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Abstract.

Introduction: Analysis of fetal head shape is crucial for assessing head growth and detecting
abnormalities in fetuses. In traditional clinical practice, Head Circumference (HC) is
determined by manually fitting an ellipse to the fetal skull based on 2D ultrasound images.
Novelty Statement: To address this, an automated method integrating image processing
techniques with U-net variant have been developed to achieve maximum accuracy of fetal
head circumference detection on HC18 dataset. This method aims to enhance precision in HC
delineation, thereby improving clinical reliability.

Material and Method: This study proposed a method that combines image processing
techniques (noise removal, edge detection, segmentation) with a Residual U-net model for
detecting the boundary of the fetal skull using HC18 dataset.

Results and Discussion: The results of this method outperformed a simple residual u-net
model in terms of accuracy. The proposed method is evaluating using the HC18 challenge
dataset, achieving a Dice coefficient of 97.99%, a mean difference of 5.86 mm, and a mean
Hausdorff distance of 0.56 mm compared to manual annotations. These results demonstrate
the effectiveness of the proposed method in accurately delineating the fetal skull boundary.
Concluding remarks: Furthermore, the proposed method shows comparability with state-of-
the-art techniques in the field.

Keywords: Ultrasound, Imposed imalgEs-, Head circumference, Residua U-net.
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Introduction:

Fetal biometric ultrasound measurements are routinely conducted manually by
healthcare professionals using ultrasound machines. Compared to CT scans and MRI,
ultrasound is efficient, safe, and less expensive. It uses low-volume sound waves, minimizing
the risk of miscarriage or harm to both the patient and fetus [1]. During the ultrasound
examination, the operator manually draws lines and circles on the ultrasound images using a
cursor or caliper. A fetus is an unhatched or unborn vertebrate, particularly after it has
developed its basic structure. Monitoring fetal growth is crucial for assessing fetus's general
health and well-being. Several measurements, including parietal diameter, abdominal
circumference, femoral length, and head circumference, are performed regularly to estimate
fetal growth. However, these manual measurements can cause errors and wrong values due to
acoustic shadows, discontinuous anatomic boundaries, speckle noise, and low contrast, which
can complicate the boundary detection process.

Professionals calculate gestational age and fetal weight using specific mathematical
functions, which are time-consuming and operator-dependent [2] [3]. To overcome these
challenges, an automatic system for segmentation and measurement of fetal biometrics is
needed to facilitate such processes and aid in the analysis of results. Such a system would
optimize results, improve performance, and reduce human error. In our proposed method, we
utilized ultrasound images and applied image processing techniques to eliminate noise and
isolate the region corresponding to the fetal head. By integrating these techniques with deep
learning models, our objective is to achieve precise and reliable measurements. Our ultimate
aim is to create an algorithm that can automatically compute the circumference of the fetal
head using a 2D ultrasound images in HC18 dataset [4]. This innovative approach not only
enhances efficiency but also ensures consistent data acquisition, which is of utmost importance
in clinical ultrasound diagnostics for accurately quantifying anatomical structures.

Obijectives:

The aim of this work is to achieve maximum accuracy on HC18 dataset by enhancing
ultrasound images using image processing techniques to eliminate noise and isolate the region
corresponding to the fetal head and then collaborate the results with predefined variant of U-
net model.

Novelty Statement:

The main contribution of this work is to achieve 97.99% of dice coefficient which is
highest from the other U-net variants applied on the same dataset before. This is achieved by
applying various image processing methods to eliminate noise and segmented the fetal head we
refined Sonographic images before passing it into model’s training phase. Then apply variant
of U-net model, Residual U-net which is never used before in HC18 competition to achieve
precise and reliable circumference measurements than simple Residual U-net. We visually
compare their performance and evaluate them using metrics provided by the HC18 dataset
discussed in section, demonstrating the significance and accuracy of our proposed method.

This paper is structured as follows: Section 2 provides a concise overview of the
related work. Section 3 outlines the materials and methods used in the study. In Section 4, we
present a detailed analysis of experimental results and comparative findings. Finally, we
conclude with the key insights derived from this research.

