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nfertility in females implies failure by such women to conceive even after having at least one 
year of intercourse without using any contraceptives. Infertility can be caused by a variety of 
factors, including ovulation problems, blocked fallopian tubes, hormone imbalances, and 

abnormalities of the uterus and so on. Infertility can negatively impact people's emotional, 
psychological, and social well-being. Our proposed study utilizes advanced machine learning 
techniques to present an innovative and novel method for predicting female infertility. We 
analyzed a dataset with medical attributes related to reproductive health using logistic regression, 
Naive Bayes, Support Vector Machines (SVM), and Random Forest algorithms. The Random 
Forest algorithm achieved an outstanding accuracy rate of 93%, with its exceptional capabilities. 
The findings show that in the future, this model can be used to diagnose infertility early and 
provide personalized treatment recommendations. The results of this study have practical 
implications for reproductive healthcare, as well as providing much-needed support to infertile 
couples and individuals. 
Keywords: Infertility; Machine Learning Techniques; Random Forest; SVM, Logistic 
Regression and Naïve Bayes. 
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Introduction: 
Infertility has become a pressing issue affecting numerous couples globally, prompting 

diverse approaches to address its complexities. Recent data from the National Center for Health 
Statistics (NCHS) indicate that infertility affects 8.8% of the American population. According 
to a study conducted in the United Kingdom, the prevalence of female infertility was found to 
be 12.5%, while the prevalence of male infertility was estimated to be 10.1%  [1]. Extensive 
research has explored various diagnostic models in reproductive medicine, reflecting the 
dynamic nature of medical science and its ongoing adaptation to new ideas and challenges. The 
following are certain methodologies that were prevalent during the specified period or have been 
subject to contemporary scholarly investigation: The methods discussed encompass several 
aspects of reproductive medicine, such as oocyte cryopreservation (commonly known as egg 
freezing), surrogacy, fertility medicines, and fertility treatments. These procedures include 
Intrauterine Insemination (IUI), Intracytoplasmic Sperm Injection (ICSI), Gamete 
Intrafallopian Transfer (GIFT), Preimplantation Genetic Testing (PGT), and In Vitro 
Fertilization (IVF). To diagnose infertility and choose appropriate treatment options, a variety 
of laboratory tests are commonly employed to enhance assessment and discover suitable 
methods. These diagnostic tests are crucial for identifying the root causes of infertility, tracking 
the effectiveness of therapies, and ensuring the safety and efficacy of treatment procedures. 
Hormone tests, sperm analysis, Hysterosalpingogram (HSG), ultrasound imaging, genetic 
testing, ovulation monitoring, infectious disease screening, endometrial biopsies, and 
Preimplantation Genetic Testing (PGT) are some of the tests that are done in a lab to analyze 
and evaluate. Every couple in the world couldn't afford these tests and procedures due to their 
high cost. Therefore, predicting the likelihood of infertility in women remains a challenging task 
that is also cost-effective. Infertility is defined as the inability or failure to achieve pregnancy 
after six months to one year of unprotected sexual intercourse  [2].  

Infertility affects one in six couples globally during their reproductive years [3]. It has 
profound effects on couples, leading to depression, social isolation, and personal challenges. 
The complexity of infertility depends on factors such as age, duration of attempts to conceive, 
and other significant considerations [4][5]. Infertility affects approximately 15% of couples, with 
about half of these cases attributed to female factors. Women who are infertile suffer enormous 
psychological stress, which can lead to depression, pain, and discrimination  [6]. Infertility is a 
widespread issue affecting many individuals globally. According to a recent report by the World 
Health Organization (WHO), approximately 17.5% of the adult population worldwide 
experiences infertility. This highlights a critical need for accessible and high-quality fertility care 
to address this significant public health challenge. However, to overcome this issue, various 
methods have been proposed to diagnose infertility which include Assisted Reproductive 
Technology (ART) method. It makes a significant contribution to population growth. The 
International Committee on ART Terminology (ICMART) released a dictionary of ART 
terminology in 2006 that included global consensus definitions for summarizing the ART 
procedure [7]. ARTs that involve fertilizing eggs, sperm, and embryos outside the body include 
procedures such as In Vitro Fertilization (IVF) and Intracytoplasmic Sperm Injection (ICSI). 
The utilization of assisted reproductive technologies has witnessed a surge due to the desire to 
save eggs or embryos for later conception in life. According to the cited source, the global 
number of infants born as a result of ART exceeds 10 million. The prevalence of ART in the 
United States is estimated to be around 2.3% among newborns [8]. Experts carefully select a 
tailored treatment plan based on each couple's individual circumstances. Infertility management 
options often entail significant costs and potential side effects, typically recommended when 
natural conception is not achievable for a woman. Predictive models are commonly advocated 
for utilization in medical decision-making due to the presence of a clinical obstacle encountered 
by gynecologists during the process of conducting such comparisons [9]. 
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To address these challenges and simplify decision-making, we have devised a model 
capable of predicting the likelihood of infertility in women with ease. Our approach utilizes a 
cost-effective and accessible machine learning framework, leveraging a proprietary dataset 
collected with authorization from Peshawar Infertility Hospital in Pakistan.  By refining our 
model with key parameters, we have enhanced its capability to deliver accurate predictions 
concerning female infertility.  
Objectives and Novelty of the Proposed Study: 

