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iral infections like chickenpox, measles, and monkeypox pose significant global health 
challenges, affecting millions with varying severity. This study presents a novel deep-
learning approach using widely available low-cost RGB camera technology to accurately 

identify these infections based on skin manifestations. We aim to enhance diagnostic capabilities 
and enable timely interventions, thus improving public health outcomes and individual well-
being. Using MobileNetV3 for data classification, our model achieved a precision of 95% for 
positive cases, an overall accuracy of 95.73%, a recall of 88.37%, and an F1-score of 91.56%, 
indicating balanced performance between precision and recall. Notably, the model demonstrated 
exceptionally high specificity at 98.34%, effectively identifying negative cases. This deep learning 
approach holds promise for improving diagnostic accuracy and efficiency, especially in resource-
limited settings with limited access to specialized medical expertise. By leveraging low-cost RGB 
camera technology, our method enables broad deployment, facilitating early detection and 
treatment of viral infections. We focus on the potential of deep learning in public health by 
emphasizing the critical role of early detection and intervention in mitigating the impact of viral 
infections. Our findings contribute to advancing healthcare technology and lay the groundwork 
for future innovations in disease detection and management. 
Keywords: Deep Learning; Contagious Infections; Mobile Net Architecture; Infection 
Diagnosis; Image Classification. 
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Introduction: 
Viral infections are a significant global health issue, affecting millions of people with a 

wide range of severity, from mild conditions to severe, life-threatening diseases. These 
infections, caused by pathogenic viruses, can target various systems and organs within the 
human body. Prominent examples include chickenpox, measles, and monkeypox, each 
characterized by distinct symptoms and transmission methods. These viral illnesses have a 
considerable impact worldwide, particularly affecting children due to their developing immune 
systems, which are less capable of effectively combating these infections at an early age [1]. 

Chickenpox, measles, and monkeypox are notable viral infections, each with distinct 
characteristics. Chickenpox, induced by the Varicella-Zoster Virus, is highly contagious and 
predominantly affects children. It is marked by an itchy rash featuring red spots and blisters, 
usually starting on the face and spreading to other body parts. Measles, triggered by the rubeola 
virus, is another highly contagious respiratory illness. Its symptoms include fever, cough, runny 
nose, and red, watery eyes that are followed by a distinct rash that covers the body. Monkeypox, 
caused by the monkeypox virus, resembles smallpox but tends to be milder. Initial symptoms 
include fever, headache, and muscle aches, followed by a rash that often starts on the face before 
spreading elsewhere. 

The landscape of infectious diseases is constantly changing, with recent outbreaks such 
as Monkeypox underscoring the persistent challenges faced by public health systems worldwide. 
Since its resurgence in May 2022 [2], Monkeypox has re-emerged as a notable viral threat, with 
over 200 cases reported globally in the past month alone. This virus, originating from wild 
animals like rodents and primates, spreads primarily through animal-to-human transmission but 
can also be transmitted between humans. As a zoonotic disease, Monkeypox presents significant 
public health risks due to its potential for rapid spread and diverse clinical symptoms. 

Alongside Monkeypox, chickenpox and measles persist as significant health challenges 
worldwide. Chickenpox remains widespread, especially in countries like Pakistan where it 
impacts a large segment of the population. Measles, a highly contagious viral infection, is 
notorious for causing severe complications, particularly in young children [3]. These illnesses 
highlight the critical need for strong surveillance systems, early detection, and effective public 
health measures to reduce their impact and prevent future outbreaks. 

Identification of these viral infections is crucial due to their frequent manifestation of 
skin symptoms. Studying these diseases encompasses their epidemiology, transmission patterns, 
clinical presentations, and potential complications. This introduction aims to delve into these 
areas, emphasizing the impact of these viral illnesses on public health and individual well-being. 
Utilizing deep learning technology for disease identification, we can leverage low-cost RGB 
cameras to detect these infections efficiently. This approach facilitates timely interventions, 
including appropriate medication and preventive measures, to effectively manage and curb these 
diseases' spread. 