Related Work:

In the past, many authors proposed solutions to solve this problem utilizing various
techniques in medical image processing, deep learning, and machine learning. These
techniques and solutions have different impacts and accuracy rates which are discussed in this
section. R. Ramya et al [5] applied binary thresholding to segment the image and ellipse fitting
for calculating head circumference. In [6] Monica R et al conducted an assessment of fetal
growth; they apply different noise removal filters and find Lee is the best. Morphology,
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thinning, and ellipse fitting techniques are used and they achieved 92% of accuracy. In [7],
Mathews M et al segmented the fetal head by using two approaches chamfer Matching and
Hough Transform. They achieved 95.55% and 91.11% accuracy respectively. Wei Lu et al [8]
used iterative randomized Hough transform, K-Mean, and morphological operation for head
detection. Ketheesan Thirusittampalam et al [9] employed CNN with a U-net model for
feature extraction and classification. They first localized the head region and then fit the ellipse
for head segmentation resulting in 100% accuracy of localization and 88.96% specification. In
[10] Changming Sun presented a circular shortest path technique for fetal head measurement,
applying CSP extraction using branch and bound, and ellipse fitting to identify the head shape.
Gennady V.Ponomarevet et al [11] worked on fetal head measurement by using multilevel
thresholding and shape-based recognition and applying possible combinations of the ellipse to
find head contour with 96.6% accuracy. In [12] Valiollah Salari et al applied thresholding,
gradient operator, and least square method for head detection. Yufei Shen et al [13] used an
Iterative randomized Hough transform approach, adaptive threshold, and morphology
thinning operation. In [14] Rong Xu et al employed an Iterative randomized hough transform
approach with bilateral filter, top hat morphology operation, and k-means segmentation.
W.FathimaFarsana et al [15] proposed a random forest classifier for the detected region of
interest by using a pyramid histogram of oriented gradients. Lei Zhang et al [16] proposed a
texton-based method that then trains a random forest model resulting in 95.24% of overall
accuracy. Khusnul Danny Rahayu et al [17] used a Gaussian filter and canny edge detection for
edge extraction, and contour technique to detect fetal head with an accuracy of 97.77%.

Baidaa Al-Bander et al [18] used a deep learning technique, extracting features using a
convolutional neural network with ResNet101 as the backbone architecture. Faster R-CNN
was applied for object localization and then passed to Mask R-CNN to generate skull
localization. Jing Xhang et al [19] performed regression CNN to measure fetal head
circumference, testing four architectures and three regression loss functions. Their
experiments showed that Regression ResNet50 combined with mean square error produced
the best results. V.Rajinikanth et al [20] applied the Jaya algorithm proposed by Rao [21] to
determine the optimal threshold by using Otsu's between class variance and for post-
processing and segmentation Chan-Vese to extract the area where the head is located resulting
in 88.5% of accuracy. In [22] Mostafa Ghelich Oghli et al used convolutional network
architecture MFPUnet for image segmentation. In MFP-Unet feature maps are computed
using the entire level of decoder rather than U-net. Then they applied the least square method
for ellipse fitting they achieved a 95% dice similarity coefficient. Kirthana. LP et al [23]
measured fetal head circumference by using U-net and Hough transform methods.

In [24] Zahra Sobhaninia et al used CNN, their model was based on Link-Net consisting
of multi-scale inputs. The system consists of two modules segmentation and Ellipse Tuner.
They used three fully connected layers for tuning ellipse parameters which led to improvement
in segmentation. In [25], a multi-class segmentation neural network was applied to identify
three planes of the fetal head, abdomen, and femur. Then for region fitting, they used two
algorithms U-net and Deeplabv3+ with weighted cross entropy and then performed ellipse
fitting to segment the head and abdomen. They analyzed Deeplabv3+ performed better and
high accuracy in the case of the fetal head than other planes. Tran Tuan Canh et al [26] applied
a masked regional-based convolution neural network for estimating fetal head circumference.
They modified the existing Mask R-CNN for mask generation, using the fitted ellipse to
compute circumference with Ramanujan's formula. Juan J. Cerrolaza et al [27] used two-stage
convolution neural networks. In the first stage, they got the initial segmented image and
computed two additional channels angle incidence map and shadow casting map which help to
reduce fading and shadowing effect. The second stage provides a complete segmented fetal
skull and obtained an 83% dice coefficient. Maire Chiara Fiorentino et al [28] developed a
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method comprising a region proposal CNN for localization and centering of the fetal head, a
regression CNN based on distance fields to find the head circumference line, and ellipse fitting
to extract the fetal skull boundary, achieving a dice similarity coefficient of 97.75. Xing Yang et
al [29]used FCN architecture with an encoder-decoder design, a hybrid attention scheme used
in up sampling, and skip connections for preserving local details and global context for fetal
head segmentation. In [30] Siging Nie et al proposes a deep network DBN and directional
edges-based solution to detect fetal head.