The primary contribution and unique aspect of this research are outlined as follows: 

 To Develop a comprehensive dataset comprising medical attributes related to 
reproductive health to facilitate the study of infertility in women. 

 To Develop predictive models using machine learning algorithms to identify infertility 
risks in women based on the newly created infertility dataset and assess their accuracy 
and effectiveness. 

 Evaluate the performance of multiple machines learning algorithms, including Logistic 
Regression, Naive Bayes, Support Vector Machine (SVM), and Random Forest, to 
determine the most accurate model for infertility prediction. 

 For the first time, we conducted a study on female infertility using a different dataset 
than those used by other researchers in their studies. We employed machine learning 
models and develop a dataset on female infertility by collecting data from Hospitals. This 
dataset allows us to create predictive models that can accurately predict infertility in 
females. 

Related Work: 
Various predictive models have been presented and evaluated for predicting infertility 

in women. For example, the Random Forest (RF) model was the most statistically significant in 
the IVF / ICSI treatment. Factors such as age, hormone status, endometrial density, and 
duration of infertility were particularly significant. Older women had lower endometrial 
thickness and fewer follicles  [10]. In another study, the authors used Random Forest Regression 
(RFR) to predict ovarian response in 680 elderly infertile patients. They examined 12 clinical 
measurements and found that Preovulatory Follicle Count, Antral Follicle Count, And Anti-
Mullerian Hormone (PFC, AF, AMH) were the most significant predictors of ovarian response. 

This approach allows patients to predict outcomes during controlled ovulatory 
hyperstimulation, as demonstrated by Wei and colleagues[11]. Another study employed sperm 
analysis to predict male fertility rates using deep learning and a Convolutional Neural Network 
(DNN). Naseem et al. [12] found that the results are highly predictive in terms of sperm head 
detection and sperm prediction, which could be useful for automated insemination workflow. 
Excessive alcohol use might have a negative impact on a woman's fertility. Alcohol has an 
immediate effect on the male reproductive system and can cause hormonal abnormalities. 
Alcohol damages the male genetic system, resulting in a reduction in sperm count. Furthermore, 
alcohol may be harmful to human health, particularly sexual and reproductive health. The size 
of the genitalia might shrink as a result of alcohol addiction. Furthermore, alcohol can injure the 
cells that produce sperm, resulting in infertility. Furthermore, alcohol can lower a woman's 
fertility, which can be problematic for those who are trying to conceive. Continuing to drink 
while pregnant increases the risk of miscarriage and can lead to preterm birth and low birth 
weight infants. Furthermore, an alcoholic mother's kid has a 40% chance of developing the fetal 
condition known as alcohol syndrome. These individuals have heart and cognitive issues, low 
hormone levels, and poor behavior Zhang et al.  [13]. 

The researchers developed a model using machine learning and statistics to identify risk 
factors for early-term pregnancy loss in FET cycles. They also evaluated the importance of each 
model component in predicting pregnancy loss Ozer and others  [14]. In this study, we 
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developed machine learning models to predict clinical pregnancies during In Vitro Fertilization 
(IVF), as demonstrated by C.-W. Wang et al. [15]. The success rate of pregnancy resulting from 
in vitro fertilization (IVF) is estimated to range from 30% to 70%, depending on the patient's 
age and the various protocol regimens employed. As the world’s infertility rates continue to rise, 
AI is playing an increasingly important role in evaluating women’s reproductive health. This 
review highlights AI’s importance in areas such as follicular monitoring and timing of 
transplants, as well as ultrasound-based pregnancy outcome prediction. It also highlights 
limitations and challenges that need to be addressed, while also emphasizing the potential for 
faster and more personalized assessments in the future [16].  