The structure of this paper is organized as follows: First, a literature review is provided 
followed by the methodology, highlighting the use of MobileNetV3 for deep learning. Next, an 
overview of the datasets, experimental setups, configurations, evaluation criteria, and results is 
provided. The final section concludes the paper and suggests future research directions. 
Objectives of Research: 

The following are the research objectives for this study. 
Research Scope: 

The study aims to explore the application of deep learning technologies in combination 
with low-cost RGB cameras for the identification of viral infections such as chickenpox, 
measles, and monkeypox, focusing on skin symptoms. This specific scope ensures the research 
remains targeted and manageable. 
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Development of an Innovative Diagnostic Tool: By concentrating on the integration of deep 
learning and affordable imaging technology, the study seeks to create an innovative diagnostic 
tool. This direction guides the research toward developing a practical solution that addresses 
current diagnostic challenges in detecting viral infections based on visible symptoms. 
Focused Research on Viral Infection Identification:  

The objective delineates the study's focus on viral infection identification using specific 
technologies, thus helping to maintain a concentrated effort on relevant experiments, data 
collection, and analysis. This focus helps in avoiding deviations into unrelated areas or broader, 
less manageable topics. 
Efficient and Economical Research Approach:  

By establishing a clear and concise objective, the research ensures efficient use of time, 
money, and energy. Targeting the use of low-cost RGB cameras combined with deep learning 
not only makes the research economically viable but also ensures that efforts are streamlined 
toward achieving specific, impactful outcomes. 
Enhancing Diagnostic Precision for Public Health:  

The primary goal emphasizes enhancing diagnostic precision and facilitating prompt 
medical responses. This objective aligns the research with broader public health goals, aiming to 
contribute significantly to individual and community health by reducing the burden of viral 
infections through early and accurate diagnosis. 
Novelty of Work: 

The novelty of this research lies in the application of deep learning with low-cost RGB 
camera technology to accurately identify viral infections based on skin manifestations. This 
method presents a promising solution to enhance diagnostic accuracy and efficiency, particularly 
in resource-limited settings with restricted access to specialized medical expertise. 
Literature Review: 
Classical Machine Learning Approaches: 

V. Vasudha Rani et al. [4] explain that skin, a remarkable human structure, often suffers 
from neglected conditions due to inherited traits and environmental factors. Identifying skin 
diseases is challenging due to the complexity of human skin and the similarity of conditions. 
Early detection is crucial, yet it remains a difficult scientific field. Machine learning (ML) 
techniques are used for segmentation and diagnosis, relying on image features. This analysis 
discusses using ensemble data mining and ML algorithms to classify skin diseases, employing 
multiple ML techniques to enhance reliability. 

Pakkapat Banditsingha et al. [5] explain that in recent decades, skin disorders have been 
on the rise. Most are infectious and rely on visual perception. They proposed a Decision 
Machine Learning Support System to classify five types of skin diseases using 750 images from 
the dataset. They preprocess, resize, interpolate, and augment images for all models. Extensive 
experiments show that ResNet50 significantly outperforms other methods in accuracy, 
precision, recall, and F-measure. Bisahu Ram Sahu et al. [4] said that skin disease is a significant 
global health issue. Advances in technology and machine learning have improved the accuracy 
of dermatological disease categorization. Developing machine learning methods to accurately 
classify skin diseases is crucial. This research introduces a novel approach using four data mining 
techniques: support vector machine, k-nearest neighbor, random forest, and naive Bayes. An 
ensemble model combining these techniques via a voting scheme classifies skin diseases into 
five categories: acne, skin allergies, nail fungus, hair loss, and healthy skin. The proposed model 
achieved 97.33% accuracy, outperforming other classifiers. 

In [6], Rinci Kembang Hapsari explains that Monkeypox, caused by the orthopoxvirus, 
presents symptoms like fever, headache, muscle aches, back pain, fatigue, and swollen lymph 
nodes. This research uses a Particle Swarm Optimization-enhanced Random Forest algorithm 
(PRFO) to predict Monkeypox. PRFO improves accuracy and reduces runtime. Testing on three 
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datasets showed accuracy increases: the Monkey Pox dataset (25,000 data points) improved by 
2.08% to 69.88%, the Health dataset (20,000 data points) by 0.89% to 93.67%, and the PulsarStar 
dataset (12,000 data points) by 0.27% to 98.16%. PRFO's efficiency was achieved using 30 
particles and 50 iterations, making it effective for large datasets. 