Then Hough transform is used for circle detection. Dong hao Qiao and Farhana
Zulkermine [31] modify U-net model by adding dilated convolutional layer in last encoder and
on skip block use squeeze-and-excitation blocks. Model was trained on HC18 dataset and
achieved 97.21 of dice coefficient and 2.27 mm mean absolute difference. Khalid Rasheed et al
[32] segmented the fetal head using AlexNet to classify head fragments from ultrasound
videos. Annotated UNET architecture is used for localization and segmentation of the fetal
skull on selected frames then the least square method is used for ellipse fitting resulting in 96%
accuracy. A. Ciurte et al [33] used a method based on their previous work variation non-local
semi-supervised approach consisting of continuous min-cut and Pearson distance. They
identified the head by fitting two concentric ellipses in the middle of the image but if the head
is not in a centered position of the image they use user-assisted labels. Then compute OFD
and BPD horizontally and vertically by using an ellipse to calculate the circumference. In a
paper [34] Thomas Van den Heuvel et al applied three quantification systems A, B, and C with
1,2, and 3 pipelines respectively. System A is used for training while System B and C pipelines
are used for different trimesters. They used Haar-like features for features extraction and
Random Forest Classifiers for classification then applied ellipse fitting.

Material and Methods:

HC18 ‘
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Figure 1. Work Flow of Proposed Solution
After analyzing various solutions as discussed in the literature review and experiments,
we have chosen to enhance the accuracy and visual results of fetal head segmentation by
combining both image processing and deep learning techniques. Our proposed algorithm
consists of two phases: image processing and deep learning. The block diagram of the
proposed method is illustrated in Figure 1.
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Dataset Description and Preparation:

The dataset used in this study is obtained from a challenge [4] and consists of 1334 two-
dimensional ultrasound images captured in the standard plane from the Department of
Obstetrics of the Radboud University Medical Center, Nijmegen, and the Netherlands. These
images were obtained from 551 pregnant women who underwent routine ultrasound
examinations between May 2014 and May 2015. Only images of fetuses without any
abnormalities were included in this study. The ultrasound images were recorded by an
experienced sonographer using either the Voluson E8 or Voluson 730 ultradevice
manufactured by General Electric, Austria. The collection and use of this data for the study
were approved by the Regional Ethics Committee (CMO Arnhem-Nijmegen), and informed
consent was waived due to the retrospective nature of the data. All data were anonymized
according to the tenets of the Declaration of Helsinki.

The dataset contains two sets: a training set, which includes 999 images, and a test set,
which includes 335 images. Each image in the dataset has a size of 800 x 540 pixels, and the
pixel size ranges from 0.052 to 0.326 mm. The training set also includes manual annotations of
the head circumference, which were marked by a trained sonographer, and also their
parameter measurements in millimeters are included in a CSV file. The ground truth
information for each image is available in the form of labels. However, for training, it is
necessary to convert these labels into masks. Masks are binary images that serve to define the
boundaries or contours of objects within an image. We used the connected component
technique [35] for mask generation which is commonly used in image processing and
computer vision tasks. The original images were initially sized at 800%540 pixels. We
standardized all images to 800x540 pixels for uniformity, Normalization is applied to scaling
pixel values to a standard range like [0, 1].These techniques help mitigate variability in image
quality caused by differences in imaging devices, settings, and conditions.

Image Processing:

Within the medical field, image processing [36] involves the examination and
manipulation of various types of medical images, including ultrasound images, MRI scans, X-
rays, CT scans, and microscopic images. The primary goal of medical image processing is to
enhance the quality of medical images by applying specialized technique. These techniques are
designed to improve image clarity, remove unwanted noise, and enhance the visibility of
critical structures or anomalies within the images. After converting to grayscale, our aim was to
identify skull edges.