Ultrasound is crucial for women's reproductive health as it aids in assessing ovarian 
reserve and endometrial receptivity (ER) [17]. However, Tubal patency in conjunction with 
normal ovarian function in the presence of normal sperm analysis results in female infertility 
[18]. The focus was on mental health aspects of fertility treatment, which, despite its importance, 
is often overlooked. Infertility is a stressful experience for couples and the aim of the study was 
to look at anxiety and depression risk factors in female infertility patients [19]. Polycystic ovarian 
disease is another cause of infertility; it is a form of reproductive disorder that can increase a 
woman's likelihood of becoming infertile. Additional polycystic ovary syndrome complications 
include hyperandrogenic hormones, type 2 diabetes, and cardiovascular disease Vats and others  
[20]. The psychological factors associated with anxiety and depression in female infertility 
patients were investigated in one study by Simi et al.  [21] utilized two psychological tests: the 
Self-rating Depression Scale (SDS) and the hospital anxiety depression scale (HADS).  

 
Figure 1: Infertility Factor in Women 

Another author used an Artificial Intelligence (AI) model to select the most effective 
IVF-ET treatments for patients, taking into account new and recurrent cases. The study 
compared ten AI algorithms used to predict pregnancy outcomes and evaluated the significance 
of patient characteristics in the models [22]. In addition, Testicular Sperm Extractions (TESE) 
play a crucial role in treating male infertility.. TESE is an invasive procedure that has a success 
rate of up to 50%. However, no clinical and laboratory model is powerful enough to predict 
sperm retrieval success in TESE [22]. 
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In another research on TESE (Microdissection Testicular Sperm Extraction) for Non-
Osteospermia, the goal was to predict TESE success rates using optimal logistic models. Patient 
age, FSH (serum FSH concentration) and Johnsen’s (JS) score were significant predictors of 
TESE success, which can reduce the need for unnecessary surgery  [23]. The author also created 
another model to predict live birth using an AI neural network platform [24]. Another proposed 
predictive model for IUI treatment was based on MvLR (Multivariable Logistic Regression) 
analysis and statistical techniques that can estimate relative weights for independent variables to 
predict pregnancy [25]. Logistic regression has been employed by a number of researchers to 
forecast success rates  [26];  [27]; [28]. 

Machine learning-based algorithms can successfully handle medical decision-making 
data, including clinical predictions  [29]; [30]. For this purpose,  Liao et al. [31] created a machine 
learning risk scoring algorithm for diagnosing and treating infertility. Eight key infertility features 
are screened by the algorithm, and weights are assigned to them based on the algorithm’s feature 
selection algorithm. Features are selected using entropy-based features discretization and 
random forest. The algorithm predicts pregnancy outcomes based on the overall risk score, 
helping doctors choose more effective treatments. The algorithm also takes into account 
different age groups to improve accuracy, showing the potential of artificial intelligence in 
reproductive fields. 

A researcher developed a predictive model for male infertility risk factors. According to 
the study, support vector machines and super learner algorithms outperformed other methods 
with AUC scores of 96% and 97%, respectively. Sperm concentration, follicle-stimulating 
hormone, luteinizing hormone, and genetic factors were key risk factors  [32]. Computer 
technology has advanced rapidly, resulting in the widespread adoption of artificial intelligence in 
medicine. These emerging machine learning methods have proven to be superior to traditional 
approaches in terms of performance. Among these techniques, eXtreme Gradient Boosting 
(XGBoost) stands out as a well-regarded method that has found applications in the medical 
field. Healthcare data can be used for a variety of purposes, and it has gained a reputation for 
being very insightful   [33]; [34]. 

The author developed their feature selection algorithm using a variety of techniques in 
order to improve the accuracy of IVF pregnancy predictions. To evaluate the predictive ability 
of these models, they utilized multilayer perceptron, support vector machines, C4.5 classification 
and regression trees, random forest, and 25 attributes. [35] found that the key characteristics of 
these models were substantially more predictive than those found in the existing literature. The 
researcher examined multiple classifiers to forecast the outcome of embryo implantation in In 
Vitro Fertilization (IVF). The study analyzed a total of 18 parameters: nine associated with 
patient characteristics and nine related to embryo features.  Support Vector Machines (SVM), 
Decision Trees (DT), naive Bayes (NB), k-nearest neighbors (KNN), multilayer perceptron 
(MLP), and radial basis function (RBF) were among the classifiers used in this investigation. The 
classifiers were evaluated using ROC to see how well they performed. The NB and RBF 
classifiers performed better, as seen by their AUC values of 0.739% (0.036) and 0.712% (0.036), 
respectively. In a follow-up study, the team narrowed the traits down to 11 after sorting them 
by relative importance. This modification led to a marginal enhancement in the performance of 
the Naive Bayes (NB) classifier, yielding an accuracy of 80.4% and an Area Under the Curve 
(AUC) value of 0.756% (0.036)[36]. 