Azka Mir in [7] predicts monkeypox outbreaks to manage them before they become a 
health hazard. Monkeypox cases are classified as confirmed, discarded, or suspected. Using a 
supervised machine learning model, this study predicts the status of monkeypox cases based on 
clinical parameters. The dataset used includes parameters from April 2022 onwards. Supervised 
machine learning techniques, including Decision Tree and Naïve Bayes classifiers, were used to 
analyze the dataset's performance. The proposed K-NN classifier model achieved the highest 
accuracy rate of 93.51% with k=5 neighbors. The RapidMiner platform was used for applying 
machine learning tools and techniques. This research emphasizes effective steps in machine 
learning to develop highly accurate models for predicting monkeypox outbreaks. 
Deep Learning Approaches for Skin Disease & Viral Infection Classification: 

Someswar Pal and Amit Kumar Mishra [8] explain that Monkeypox is a zoonotic disease, 
less severe than smallpox, primarily found in tropical African jungles but increasingly common 
in cities. Its primary hosts are animals, such as rats and other primates. Due to its spread, there 
is concern it might circulate like COVID-19, making early detection crucial. This paper explores 
a monkeypox image classification task using various CNN models, achieving 94.99% accuracy 
with Inception V3. 

According to Md. Enamul Haque et al. [9] highlighted that amidst the global recovery 
from COVID-19, there is a concerning rise in monkeypox outbreaks, presenting a potential new 
pandemic threat. Monkeypox shares symptoms with chickenpox and measles but is 
distinguished by its characteristic skin blisters. Deep learning algorithms have shown promise in 
diagnosing COVID-19, tumors, and skin diseases. The paper integrates deep transfer learning 
and a convolutional block attention module to enhance image-based monkeypox classification, 
including five deep learning models i.e, VGG19, Xception, DenseNet121, EfficientNetB3, and 
MobileNetV2 that were tested with channel and spatial attention processes. The Xception-
CBAM-Dense architecture achieved the highest accuracy at 83.89%. 

Ashish Kumar Nayak in [10], warns that with humanity recovering from COVID-19, 
monkeypox emerges as a potential new pandemic threat. While not as lethal or contagious as 
COVID-19, unchecked spread could lead to a global epidemic. Deep learning (DL) techniques 
in medical imaging show promise for early disease identification, using images of monkeypox-
infected skin. However, the lack of a reliable public database for training DL models remains a 
challenge. This research proposes the Mpox Classifier, an improved DenseNet-201 deep 
transfer learning model. It achieves accuracy rates of 94% and 99.1% on initial and enhanced 
datasets, respectively, for identifying monkeypox. 

Namirah Nazmee [11] focuses on using Machine Learning (ML) to classify and detect 
monkeypox, a skin illness caused by the varicella-zoster virus. Using a Kaggle dataset of 
monkeypox lesion images, the images were augmented to develop and test custom models. A 
web app was created for users to submit images for analysis and classification. The study 
evaluates the effectiveness of ML models, comparing ResNet50, InceptionV3, Xception, 
DenseNet121, and MobileNet. MobileNet and Xception showed the best performance, with 
MobileNet achieving a mean accuracy of 0.97, precision of 0.96, F-1 score of 0.968, and recall 
of 0.968. The aim is to assess the efficacy of ML models for monkeypox categorization and 
evaluation. 

Z. Wu et al. in [12] investigate various CNN algorithms for classifying facial skin diseases 
from Xiangya–-Derm, China’s largest clinical imaging dataset for skin diseases, comprising 2,656 
face images from six common skin diseases. They evaluated five mainstream CNN algorithms 
and observed that models achieved higher average precision and recall. In a test dataset of 388 
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facial images, the best model achieved recalls of 92.9%, 89.2%, and 84.3% for lupus 
erythematosus, basal cell carcinoma, and seborrheic keratosis, respectively, with mean recall and 
precision reaching 77.0% and 70.8%. 