We applied canny edge detection but it also identifies other boundaries from
background particularly in first trimester because of minimal visibility. Same issues were
observed with Laplacian and Prewitt operators, which are highly sensitive to noise.
Consequently, we move to Sobel filter which yielded better results rather than other
techniques. After edge detection, resultant image still have some particles which is not a part
of interested region. Here we have three types of region; interested foreground, foreground,
and background. To segment these regions effectively, we employed K-means clustering,
adjusting the cluster size accordingly. For thresholding, we initially used adaptive and Otsu’s
thresholds. However, these automated methods sometimes included parts of the background
that remained even after K-means segmentation. To address this, we turned to histogram
analysis to determine and apply an optimal threshold manually. Furthermore, we fine-tuned
the parameters for Morphology and Thinning operations through iterative experiments. This
involved testing different kernel sizes, loop counts, and operation sequences to identify the
optimal configuration. The selected techniques are discussed in following sections.

Grayscale Conversion and Noise Removal:
Grayscale conversion involves converting a color image into a grayscale version where
shades of gray represent the image's pixel. This conversion discards the color information
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from the original image and instead represents each pixel based solely on its brightness value.
Ultrasound images can experience different forms of noise such as Gaussian noise, Speckle
noise, Impulse or Salt-and-Pepper noise, and Ringing Artifacts. Addressing and mitigating
these various forms of noise Kumar. N et al [37] highlighted that different filters produce
optimal outcomes for various types of noise in images. The median filter [38] proves effective
in removing Poisson and Salt and Pepper noise [39]. Additionally, the Gaussian filter [40]
demonstrates excellent results when applied to Gaussian Noise images. On the other hand, the
Wiener filter [41] surpasses other filters in dealing with Speckle Noise, a ringing artifact. In our
approach to reduce noise in ultrasound images, we utilized a combination of median,
Gaussian, and Wiener filters for noise reduction.

Sobel Edge Detection:

Sobel filter is a gradient-based technique implemented that calculates the intensity gradient at
each pixel in the image [42]. The Sobel filter offers useful insight into the transitions in the
image at each pixel by examining the direction of the most significant rise from light to dark
and the rate of change in that direction. This technique allows us to evaluate whether changes
are rapid or smooth, which helps in determining if a pixel constitutes an edge and identifying
the orientation of the edge.

K-Mean Segmentation:

After applying edge detection there are three parts in the image, background, foreground
(but not area of interest), and foreground (area of interest). To differentiate these classes, we
utilized clustering algorithms, with K-Means being a widely used unsupervised technique
specifically designed for segmenting areas of interest from the background. K-Means partitions
the given data into K clusters or subsets based on K centroids. In our case, with three classes
(background, non-area of interest, and area of interest), we used three clusters. This algorithm
is particularly useful when working with unlabeled data to discover distinct groups by
identifying similarities or patterns, with the number of groups determined by the value of K.
Thresholding:

Thresholding [43] is a segmentation technique that transforms a grayscale image into a
binary image, where each pixel is represented by either 0 or 1. Pixels with intensity values
higher than the threshold are assigned the value 1 (white) while the remaining pixels are
assigned the value 0 (black). Histogram is computed to select the appropriate thresholding
value. We observed that all histograms have three peaks background lies on the black side,
foreground lies on the white side, and foreground (but not interest region) near 30 to 50 on
the x-axis illustrated in Figure 2. So, we selected 50 as our thresholding value.
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Figure 2. Histogram Analysis

Morphology:

To refine and enhance the fetal head boundaries by addressing disconnected regions and
removing small particles surrounding the fetal head, we employed morphological operations.
The term "Morphology" refers to a set of image processing techniques used to extract valuable
information about region shapes, boundaries, and more [44]. Morphological dilation is a
process that fills in small gaps within objects and enhances the visibility of objects. It makes
shapes with filling appear more pronounced and lines appear thicker. Closing involves

July 2024 | Vol 6 | Issue 3 Page | 1063




OPEN (3} ACCESS . . . .
International Journal of Innovations in Science & Technology

performing a dilation followed by erosion. It similatly alters the shapes of objects. During the
dilation step, nearly connected objects can merge, and even after the subsequent erosion step,
they often remain merged.
Thinning:

To extract the head's structural skeleton, we applied a morphological thinning operation.
It is used to decrease the width of an object's boundary to a single pixel. It involves iteratively
eroding and dilating the image using a specially designed structuring element to remove pixels
from the object's boundary. The structuring element acts as a small shape that defines the pixel
neighborhood in the image. Morphological thinning finds applications in various image
processing tasks, such as the skeletonization of objects, denoising images by reducing
unwanted details, and preserving essential features. Results of all image processing techniques
are shown in Figure 3.