Nanni and others [37] assessed ten features and evaluated three distinct base classifiers 
(SVM, ANN, DT) as well as variants of these classifiers. For feature selection, they utilized SFFS 
(Sequential Forward Floating Selection). The ensemble method (Random Subspace DT) with 
only three features (Patient's Age, Subendometrial Volume, and Endometrial 
Vasculization/Flow Index) had a higher prediction accuracy (AUC) than other classifiers. The 
top model had an AUC of 0.85, but the dataset used in the study had relatively few treatment 
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cycles. Authors Brás de Guimares et al. [38] conducted research to develop a predictive model 
of live birth following IVF/ICSI treatment using demographic and clinical data collected over 
1193 treatment cycles between 2012 and 2019. On the basis of Pearson correlation, input 
variables such as the woman's age, the dose of gonadotropin, the number of eggs, the number 
of embryos, and the AF count were selected for the construction of an artificial neural network 
(ANN). Additionally, a decision tree model was developed. The ANN model achieved 75.0% 
accuracy with an AUROC curve (75.2%) and the decision tree model achieved 74.0% accuracy, 
resulting in a 74.9% accuracy of live birth probabilities prior to the first embryo transfer. 

In this research paper, we developed predictive models using machine learning 
techniques and conducted a comparative analysis. Using our infertility dataset, we compared the 
performance of logistic regression, Naive Bayes, support vector machine, and Random Forest 
models. According to our findings, every model outperformed our expectations. Notably, this 
is the first study to compare well-established machine-learning models for predicting infertility 
using our unique dataset.  
Material and Methods: 
Dataset Description: 

We collected data of 705 patients from Johar Khatoon Gynecologist Hospital, Peshawar 
(Pakistan). The process was performed with the approval of the competent authority, ensuring 
compliance to ethical standards and patient privacy. We have focused on various characteristics 
related to reproductive health in an effort to assist women with or without infertility. Collection 
of this data required each patient's informed consent and removal or anonymization of all 
personal identifiers to ensure confidentiality. This dataset consists of a variety medical attribute 
which are important in order to extensively understand what factors contribute how and where 
infertility arises. 

Overall, we collected 705 medical data features. In our study we utilized a sub set of 
thirteen (13) principal attributes:  Twelve (12) numeric-valued attributes and just one nominal 
valued attribute. These attributes were selected due to their relevance in providing valuable 
insights into reproductive health outcomes and their association with infertility. The twelve 
attributes with numeric values encompass various clinical and biochemical parameters that 
specify the reproductive health status of patients. Among these parameters, the age is an 
important one as suggested by other research studies along with BMI, Blood pressure levels or 
hormone levels and other health indicators. This single nominal-valued attribute is a categorical 
variable which classifies the patients according to one particular criterion related with their 
reproductive health. Table 1 provides a list of attributes. The table below provides a description 
of each attribute, including its name, classification (numeric or nominal), and a brief explanation 
of its relevance to infertility research. This predictive model aims to assist physicians in 
diagnosing and treating infertility more effectively.  

Table 1: Infertility Dataset 

Attribute Description Type 

Patient ID 
Unique identifier for each patient, used for case 
tracking. 

Nominal 

Age 
Age of the patient, a crucial factor in fertility 
assessment. 

Numeric 

Ovulation Disorders 
Variable indicating whether ovulation disorders, 
which can affect menstrual cycles, are present (1) or 
absent (0). 

Numeric 

Blocked Fallopian 
Tubes 

A binary variable that represents whether or not the 
fallopian tubes are blocked, which can prevent 
fertilization. 

Numeric 
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Proposed System: 
The detection and addressing of infertility are of utmost importance due to the 

substantial impact it can have on people and couples. In order to tackle this matter, a 
comprehensive investigation was initiated, encompassing a total of 705 patient data. The dataset 
comprises patient identification of several numeric indicators associated with reproductive 
health, including ovulation irregularities, obstructed fallopian tubes, endometriosis, and other 
related factors. This study focuses on the most important element, which is a targeted variable 
called “Infertility prediction” that helps predict infertility results. It is important that this dataset 
includes both women with and without fertility issues. 
Data Pre-Processing 

To prepare the given dataset for analysis and machine learning model training, the 
following data pre-processing steps are taken: 
Removing Duplicate Records: We removed duplicated data from dataset to ensure each 
patient record is unique to trained model on it.  
Handling Null Values: We filled the missing and null values in the dataset filling them with 
suitable values e. g mean, median etc. or removing the rows/columns with missing data. 
Feature Encoding: We converted categorical features into numerical values. Our dataset 
contains categorical labels ("fertility", "infertility") which need to be encoded into numerical 
values for machine learning algorithms to process. 
Scaling Numerical Features: We normalized/standardized the numerical features to ensure 
that they are on a similar scale. This step is crucial for algorithms that are sensitive to the 
magnitude of the input features. 

Endometriosis 
Endometriosis, a condition that affects fertility, is 
represented as a binary variable that can either be 
present (1) or absent (0). 