Evgin Goceri [13] investigates the impact of residual connections and activation 
functions (ReLU and SELU) on image classification. Four network models were implemented 
and evaluated for automated skin disease classification from colored digital images. 
Experimental results indicate that ResNET with SELU and without residual blocks achieved the 
highest validation accuracy of 97.01%. The models using the SELU activation function exhibited 
stable performance, while those with residual blocks minimized validation loss. These findings 
demonstrate that deep networks can effectively classify five skin diseases with high accuracy, 
paving the way for further testing with larger and more diverse datasets. 

Adnan Afroz et al. [14], utilized a deep learning approach employing Convolutional 
Neural Networks and the LeNet-5 architecture to enhance the accuracy and speed of classifying 
dermoscopy test results. The application was developed using Python and the Keras library, with 
TensorFlow as the backend. By experimenting with different training epochs and a dataset 
comprising 176 images, the model achieved a training success rate of 93% and a perfect testing 
accuracy of 100%. 
Other Approaches for Skin Disease & Viral Infection Classification: 

Electrical impedance has been explored by P. B. Manoorkar et al. [15] as a method to 
distinguish between skin cancer and normal tissue based on structural and chemical differences. 
Studies show that bio-electric properties vary significantly due to factors such as irritation, 
allergic reaction, location, sex, age, and hydration. Clinical studies using impedance 
measurements have successfully differentiated affected and normal skin, employing magnitude, 
phase, real part, and imaginary part indexes. The bio-impedance method proves effective for 
diagnosing early-stage skin diseases, including melanoma, basal cell carcinoma, squamous cell 
carcinoma, scabies, and acne. It offers the ability to compare affected and normal skin, helping 
to control body parameters and prevent various diseases, including early-stage skin cancer. This 
low-power, cost-effective, and portable method operates well across different skin diseases, 
achieving an approximately 75% accuracy rate in experimental settings. 

Anik Pramanik in [16], predicts infectious disease outbreaks, including monkeypox using 
explain time series forecasting. Despite its analytical limitations, it supports both single-step and 
multi-step forecasting. This study uses ARIMA and SARIMA models to forecast the spread of 
monkeypox. Various analytical methods validated the models, yielding RMSE values of 3.6818 
for ARIMA and 3.1180 for SARIMA. The results indicate an increase in active cases. These 
models can predict future daily and cumulative cases, aiding in the development of effective 
public health strategies for the monkeypox outbreak. 
Methodology: 

The dataset for this study comprised input images containing various diseases 
(chickenpox, measles, monkeypox) and normal cases. Data preprocessing is then applied for 
data cleaning and feature selection. Once the data is preprocessed, it is ready to train the model, 
which in this case is MobileNetV3. Testing is performed on new, unseen images, and 
classification is conducted for each class. Finally, assessment criteria were established, and 
various measures were calculated to evaluate the model's performance. Figure 1 shows the 
workflow of our study. 
MobileNetv3: 

In this section, we elaborated on MobileNetV3. MobileNetV3 builds upon the 
MobileNet series, incorporating enhancements from MobileNetV1 and MobileNetV2, as well 
as innovative architecture search techniques and optimizations such as squeeze-and-excitation 
modules. This version is specifically designed to be highly efficient and powerful for applications 
in mobile and embedded vision. 
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Figure 1: Workflow of Disease Classification Using MobileNetV3 

Core Attributes of MobileNetV3: 
Table 1 shows the core attributes of MobileNetv3 architecture. The table provides 

essential details about the structure and design principles of MobileNetV3, highlighting its key 
features and specifications. 

Table 1: Core Attributes of MobileNetv3 Architecture 

S.No. Attributes MobileNetV3 

1 Inverted Residuals and 
Linear Bottlenecks: 

Like MobileNetV2, MobileNetV3 employs inverted 
residual blocks with linear bottlenecks. This design 
maintains high efficiency and minimizes the number of 
operations required. 

2 Squeeze-and-Excitation 
(SE) Modules: 

MobileNetV3 integrates SE modules to enhance 
representational power through adaptive recalibration of 
channel-wise feature responses. 