(©)

&y
Figure 3. Image Processing (a) Original Image (b) After Pre-processing (c) Sobel Filter (d) K-

mean segmentation (e) Thresholding (f) Morphology (g) Final segmented result after applying
thinning operation

Deep Learning:

Deep learning is a type of machine learning that uses complex networks of artificial neurons
to learn and understand patterns in large amounts of data. It mimics how our brain works to
process information and make predictions.

Data Preprocessing:

The segmented images obtained after applying image processing techniques were
imposed on the original images. This process enhances the edges of the fetal head, resulting in
improved outcomes and desired visualization. Images in our dataset contain unnecessary
boundaries which are not a part fetal head and their elimination does not affect ultrasound.
Cropping images before training is a widely used technique to eliminate irrelevant or
redundant portions from images that do not contribute useful information to the target task.
This reduces model complexity and leads to faster and more efficient training processes,
quicker model convergence, and experimentation. The size of the original images is 800%540;
we cropped it to 768%X512. This process did not affect our interest. There are total 999 images
in the training set of the HC18 challenge [4]; we split it as 75% for training, 20% for validation,
and 5% for evaluating the model performance.
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Model validation was conducted using a random shuffle approach where 20% of the
dataset was reserved for validation purposes. This method ensures that each validation set is
representative of the overall dataset distribution, helping to prevent any bias in the selection of
validation data and ensures that the model is tested on diverse samples from the dataset. Data
augmentation is a widely used technique to increase the size of a training dataset by modifying
the existing dataset. It enables the model to learn invariant and discriminate features that are
robust to changes in the data. Data augmentation techniques did not have direct impact on
robustness and performance as model performance highly dependent on segmentation. If
segmentation region is perfectly extracted without discontinuous points then we will achieve
better results and accuracy from model too. But in first two trimesters fetal head is not
properly visible in ultrasound images which can cause discontinuous points in fetal skull. To
ensure this we had applied noise, rotation and color augmentation but results are not
satisfactory. We specifically applied horizontal flipping and vertical flipping to create
augmented samples. Horizontal flipping means left to right flip, vertical flipping which is to
down flip, vertical flipping of the horizontally flipped images, and horizontal flipping of the
vertically flipped images
Residual U-net Model:

The Residual U-net is a Convolution Neural Network (CNN) architecture [45] that builds
upon the U-net structure by incorporating residual connections. Residual connections, inspired
by residual networks (ResNets), allow for the direct propagation of information from one layer
to another, by passing multiple layers. This helps to alleviate the vanishing gradient problem
and enables the network to learn more effectively, especially for deeper architectures. The
architecture diagram of the residual u-net is also illustrated in Figure 4.
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Figure 4.Residual U-Net architecture

The Res U-net architecture [46] comprises an encoder-decoder network with skip
connections. The encoder network also referred to as the contracting path consists of multiple
convolutional layers followed by activation functions like ReLU. This network gradually
reduces the spatial dimensions of the given input image while increasing the number of feature
channels. Within each block of the encoder network, residual blocks are employed, which
make use of skip connections to enable the direct flow of information from input to output.
The bridge or the middle layer of the network connects the encoder and decoder sections. It
consists of a convolution layer followed by residual blocks. The decoder network, known as
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the expanding path, mirrors the structure of the encoder but in reverse. It employs transpose
convolutions to progressively increase the spatial dimensions while decreasing the number of
feature channels. The skip connections from the encoder are concatenated with corresponding
layers in the decoder, allowing the fusion of low-level and high-level features. Max pooling and
dropout operations incorporate dropout regularization, randomly deactivating a percentage of
neurons during training to prevent overfitting. The final layer consists of a 1x1 convolution
followed by a sigmoid activation function, resulting in a pixel-wise classification output. In the
Res U-net, residual connections are added to the traditional U-net structure, enhancing its
performance and enabling better feature representation and extraction. This makes the Res U-
net well-suited for tasks such as image segmentation, where accurate localization and
delineation of objects or boundaries are required.