Numeric 

Uterine Abnormalities 
A binary variable that denotes whether uterine 
abnormalities that could impair implantation are 
present (1) or not (0). 

Numeric 

Pelvic Inflammatory 
Disease 

A binary variable that denotes whether pelvic 
inflammatory illness, which can lead to infertility, is 
present (1) or absent (0). 

Numeric 

Hormonal Imbalances 
Binary variable showing if hormonal abnormalities 
that disturb the menstrual cycle are present (1) or 
absent (0). 

Numeric 

Premature Ovarian 
Insufficiency 

A binary variable indicating whether early ovarian 
insufficiency leading to infertility is present (1) or 
absent (0). 

Numeric 

Autoimmune 
Disorders 

A binary variable that denotes whether autoimmune 
diseases that affect the reproductive system are 
present (1) or absent (0). 

Numeric 

Previous Reproductive 
Surgeries 

A binary variable is employed to denote whether the 
patient has previously had reproductive procedures 
(1) or has not (0). 

Numeric 

Unexplained Infertility 
A binary variable that represents the presence (1) or 
absence (0) of infertility that cannot be explained 
and has no known cause. 

Numeric 

Infertility Prediction 
Variable with binary outcomes (0 or 1) based on the 
combination of the aforementioned characteristics 
and their influence on fertility. 

Numeric 
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Splitting the Dataset: We divided the dataset into 80% and 20% ratios of training and testing 
sets to evaluate the performance of the machine learning model. 

 
Figure 2: Proposed System 

Statistics on the Dataset 
The descriptive statistics of the dataset have significantly changed following the 

application of various preprocessing steps. The features of the dataset had initially diverse means 
and standard deviations, with some being binary indicating specific conditions, such as ovulation 
disorders or blocked fallopian tubes. Standard Scaler from scikit-learn was used for 
standardization where all numerical features were converted to have mean = 0 and std. deviation 
=1.  Ensuring that each trait contributes equally to follow-up analyses and machine learning 
models results in more reliable predictors, eliminating bias from differing scales. Then, 
transformation retained the interpretability (of unique values and frequencies) in categorical 
dataset which improved consistency and reliability of whole dataset from analytical perspective. 
Correlation Matrix 

In addition, a correlation table is generated to assess the relationships between the 
numerous categories. Additionally, the correlation matrix permits the examination of 
interrelationships between the features present in the dataset. The "sns. heatmap()" function 
from the Seaborn library is used to generate the heatmap. This function incorporates annotations 
that exhibit the correlation coefficients within each individual cell. Furthermore, the utilization 
of a "coolwarm" color map is employed to effectively illustrate positive and negative associations 
in a visually discernible manner. 
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Figure 3: Correlation Matrix Heatmap 

Model Building: 
This research article primarily focuses on the prediction of female infertility. The dataset 

is partitioned into two distinct subsets: a training dataset, which encompasses 80% of the data, 
and a testing dataset, which comprises 20% of the data. The training dataset is employed for the 
purpose of training a predictive model, while the testing dataset is then utilized to assess the 
model's performance in order to ascertain its accuracy in making predictions. The Logistic 
Regression, Naive Bayes, Support Vector Machine (SVM), and Random Forest machine learning 
methods were employed in our study. The aforementioned algorithms are very suitable for jobs 
involving binary classification and offer a range of advantages in terms of modeling and 
prediction. Algorithm selection plays a critical role in healthcare research. In this particular study, 
we employed Logistic Regression, Naive Bayes, Support Vector Machines (SVM), and Random 
Forest algorithms to enhance our comprehension and forecasting capabilities about the risks of 
infertility in women. 
Logistic Regression: 

Logistic regression is a statistical method for estimating the likelihood that a given 
instance belongs to one of two classes. It calculates a weighted sum of input features, applies a 
logistic (sigmoid) function to obtain class probabilities, and optimizes the model's parameters 
(weights) to minimize the log-loss or cross-entropy loss during training, making it suitable for 
predicting infertility in women (1 for infertility, 0 for non-infertility) using the provided features. 
Initialize weights (β) and learning rate (α). 
Repeat until convergence: Calculate predicted probabilities using the logistic function. - 
Update weights using gradient descent. 

Return the learned weights (β). 
This pseudocode outlines the logistic regression algorithm, which models the probability 

of infertility (1 for infertility, 0 for non-infertility) based on the provided features. 

