrastructure, as has been observed in the past. **Table 8** highlights a substantial increase in 
the area occupied by built-up regions by 2042. Specifically, the model forecasts a reduction in 
vegetation from 793.09 km² in 2022 to 747.66 km² by 2042, while built-up areas are expected to 
expand from 266.70 km² to 299.99 km². This growth in urban regions, coupled with the decline 
in water bodies, vegetation, and bare land, emerges as the key drivers of future land cover 
changes. 
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Table 6: Area Statistics of Predicted LULC for 2042 

Classes Names Area in Km² Percentage % 

Water Bodies 38.3228 2.34 

Vegetation 747.6607 45.65 

Built-up 299.9938 18.32 

Barren Land 551.8851 33.70 

Changes from 2022 to 2042 in Land Use Land cover: 
The CA-Markov model projects significant changes in Mardan's land cover between 

2022 and 2042. Notably, the northwest corner of the region is expected to undergo a substantial 
transition from barren land to developed, built-up areas, accounting for approximately 24.2 
square kilometers, or 1.48% of the total area. Additionally, 20.9 square kilometers, or 12.28%, 
of previously undeveloped land is projected to become vegetated. The conversion of bare land 
to water bodies (BA to WB) is minimal, affecting just 0.76 square kilometers, or 0.05% of the 
area. 

In the northern section, a significant shift is anticipated from vegetated land to barren 
land (VG to BA), impacting about 25.7 square kilometers, or 1.57% of the total area. Similar 
transitions from vegetated to built-up regions are expected in the central and eastern sections, 
covering 20.9 square kilometers, or 1.28% of the area. Changes from water bodies to barren 
land (WB to BA) are negligible, influencing only half a square kilometer, or 0.03%. This spatially-
driven study highlights the dynamic and evolving nature of Mardan's land cover due to ongoing 
urbanization and shifts in land use patterns. 

 
Figure 11: Predicted LULC from CA Markov Model for 2042 

LST 2042: 
The projected trend in land surface temperature (LST) from 2022 to 2042 is illustrated 

in Figure 11. The model attributes the fluctuations in LST during this period to the expansion 
of built-up areas. As high LST zones (exceeding 35.581°C) are expected to increase, the lower 
LST categories are anticipated to diminish. Vegetated areas in the western region are likely to 
remain cooler compared to urbanized areas. Higher LST classes (31.117–33.182°C, 33.183–
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35.58°C, and 35.581–41.531°C) are predicted to gradually replace regions currently characterized 
by lower LST ranges (20.454–28.719°C and 28.72–31.116°C). According to Table 4, significant 
temperature increases are most likely in the southern, northern, and northeastern regions, with 
many areas potentially transitioning into higher temperature categories (above 35.581°C). 

Table 7: Changes of different LULC classes which are predicted from CA Markov 

Classes 2022 Classes 2042 Change Classes Change Area SqKm Change % 

Barren Land Barren Land No Change 475.75 29.06 
Barren Land Built-up BA To BU 24.20 1.48 
Barren Land Vegetation BA To VG 20.88 1.28 
Barren Land Water Bodies BA To WB 0.76 0.05 
Built-up Built-up No Change 263.55 16.10 
Vegetation Barren Land VG To BA 47.79 2.92 
Vegetation Built-up VG To BU 47.97 2.93 
Vegetation Vegetation No Change 711.23 43.45 
Water Bodies Barren Land WB To BA 9.58 0.59 
Water Bodies Vegetation WB To VG 4.57 0.28 
Water Bodies Water Bodies No Change 30.57 1.87 

The model forecasts a reduction in the 20.454–28.719°C temperature range from 100.05 
km² to 84.8367 km² between 2022 and 2042, while the 35.581–41.531°C LST range is expected 
to expand from 256.14 km² to 320.8833 km². Over time, temperatures in the higher range (above 
35.581°C) are anticipated to increase, encroaching upon the lower temperature categories. This 
trend is clearly illustrated in Figure 11, showing a significant rise in temperatures within 
populated areas. Most low LST zones (20.454–28.719°C and 28.72–31.116°C) are projected to 
shift into higher LST categories (33.183–35.58°C and 35.581–41.531°C). Consequently, while 
the area of lower LST may shrink, many regions, particularly in the center, north, northwest, 
and northeast, are likely to experience a shift toward higher temperatures, exceeding 35.581°C 
as indicated in Table 8. 