3 Architecture Search The architecture of MobileNetV3 incorporates Neural 
Architecture Search (NAS) techniques to automatically 
optimize for both performance and efficiency. This 
approach helps achieve a balance between accuracy and 
computational resources. 

4 Non-Linearities MobileNetV3 utilizes a mix of ReLU and hard-swish 
activation functions, where hard-swish strikes a good 
balance between performance and efficiency. 

5 Network Variants MobileNetV3 is available in two primary versions: 
MobileNetV3-Large and MobileNetV3-Small, designed 
to meet varying requirements for accuracy and efficiency. 

Detailed Architecture: 
The MobileNetV3-Large model is optimized for higher accuracy while maintaining 

efficiency in computational resources. Table 2 provides a summary of its architecture, detailing 
the key components and design principles that contribute to its enhanced performance. Figure 
2 provides the visual overview of the MobileNetV3 Architecture. The diagram illustrates the 
structural components and flow of information within the MobileNetV3 model, offering a clear 
depiction of its design and operational characteristics. 
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Table 2: Detailed Architecture of MobileNetv3 

S.No. Main Blocks MobileNetv3 

1 Stem A 3x3 convolution with 16 filters, applied with a stride 
of 2, followed by batch normalization and ReLU 
activation. 

2 Inverted Residual Blocks Comprises multiple stages with various configurations 
of kernel sizes, expansion factors, filter numbers, and 
strides. Certain blocks incorporate SE modules and 
hard-swish activations. 

3 Stages  
 Stage 1 Convolution with a 3x3 kernel and 16 channels, using a 

stride of 1. 
 Stage 2 Inverted residual block with 24 channels, utilizing a 3x3 

convolution and a stride of 2. Followed by another 
inverted residual block with 24 channels, employing a 
3x3 convolution and a stride 

 Stage 3 Inverted residual block with 40 channels, featuring a 5x5 
convolution and a stride of 2. Includes an SE module 
and hard-swish activation. 

 Stage 4 Inverted residual block with 80 channels, applying a 3x3 
convolution with a stride of 2. Followed by multiple 
repeated inverted residual blocks with 80 channels, 
utilizing a stride of 1. 

 Stage 5 Inverted residual block with 112 channels, featuring a 
3x3 convolution with a stride of 1. It includes an SE 
module and uses hard-swish activation. 

 Stage 6 Inverted residual block with 160 channels, utilizing a 
5x5 convolution with a stride of 2. Includes an SE 
module and employs hard-swish activation. 

4 Head 1x1 convolution with 960 channels, incorporating an SE 
module and hard-swish activation. This is followed by 
global average pooling, then a fully connected layer with 
1280 channels and hard-swish activation. Dropout is 
applied if necessary, followed by the final fully 
connected layer for classification. 

 
Figure 2: Visual Overview of MobileNetV3 Architecture [17]. 

Algorithm 2.1 presents the procedure for identifying chickenpox, measles, monkeypox, 
and normal cases from images using the MobileNetV3 model. This algorithm describes the step-
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by-step process and criteria used by the model to classify and distinguish between different viral 
infections and normal skin conditions based on visual symptoms. 

Algorithm 2.1. Image Classification using MobileNetV3 

1 
 
 
2 
 
 
3 
 
 
 
 
4 
 
 
5 
 
 
 
 

Input: 

• Input images of various infections (chickenpox, measles, monkeypox) and normal 
cases. 

Preprocessing: 

• Resize the input images to the required input size for MobileNetV3. 

• Normalize the pixel values of the images to the range [0, 1]. 
Training & Fine-tuning: 

• Use transfer learning 

• Load the pre-trained MobileNetV3 model. 

• Fine-tune the model on a dataset containing images of chickenpox, measles, 
monkeypox, and normal cases to adapt it to this specific classification task. 

Model Evaluation: 

• Evaluate the trained model using a separate validation set or through cross-validation. 

• Measure assessment criteria such as accuracy, precision, recall, etc. 
Testing: 

• Apply the trained MobileNetV3 model to new, unseen images. 

• Obtain predictions for each image. 

• Output the predicted class for each image (chickenpox, measles, monkeypox, normal). 