Pseudocode: 

Initialize weights (β) and learning rate (α) 
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Repeat until convergence: 
Calculate predicted probabilities using logistic function 
Update weights using gradient descent 
Return the learned weights (β) 

To perform logistic regression, we initialized the weights (β) and set a learning rate (α). In each 
iteration, we calculated predicted probabilities using the logistic function and updated the 
weights/parameters through gradient descent. This iterative process modified the weights to 
minimize the error between the output and the true value. Upon achieving convergence, the 
model returned the learned weights, i.e., β. The logistic regression model performed well, 
attaining an accuracy of 90%, indicating the percentage of correct predictions made by the 
logistic regression algorithm out of the total number in the sample. Naïve Bayes: 

The Naive Bayes algorithm is frequently used for classification assignments. It makes 
predictions based on Bayes' theorem and the assumption of feature independence. By calculating 
the conditional probabilities of infertility given the attribute values, Naive Bayes can be used to 
predict infertility risk. The Naive Bayes algorithm, which determines probabilities to forecast 
infertility risk based on the qualities, is described in this pseudocode. 

Pseudocode: 

Each time class C: 
Determine the previous probability P(C) 
For each attribute X_i: 
Each time class C: 
Calculate P(X_i | C) conditional probability. 
For each occurrence (X_1, X_2,..., X_n): 
Each time class C: 
Using Bayes' theorem, calculate the posterior probability P(C | X_1, X_2,..., X_n). 
Assign the instance to the class whose posterior probability is the highest. 
The anticipated class labels are returned. 

To implement the Naive Bayes algorithm, we started by determining the prior 
probability P(C)   for each class C. For each attribute Xi we then calculated the conditional 

probability P(Xi∣C) for each class C. During classification, for each instance (X1, X2,…,Xn) we 

used Bayes' theorem to calculate the posterior probability P(C∣X1,X2,…,Xn) for each class C. 
The instance was assigned to the class with the highest posterior probability. The anticipated 
class labels were then returned. The Naive Bayes model achieved an accuracy of 83%, indicating 
satisfactory performance in predicting outcomes for the given task, though it may be somewhat 
less accurate compared to alternative models or methodologies.  
Support Vector Machine: 

The Support Vector Machine (SVM) is widely recognized as a highly efficient 
classification algorithm. The objective is to determine the most suitable hyperplane that can 
effectively separate the data into distinct categories. SVM can be utilized to predict infertility by 
locating the hyperplane that maximizes the difference between infertile and fertile women. 
Initialize Weights (w) and Bias (b) to Zeros: Initialize learning rate (η) and regularization 
parameter (λ). 

Repeat until convergence: For each training example (X, Y): - Calculate the decision 
boundary: Z = w · X + b. - Update weights and bias based on conditions. 

Return the learned weights (w) and bias (b). 
This pseudocode outlines the Support Vector Machine (SVM) algorithm, which finds an 

optimal hyperplane to separate infertility and non-infertility cases. 

Pseudocode: 
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Initialize weights (w) and bias (b) to zeros 
Initialize learning rate (η) and regularization parameter (λ) 
Repeat until convergence: 
For each training example (X, Y): 
Calculate the decision boundary: Z = w · X + b 
Update weights and bias: 
If Y * Z <= 1: 
w: = w - η * (2 * λ * w - Y * X) 
b: = b + η * Y 
Else: 
w: = w - η * (2 * λ * w) 
Return the learned weights (w) and bias (b) 

To implement the Support Vector Machine (SVM) algorithm, we began by initializing 
the weights (w) and bias (b) to zeros, and setting the learning rate (η) and regularization 
parameter (λ). During training, we iterated until convergence, processing each training example 

(X, Y) to calculate the decision boundary Z=w⋅X+bZ = w \cdot X + bZ=w⋅X+b. We then 

updated the weights and bias based on the value of Y⋅ZY \cdot ZY⋅Z. If Y⋅Z≤1Y \cdot Z \leq 

1Y⋅Z≤1, we adjusted the weights and bias by subtracting η⋅(2⋅λ⋅w−Y⋅X)\eta \cdot (2 \cdot 

\lambda \cdot w - Y \cdot X)η⋅(2⋅λ⋅w−Y⋅X) from the weights and adding η⋅Y\eta \cdot Yη⋅Y 

to the bias. Otherwise, we only updated the weights by subtracting η⋅(2⋅λ⋅w)\eta \cdot (2 \cdot 

\lambda \cdot w)η⋅(2⋅λ⋅w). This process continued until the algorithm converged. Finally, the 
learned weights (w) and bias (b) were returned. The SVM algorithm achieved an accuracy of 
89%, demonstrating its effectiveness in classifying and predicting the given task with a high level 
of accuracy on the test data.  
Random Forest: 

The Random Forest algorithm is an ensemble learning technique that leverages the 
combination of many decision trees to make predictions. The model exhibits remarkable 
performance in both classification and regression tasks. The Random Forest algorithm has the 
capability to effectively capture complex correlations among characteristics and generate precise 
predictions within the domain of infertility prediction. 
Select the quantity of decision trees (N). 