Post Processing:

In this section, we discussed the steps performed after the model predicts results on
the test data. The predicted results are in the form of masks, which were converted from
annotations during the training phase. To refine and extract more precise information from
these masks, we applied the least square fitting [47] method to fit an ellipse on each labeled
region. It minimizes the sum of the square distance between the given data points and their
respective points on the fitted ellipse. This method accurately determines the boundary of the
fetal head and finds essential measurements like the center, head size, semi-minor axes, semi-
major axes, and orientation. With this information, we can predict the head circumference in
terms of pixels using the ellipse circumference formula as the head shape is similar to an
ellipse. Here, C represents the ellipse circumference while Spand Sj represent semi-major and
semi-minor

2 2
C=2n /% )

axes respectively. To determine the head circumference in millimeters, we need to multiply the
pixel-based circumference values by the provided pixel size. This computation allows us to
derive accurate measurements of the head circumference and enhance our understanding of
fetal development.

Implementation Details.

The implementation is carried out on the Google Colab platform, utilizing a T4 GPU
for accelerated computations. The hardware configuration ensured efficient training and
reduced training time. The proposed model was implemented using the TensorFlow and Keras
libraries discussed in Table 1. We fine-tuned hyperparameter such as learning rates, batch sizes,
epochs, dropout rates, and others through iterative experimentation to optimize segmentation
accuracy and biometric measurement accuracy. Batch size 16 yielded the best results among
different tested batch sizes (8, 16, and 32). The Adam optimizer consistently performed best in
our experiments. After testing learning rates (0.001, 0.0001, 0.00001, and 3e-5), we determined
that a learning rate of 3e-5 minimized loss fluctuations during training. A dropout rate of 0.5
was found to be optimal; lower dropout rates led to overfitting. . After experimenting with
different number of epochs ranging from 10 to 200, it is found that training with larger
number of epochs could lead to overfitting. Hence, to strike a balance between model
performance and generalization, 50 epochs were selected as an optimal choice for training the
model.

Performance Evaluation Metrics:

The performance of the proposed method is evaluated on the HC18 Grand Challenge
dataset; they provided ground truth with a training set annotated by the trained sonographer.
We use the Dice Coefficient (DSC), Hausdorff distance (HD), Mean difference (MD), and
Mean Absolute difference of Head Circumference (MAD) as performance evaluation metrics.
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Table 1. Hardware and software specifications

For Image Processing For Residual U-net
Hardware Environment Core 13 CPU T4 GPU
RAM: 8 GB RAM: 12GB
OS: 64-bit GB Disk: 78 GB
Software Environment Cv2 TensorFlow  version
Numpy 2.12.0, Keras version
Scipy 2.12.0, and Python
Matplotlib version 3.10.12

In our experiments, these measures were essential for evaluating how accurately and
precisely our segmentation models performed. The dice coefficient is a widely used parameter
for measuring the similarity and overlapping between two sets of images and their ground
truth. The Dice coefficient ranges between 0 and 1, where a value of 0 signifies no overlap
between the sets, while a value of 1 indicates a perfect match and better accuracy.

. . 2+|ANB|
Dice C t=—-— 2
ice Coefficien AL 2)

Here, A and B represent the two sets of predicted segmentation results and the ground truth,
respectively.
Dice Loss = 1 — Dice Coef ficient 3)

The Hausdorff distance is a measure of the maximum distance between a point on one
boundary and its closest point on the other boundary. A smaller Hausdorff distance suggests a
higher level of similarity or better alighment between the two sets, indicating a closer match
between the predicted and ground truth boundaries.

Hausdorff Distance = max (h(4, B), h(4, B)) 4
Here A and B are images from the predicted segmentation mask and the ground truth mask
which contains several pixels. Where A = {a;...a,} and B = {b;y.. .b,}.

h(A, B) = max,eamaxyeglla — bl (5)
The mean difference is the simple difference between a given head circumference and our
predicted circumference. Its absolute deviation is referred to as Mean Absolute Difference.
Here Gt means ground truth and Pre means predicted.

Mean dif ference = HCpre — HCgy (6)

Experiments and Result:

In this section, we presented the visual results obtained after applying the proposed
algorithm as well as its performances. The outcomes of the proposed algorithm on the test
data sourced from HC18 [4] are shown in Figure 5.The various stages of the algorithm are
depicted, including the original test images, their segmented counterparts, and the imposed
images, the predicted boundaries generated by the proposed algorithm, the label generation
using ellipse fitting, and then results where boundaries are imposed on the test images. When
evaluating the proposed technique, it achieved a dice coefficient of 98.12% and a loss of
1.188% on the training dataset. On the validation dataset, it achieved a dice coefficient of
97.99% and a loss of 2.01%. The dice coefficient and loss for each epoch are visualized in
Figure 6.In the first graph, it can be observed that the validation loss shows slight fluctuations
throughout the 45 epochs but remains consistently below -0.94, which is equivalent to 6%.
Towards the later epochs, the validation loss tends to stabilize and align with the training loss.