Results & Discussion: 
In this study, we introduced a cutting-edge, vision-based method for assessing skin 

disease using affordable RGB images. Our research aims to deliver valuable insights for 
developing practical solutions to manage contagious diseases. Utilizing advanced algorithms and 
image processing techniques, we aim to achieve high precision in distinguishing between healthy 
and diseased skin, providing a potential tool for improving public health safety. 

 
Figure 3: Dataset Sample 
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Dataset: 
The dataset used in this study is sourced from Kaggle's Monkeypox Skin Image Dataset 

[18]. It is divided into four groups: Chickenpox, Measles, Monkeypox, and Normal. The 
Chickenpox category includes 107 images, the Measles category has 91 images, the Monkeypox 
category contains 279 images, and the Normal category comprises 293 images. Figure 3 
illustrates a subset of the data, showcasing samples from each of the categories: Chickenpox, 
Measles, Monkeypox, and Normal. Figure 3 provides visual examples of the different skin 
symptoms associated with each condition, aiding in understanding the diversity of visual 
characteristics the model is trained to recognize. 
Assessment Criteria: 

The confusion matrix is an essential tool for evaluating the performance of classification 
models, providing a detailed analysis of correctly and incorrectly classified instances compared 
to the true outcomes within the test dataset. It includes four main components: True Occurrence 
(TO), where the model correctly predicts the occurrence of class when the condition is present; 
True Non-Occurrence (TNO), where the model accurately predicts the negative occurrence of 
class when the condition is absent; False Occurrence (FO), where the model incorrectly predicts 
the positive occurrence of class, falsely identifying the condition; and False Non-Occurrence 
(FNO), where the model incorrectly predicts the negative non-occurrence, failing to identify the 
condition. 

This detailed breakdown helps in assessing the model's accuracy and its ability to 
distinguish between classes, highlighting its strengths and areas for improvement. It is a valuable 
tool in refining classification algorithms. Precision measures the proportion of correctly 
predicted positive instances among all instances predicted as positive and is calculated as: 

Precision = TO / (TO + FO). 
Accuracy represents the overall correctness of the model’s predictions, defined as the 

ratio of correctly predicted instances to the total number of instances. 
Accuracy = (TO + TNO) / (TO + TNO + FO + FNO). 

Recall, or Sensitivity, measures the proportion of correctly predicted positive instances 
among all actual positive instances, calculated as: 

Recall = TO / (TO + FNO). 
Specificity, also known as the True Negative Rate (TNR), measures the proportion of 

correctly predicted negative instances among all actual negative instances and is calculated as: 
Specificity = TNO / (TNO + FO). 

The F1 Score, or F-score, is the harmonic mean of Precision and Recall, providing a 
balanced measure between the two metrics, calculated as:  

F1 Score = 2 × (Precision × Recall) / (Precision + Recall). 
Recent advancements in machine learning have improved these metrics' computation by 

integrating them into more sophisticated performance evaluation frameworks, enhancing the 
ability to fine-tune and optimize classification models. 
Configuration: 

Our deep learning model achieved remarkable results with a training time of just 35 
seconds per epoch, trained over 50 epochs with a batch size of 16. Fine-tuned with a learning 
rate of 0.001, the model effectively learned intricate patterns in the data, showcasing its efficiency 
in both speed and accuracy. This configuration not only optimized our training process but also 
ensured that the model converged swiftly, providing robust predictions. 

“Accuracy per epoch” and “loss per epoch” are metrics commonly utilized in the 
training of machine learning models, particularly neural networks. Accuracy per epoch refers to 
the model’s accuracy on the training data at each epoch, with an epoch representing one 
complete pass through the entire training dataset. This metric is essential for monitoring the 
model’s learning progress over time. 



                                 International Journal of Innovations in Science & Technology 

June 2024|Vol 6 | Issue 2                                                                        Page |828 

Loss per epoch quantifies the model’s prediction error against the actual values for each 
training cycle. It represents the average loss (or error) on the training data at each epoch. A 
decreasing loss per epoch indicates that the model is improving in its predictions. These metrics 
play a critical role in evaluating and optimizing the performance of machine learning models 
during the training process. Figure 4 shows the accuracy and loss per epoch for our scenario. 
Figure 4 provides a visual representation of how the model’s accuracy improves and loss 
decreases with each training epoch, demonstrating the effectiveness of the training process in 
optimizing the model's performance. 