Pseudocode: 

Decide on the Nth decision tree. 
Assuming a decision tree i from 1 to N: 
sample the training data at random with replacement 
For each split, pick a random subset of features. 
On the sampled data, create a decision tree. 
To forecast something for an instance (X): 
Assuming a decision tree i from 1 to N: 
Make a forecast utilizing tree trees 
Compile the forecasts (for instance, by majority vote for classification). 
bring back the last ensemble prediction 

For every decision tree i between 1 and N: - Sample training data at random with 
replacement. Select a subset of features at random for each divide. - Construct a decision tree 
utilizing the sampled data. To make a prediction for an instance (X), perform the following: For 
every decision tree i between 1 and N: - Determine a forecast using tree i. Compile the forecasts 
(such as by majority vote for classification). Return the final prediction of the ensemble. This 
pseudocode describes the Random Forest algorithm, which accurately predicts infertility by 
combining multiple decision trees. 
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The Random Forest algorithm operates by first determining the number of decision 
trees, N, to use. For each tree in the ensemble, it randomly samples the training data with 
replacement (bootstrap sampling) and selects a subset of features for each split. Each decision 
tree is constructed using these sampled data and features. During prediction, each tree in the 
forest independently forecasts an outcome for a given instance. The final prediction is 
determined by aggregating the individual tree predictions, often through a majority voting 
mechanism for classification tasks. The Random Forest model demonstrated outstanding 
performance with an accuracy of 93%, highlighting its effectiveness in accurately predicting and 
classifying the risk of infertility in women.  
Result and Discussion: 

The study was conducted on a laptop with an 8th-generation Core i5 processor, an 8350-
U processor, and 16 GB of RAM using Jupyter Notebook. The dataset, containing 705 rows 
and 13 categorical attributes, was preprocessed to remove outliers and enhance model 
performance. The study utilized Random Forest, Logistic Regression, Nave Bayes, and Support 
Vector Machine algorithms. We evaluated performance metrics including precision, recall, 
accuracy, F1 score, and ROC. Eighty percent (80%) of the dataset was allocated for training and 
twenty percent (20%) for Testing the model. Table 2 demonstrates that Random Forest is the 
most effective algorithm, with a 93% accuracy and high recall, precision, F1, and AUC scores. 
The respective AUC scores for Logistic Regression, Support Vector Machine, and Naive Bayes 
were 0.95, 0.96, 0.95, and 0.87. The respective accuracy rates were 90%, 89%, and 83%. 

 
Figure 4: Confusion Matrixes of different Classifiers Used in Model Training 
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Table 2: Evaluation Matrixes Results of Different Classifiers 

Models Accuracy Precision 
(Fertility) 

Precision 
(Infertility) 

Recall 
(Fertility) 

Recall 
(Infertility) 

F1-Score 
(Fertility) 

F1-Score 
(Infertility) 

AUC 

Logistic 
Regression 

90% 0.79 0.92 0.68 0.96 0.73 0.94 0.96 

Support 
Vector 
Machine 

89% 0.75 0.91 0.64 0.95 0.57 0.89 0.95 

Naive 
Bayes 

83% 0.57 0.89 0.57 0.89 0.69 0.93 0.87 

Random 
Forest 

93% 0.95 0.93 0.68 0.99 0.79 0.96 0.97 

Confusion Matrixes of Machine Learning Classifiers: 
Figure 4 shows the confusion matrices of the different classifiers utilized during model training. These confusion matrices are 

indispensable tools for evaluating model accuracy, revealing how precisely the model predicts outcomes, and evaluating its performance. 
Each confusion matrix reflects the performance of a unique machine learning model, including Logistic Regression, Naive Bayes, 
Support Vector Machine (SVM), and Random Forest. To compute these matrices, model predictions (Y_pred_lr, Y_pred_nb, 
Y_pred_svm, Y_pred_rf) were compared to true labels (Y_test). Using Seaborn's heatmap visualization, the confusion matrices were 
displayed with annotations demonstrating the true positive, true negative, false positive, and false negative values. The subplots were 
organized in a 2x2 grid for comparison. This visual representation aids in assessing and comparing the models' abilities to correctly 
classify instances, as well as identifying areas where each model's classification performance could be improved. 
Comparing Machine Learning Algorithm Performance Through Accuracy Scores: 

We generated a bar graph comparing the accuracy scores of various machine learning algorithms. We computed the ratings for 
each algorithm's accuracy and saved them in the "scores" list. The algorithm names are listed on the "algorithms" list. We use Seaborn 
for plot generation and Matplotlib for customization. The x-axis is titled "Algorithms," while the y-axis is titled "Accuracy Score." This 
resulting graph provided a fast, visual method for comparing and contrasting the performance of these algorithms based on their 
respective accuracy scores. A dataset containing 705 instances and 13 attributes was utilized in this implementation. To predict infertility 
disease in women, four machine learning algorithms, namely Random Forest, Logistic Regression, Support Vector Machine, and Naive 
Bayes, were employed. Notably, these algorithms demonstrated excellent performance, with respective accuracy rates of 93%, 90%, 
89%, and 82%. Random Forest emerged as the most effective algorithm for predicting infertility disease in women among these models, 
demonstrating its superior predictive abilities in this context.
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Figure 5: Accuracy Comparison 

Table 3, Table 4, Table 5, and Table 6 show the classification results of the machine 
learning models used in the experimental study of infertility prediction in women. 