Table 8: Area statistics of predicted LST for 2042 

Classes Range Area in Km² Percentage % 

20.454 - 28.719 (VL) 84.8367 5.18 
28.72 - 31.116 (L) 327.3489 20.00 

31.117 - 33.182 (M) 461.2779 28.18 
33.183 - 35.58 (H) 442.5156 27.03 

35.581 - 41 .531 (VH) 320.8833 19.60 

Changes in LST from 2022 to 2042: 
Significant regional variations in Mardan's land surface temperature (LST) are projected 

from 2022 to 2042. Areas initially classified as very low (VL) temperatures are expected to 
transition, with 4.57 km² shifting to moderate (VL to M) and 4.26 km² to high temperatures (VL 
to H), accounting for 0.28% and 0.26% of the total area, respectively. Additionally, a very small 
region of 0.03 km², representing about 0.002% of the area, is projected to shift from very low 
to very high temperatures (VL to VH). Low-temperature (L) zones are also expected to undergo 
significant changes, with 13.6 km² (0.83% of the total area) moving to high temperatures (L to 
H) and 6.8 km² (0.42%) shifting to moderate temperatures (L to M). Notably, 13.3 km² in central 
Mardan and 0.2 km² in northern Mardan are anticipated to see transitions from moderate to 
high and very high temperatures, respectively (M to H and VH). 

Furthermore, 2.4 km², or 0.15% of the landmass, is expected to experience a shift to 
very high temperatures (VH), indicating a substantial change from high temperatures (H). Over 
the next two decades, several parts of Mardan are expected to see a rise in land surface 
temperatures, reflecting the impact of urbanization and potential climate change factors. This 
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trend towards higher temperature classes highlights the influence of these factors on local 
temperature variations. 

 
Figure 12: Predicted LST from CA Markov Model for 2042 

Table 9: Changes of different LST classes which are predicted from CA Markov 

Class 2022 Class 2042 Change Classes Change Area (Sq.Km) Change % 

VL VL VL To VL 81.65 4.99 
VL L VL To L 8.67 0.53 
VL M VL To M 4.57 0.28 
VL H VL To H 4.26 0.26 
VL VH VL To VH 0.03 0.00 
L VL L To VL 2.68 0.16 
L L L To L 280.34 17.13 
L M L To M 54.29 3.32 
L H L To H 16.67 1.02 
L VH L To VH 7.16 0.44 
M VL M To VL 0.11 0.01 
M L M To L 38.48 2.35 
M M M To M 392.35 23.97 
M H M To H 39.60 2.42 
M VH M To VH 23.56 1.44 
H VL H To VL 0.00 0.00 
H L H To L 0.01 0.00 
H M H To M 11.12 0.68 
H H H To H 376.63 23.01 
H VH H To VH 38.86 2.37 

VH H VH To H 4.61 0.28 
VH VH VH To VH 250.87 15.33 

Discussions: This study utilized Markov chain models based on cellular automata to predict 
land use, land cover (LULC), and land surface temperature (LST) in Mardan, Khyber 
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Pakhtunkhwa, Pakistan. The analysis assessed the predictive power of various land cover indices 
in forecasting temperature changes over time. Among the indices—Soil-Adjusted Vegetation 
Index (SAVI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-
up Index (NDBI), and Built-up Index (BI)—the Normalized Difference Water Index (NDWI) 
emerged as the most accurate predictor of LST distribution. 

Linear regression techniques were employed to predict the expansion of urban centers 
and the corresponding temperature changes. Multiple linear regressions were deemed suitable 
as long as there was no collinearity among the predictor variables. The Urban Index (UI) proved 
to be the most accurate predictor of temperature, considering the interdependence of other 
factors. The UI model was used to predict urbanization growth and its future trajectory, 
calculating the potential environmental impact on LST. The model predicted temperatures with 
an average absolute error of 1.83 °C, using LST data from the thermal band combined with the 
UI in a linear model. Recent studies have confirmed a strong correlation between the UI's 
accuracy in forecasting heat patterns from urban growth and various measures of urban 
expansion. 