 
Figure 4: Training Progress Metrics: Accuracy and Loss per Epoch. 

Outcome Analysis: 
Figure 5 displays the performance evaluation metric for four classes: Chicken Pox, 

Measles, Monkey Pox, and Normal. The figure indicates that Chicken Pox and measles were 
correctly identified 90% of the time, with 10% of instances misclassified as Monkey Pox while 
Monkey Pox and normal cases were correctly identified 100% of the time. These 
misclassifications are due to overlapping symptoms and visual similarities between the 
conditions, highlighting the challenges in distinguishing between these diseases based on their 
features. 

 
Figure 5: Performance Evaluation Metric. 

The recognition results are detailed in Table 3 demonstrating strong performance across 
various measures. Precision is notably high at 95%, indicating that the model effectively 
identifies positive instances. Accuracy stands at 95.73%, reflecting the overall correctness of 
predictions. Recall, at 88.37%, alongside an F1-score of 91.56%, balances precision, and recall, 
providing a comprehensive measure of the model's performance. Specificity is exceptionally 
high at 98.34%, highlighting the model's proficiency in correctly identifying negative instances. 

Table 3: Evaluation Metrics using MobileNetV3 

Assessment Criteria MobileNetV3 (%) 

Precision 95 
Accuracy 95.73 
Recall 88.37 
F1-score 91.56 
Specificity 98.34 
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Figure 6 displays the performance metrics of our algorithm, Mobile Net, focusing on 
key indicators such as precision, accuracy, recall, F1-score, and specificity. The graphical 
representation of these metrics demonstrates the strong performance of our algorithm. These 
results suggest that our algorithm provides an effective and reliable solution for skin disease 
identification. 

 
Figure 6: Mobile Net Performance Analysis: Key Metrics and Findings. 

Comparison with Existing Methods: 
The proposed approach using the MobileNetV3 model demonstrates significant 

advantages in the identification of Chicken Pox, Measles, Monkey Pox, and Normal cases. This 
section compares the effectiveness of the MobileNetV3 model with existing methods, 
particularly supervised machine learning techniques used exclusively for Monkey Pox detection. 

Table 4: Comparison of Proposed Approach with Existing Methods 

Parameters Proposed Approach Classical Approach 
-Azka Mir et al. [8] 
Approach & Result 

Deep Learning Approach -
Md. Enamul Haque et al. 
[10] Approach & Result 

Model/ 
Classifier 

MobileNetV3 Decision tree, Naïve 
Baye, K-NN (k=5 
neighbors) 

VGG19, Xception, 
DenseNet121, 
EfficientNetB3, 
MobileNetV2 with CBAM 
VGG19, Xception, 
DenseNet121, 
EfficientNetB3, 
MobileNetV2 with CBAM 

Infection 
Coverage 

Chickenpox, Measles, 
MonkeyPox, Normal 

Monkeypox only MonkeyPox and other 
diseases 

Platform Python – TensorFlow - 
Keras 

RapidMiner Not Specified 

Precision 95% Not Specified Not Specified 
Accuracy 95.73% 93.51% 83.89% 
Key 
Findings 

- Accurately 
identified ChickenPox and 
Measles 90% of the time, 
with a 10% 
misclassification rate as 
MonkeyPox 

- Performed using 
various classifiers 
(Decision Tree, 
Naïve Bayes) 
- K-NN classifier 
achieved the highest 
accuracy rate among 
tested methods. 

- An architecture consisting 
of Xception-CBAM-Dense 
layers performed better than 
the other models at 
classifying monkeypox and 
other diseases. 
Achieved a validation 
accuracy of 83.89%. 
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-  MonkeyPox and 
Normal cases correctly 
identified 100% of the time 
- Strong overall 
performance despite 
overlapping symptoms and 
visual similarities among 
diseases. 