Table 3: Classification report of Regression model 

 Precision Recall F1-Score Support 

Fertility 0.79 0.68 0.73 28 
Infertility 0.92 0.96 0.94 113 
Accuracy   0.90 141 
Macro Avg 0.86 0.82 0.83 141 
Weighted Avg 0.90 0.90 0.90 141 

Table 4: Classification report of Naïve Bayes 

 Precision Recall F1-Score Support 

Fertility 0.57 0.57 0.57 28 
Infertility 0.89 0.89 0.89 113 
Accuracy   0.83 141 
Macro Avg 0.73 0.73 0.73 141 
Weighted Avg 0.83 0.83 0.83 141 

Table 5: Classification report of Support Vector Machine 

 Precision Recall F1-Score Support 

Fertility 0.75 0.64 0.69 28 
Infertility 0.91 0.95 0.93 113 
Accuracy   0.89 141 
Macro Avg 0.83 0.79 0.81 141 
Weighted Avg 0.88 0.89 0.88 141 

Table 6: Classification Report of Random Forest 

 Precision Recall F1-Score Support 

Fertility 0.95 0.68 0.79 28 
Infertility 0.93 0.99 0.96 113 
Accuracy   0.93 141 
Macro Avg 0.94 0.83 0.87 141 
Weighted Avg 0.93 0.93 0.92 141 

Discussion: 
The study employed numerous machines learning algorithms, including Logistic 

Regression, Naive Bayes, Support Vector Machine (SVM), and Random Forest, to predict and 
comprehend female infertility. The research evaluated the effectiveness of various machine 
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learning algorithms. Among the models we tested, Random Forest's 93% accuracy rate was the 
highest and most impressive. This result shows that Random Forest does quite well in predicting 
female infertility with the given variables. Despite Random Forest's impressive 93% accuracy 
rate, competing algorithms such as Support Vector Machines (SVM), Naive Bayes, and Logistic 
Regression did somewhat better. However, for producing quick, rough estimates, Random 
Forest is still a viable option. Support Vector Machine's high accuracy rate of 89% demonstrates 
its usefulness for predicting infertility. The ability of Support Vector Machines (SVM) to 
efficiently manage complicated data patterns greatly increased their efficacy. The Logistic 
Regression method, well-known for its simplicity and success rate, managed an impressive 90% 
accuracy. Successfully predicting female infertility demonstrated the system's proficiency in 
binary classification problems. The Naive Bayes Machine has demonstrated its worth with an 
astonishing 83% accuracy rate. This demonstrates its suitability for the intended purpose of 
foretelling infertility. The study's results have profound implications for fertility testing and 
reproductive medicine. The machine learning models have achieved impressive levels of 
accuracy, making them a vital resource for spotting and alleviating infertility issues among 
women. Our predicted model can be used in clinical settings, assisting doctors in early diagnosis 
of infertility and tailoring treatment plans to each patient. This intervention, if used, may lead to 
a higher quality of care and better outcomes for infertile women. The predictive ability of 
machine learning in the context of female infertility is demonstrated by this study. The results 
of this study can be used to better assess and assist couples and individuals who are trying to 
start a family. 
Conclusion: 

The current research utilized machine learning algorithms to predict female infertility by 
using a comprehensive set of medical variables. The Random Forest algorithm shown 
exceptional efficacy, with a remarkable accuracy rate of 93%. This discovery implies the potential 
utility of this instrument in the early identification of infertility and the provision of 
individualized treatment suggestions. While other algorithms such as Logistic Regression, Naive 
Bayes, and Support Vector Machine also performed well, Random Forest is distinguished by its 
capacity to identify complex patterns within the data. These findings hold promise for enhancing 
reproductive healthcare and bolstering assistance for individuals and couples confronting 
fertility issues. 

We can concentrate our future research on refining and expanding the predictive models. 
Enhanced feature analysis, data enrichment, and deep learning techniques could improve 
predictive accuracy. In addition, the development of explainability techniques can increase the 
transparency and credibility of these models among healthcare providers and patients. 
Integration of these models into clinical practice, validation in the real world, and the 
development of patient-centric applications are crucial steps toward practical implementation. 
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