While previous research had not fully established the link between temperature and UI, 
the higher temperatures observed in areas with more built-up infrastructure and less vegetation 
can be attributed to the significant predictive power demonstrated in this study. Similar patterns 
have been observed in Colombo and Sri Lanka, where urban indices are high in residential and 
water-intensive areas. The strong correlation between UI and LST can be explained by studies 
showing that urban climates significantly impact residential water and energy consumption. In 
1990 and 2018, the Support Vector Machine (SVM) classifier was employed to achieve high-
accuracy classification of urban land use and land cover (LULC) distribution. Recent studies also 
demonstrated the SVM classifier's capability to produce highly accurate maps. By using digitized 
areas rather than points as the ground data for classification, a map was created with precision 
exceeding the required 80% accuracy level. 

LULC maps from 2002 and 2022 revealed that while residential areas expanded, 
vegetation cover in the same area decreased, a finding consistent with earlier research. The high 
degree of agreement between the 2022 projected map and the map produced using supervised 
classification techniques validates the accuracy of the CA-Markov chain model in predicting land 
cover and land use categories. The CA-Markov chain model forecasts continued growth of built-
up areas until 2042 at the expense of natural land cover, unless policies are implemented to 
promote green spaces, cropland, and water conservation. This prediction aligns with global 
trends indicating that human population growth will continue to outpace the expansion of 
natural areas. The study also predicted an increase in areas with higher temperatures (31–35 °C 
and 35–41 °C), while regions with the lowest temperature levels are likely to decrease. As 
urbanization intensifies, green space and water availability will diminish, mirroring patterns 
observed in previous studies. 

The study's findings are crucial for reshaping urban planning and management in Khyber 
Pakhtunkhwa. Addressing issues such as land record management, solid waste management 
infrastructure, capacity building, landfill construction, pond removal, and support for local 
governments in rehabilitating hazardous buildings will enhance the district's urban resilience. 
Conclusion: 

The spatiotemporal analysis of Land Use and Land Cover (LULC) in Mardan from 2002 
to 2022 reveals significant changes driven by urbanization. The study found a substantial 
increase in built-up areas from 165.47 km² to 266.70 km², at the expense of vegetative and 
agricultural lands, which decreased from 928.76 km² to 793.09 km² during the same period. 
These changes highlight the ongoing trade-off between urban expansion and the preservation 
of natural land cover. The overall accuracy (OA) of the study improved from 81% in 2002 to 
87% in 2022, demonstrating the reliability of the Maximum Likelihood Classification (MLC) 
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algorithm used in the analysis. The environmental impact of increased urbanization is 
underscored by the reduction in vegetative cover and the rise in arid and built-up areas. 

Moreover, LST data indicates a discernible trend of rising temperatures over the past 
two decades, with the average LST range shifting from 25–36°C in 2002 to 20–41°C in 2022, 
and higher temperatures becoming more prevalent. The positive correlation between LST and 
urban indices (UI) suggests a direct relationship between the expansion of built-up areas and the 
reduction of vegetative cover, contributing to the observed temperature increases. CA-Markov 
model projections for 2042 indicate a continued rise in built-up areas, reaching 299.99 km², while 
vegetative cover is expected to decline to 747.66 km². The model also predicts an increase in 
high LST zones, with certain areas potentially experiencing temperatures above 35.58°C. These 
projections emphasize the urgent need for sustainable urban design and environmental 
conservation measures to mitigate the adverse effects of urbanization on climate and land use. 
The study underscores the importance of integrating green spaces and water bodies into urban 
development plans to balance growth with environmental sustainability. The findings provide 
valuable insights into the dynamic changes in land use and temperature in the Mardan region 
and can guide policymakers in making informed decisions to enhance urban sustainability and 
resilience amid ongoing development and climate challenges. 
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