The proposed approach using the MobileNetV3 model demonstrates superior 
effectiveness in identifying multiple viral infections with higher precision and accuracy 
compared to existing methods focused solely on Monkey Pox detection. Moreover, some of the 
advantages of Deep Learning (MobileNetV3) Over Traditional Machine Learning Models 
(Decision Tree, Naïve Bayes, K-NN) are discussed below:  

• MobilenetV3 is capable of handling high-dimensional data and complex patterns 
through its multiple layers, making it suitable for image recognition and other tasks 
requiring deep feature extraction. On the other hand Decision Trees, Naïve Bayes, and 
K-NN are generally less effective with complex, high-dimensional data, often requiring 
feature engineering to achieve good performance.  

• MobilenetV3 automatically extracts and learns relevant features from raw data, 
eliminating the need for manual feature engineering while Decision Tree, Naïve Bayes, 
and K-NN rely on manually engineered features, which can be time-consuming and may 
not capture the underlying data patterns as effectively.  

• MobilenetV3 scales well with large datasets, leveraging the increased data volume to 
improve model accuracy and robustness; while Decision Tree, Naïve Bayes, and K-NN 
may not scale as effectively with large datasets, and computational efficiency can become 
a concern, especially with K-NN which requires storing and comparing all training data.  

• MobileNetV3 is more robust to noise and irrelevant features in the data due to its ability 
to learn discriminative features through multiple layers. On the other hand, Decision 
Trees, Naïve Bayes, and K-NN are sensitive to noise, with Decision Trees prone to 
overfitting and Naïve Bayes assuming feature independence, which may not hold in 
noisy data. 

• MobileNetV3 tends to generalize better to new, unseen data due to its deep architecture 
and ability to learn hierarchical representations. Decision Tree, Naïve Bayes, K-NN: May 
overfit to training data and struggle with generalizing to new data, particularly when the 
dataset is complex or noisy. 
These above-mentioned points highlight the superiority of MobilenetV3 models 

especially in tasks that involve complex data, such as image recognition, where deep learning 
can leverage its advanced architecture and learning capabilities. The comprehensive coverage of 
various diseases, coupled with the robust performance metrics, underscores the potential impact 
of this approach on public health diagnostics. 
Discussion: 

The MobileNetV3 model’s performance evaluation, depicted in Figure 5 and detailed in 
Table 3, showcases its efficacy in identifying Chicken Pox, Measles, Monkey Pox, and Normal 
cases. It accurately identified Chicken Pox and measles 90% of the time, with a 10% 
misclassification rate as Monkey Pox. Conversely, Monkey Pox and normal cases were correctly 
identified 100% of the time, highlighting the model's strong overall performance despite 
challenges due to overlapping symptoms and visual similarities among these diseases. Table 3 
underscores the model’s robustness, achieving a precision of 95% for positive instances and an 
overall accuracy of 95.73%. Recent studies by Azka Mir in [8] report an accuracy rate exceeding 
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90% for similar diseases using machine learning models, aligning closely with our results. In 
contrast, Md. Enamul Haque et al. [10] achieved an 83% accuracy in identifying monkeypox and 
other diseases, which is consistent but lower than our findings. This suggests that MobileNetV3 
competes favorably in disease identification tasks affirming its effectiveness and reliability in 
classifying viral infections based on skin manifestations.  
Conclusion: 

The evaluation metrics for MobileNetV3 indicate strong performance across multiple 
criteria. With a precision of 95%, accuracy of 95.73%, recall of 88.37%, an F1-score of 91.56%, 
and specificity of 98.34%, the model demonstrates its effectiveness and reliability in various 
aspects of classification. The use of MobileNetV3 in this methodology yields robust results. For 
future enhancements, exploring advanced techniques such as incorporating transfer learning, 
utilizing more diverse and representative training datasets, or integrating attention mechanisms 
could further boost the model's performance. Additionally, leveraging ensemble learning 
methods may enhance predictive accuracy and robustness. Employing real-time data 
augmentation and optimization techniques, such as hyperparameter tuning and model pruning, 
can also contribute to improved performance. These strategies can help refine the model and 
ensure its applicability across a broader range of scenarios, ultimately leading to more reliable 
and accurate outcomes in practical applications. 
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