The second graph displays the dice coetficient for both training and validation on each
epoch. Similarly, the validation dice coefficient exhibits slight fluctuations but consistently
stays above 94% throughout the 45 epochs. This suggests that the model is learning effectively
and does not suffer from overfitting or underfitting. From 45 to 50 epochs, there is close
proximity of the training and validation dice coefficients. The similarity indicates that the
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model can generalize well to new, unseen data. Throughout the training process, the model's
performance on both training and validation sets was monitored closely. This helped identify
any signs of overfitting or underfitting, ensuring that the reported results are reliable. To
ensure reproducibility, detailed documentation of the experimental setup, including model
architecture, hyperparameter, and validation procedure, was maintained. This documentation
allows other researchers to replicate the experiments and validate the reported results
independently.

@)

(b)

©

Gy

©

(®

Figure 5. Results of Test data.(a) Original Images,(b) Segmented Images,(c) Imposed
Images,(d) Predicted Region (e) Predicted boundaries using connected component,(f) Results
drawn on images.
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Figure 6. Model Performance: First graph shows loss details and second one shows dice
coefficient.
Discussion:

The Residual U-net model also implemented on the original and segmented dataset to
evaluated proposed methods performance. In this section, we evaluated and compared our
proposed method with two other approaches. In the first approach, we implemented a residual
U-Net model on the original images without applying any additional image processing
techniques. In the second approach, we applied image processing techniques to enhance the
original images before training them on the residual U-Net model. However, we did not
impose the obtained mask on the original images. The performance results for each approach
are summarized in Table 2 and Table 3. Based on the results shown in Table 2, the model
trained on segmented images achieved the lowest dice coefficient of 97.85% using 50 epochs
for training and 97.30% for validation. While training dice coefficient of model trained on
original and imposed are same 98.12%. However, in terms of validation dice coefficient model
trained on imposed images was 97.99%. Table 2 presents the mean difference, mean absolute
difference, and mean Hausdorff distance between the head circumference computed on the
validation data and the head circumference provided by HC18 [4].

Table 2. Training and Validation dice coefficient and loss of three compared models

Methods Training Training Validation = Validation  Epochs
Dice Loss Dice Loss
Coefficient (%) Coefficient (%)
%) %)
On Original Images ~ 98.12 1.88 97.92 2.08 50
On Segmented 97.85 2.15 97.30 2.7 50
Images
On Imposed Images ~ 98.12 1.88 97.99 2.01 50
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Table 3. Performance metrics of compared models

Methods Mean Mean Dice Mean
Difference Absolute Coefficient Hausdorff
(mm) Difference (%) Distance
(mm) (mm)
On Original Images 5.88009 5.90404 97.89 0.57166
On Segmented Images 6.01186 6.47352 97.19 0.65084
On Imposed Images 5.86125 5.89296 97.88 0.56680

According to these evaluations the model trained on imposed images achieved better results
because it provides lower mean difference and Hausdorff distance as compared to the other
models which indicate the predicted or measured results are closer to the ground truth or
reference values. Figure 7 displays test results of the model trained on original images and
imposed images, there are noticeable differences in the computation of the fetal skull between
the predicted segmentation and the imposed image results. The imposed image yields more
acceptable results, with the predicted skull being closer to the actual one while Figure 8
presents testing data results of the segmented trained model and the imposed trained model.

Figure 7. Comparison of Original and Imposed model results. (a) Original Images, (b)
Imposed Images
The segmented trained model shows incorrect prediction results because of inadequate
detection of edges in the segmentation process whereas the imposed image accurately
identifies the skull boundaries.

®) ' _—
Figure 8. Comparison of Segmented and Imposed model results. (a) Segmented Images, (b)
Imposed Images
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The dataset includes images from various stages of pregnancy rather than focusing on
a specific trimester. However, a limitation is that the current dataset of 999 images may not
adequately represent fetal development across all trimesters. Having separate datasets
categorized by trimester would enable more precise analysis and performance evaluation for
each stage of pregnancy. The proposed Residual U-net model's performance was evaluated
against other state-of-the-art approaches, including multi-task network based on link-net
architecture (MTLN), Mask-RCNN, random forest classifier, regression CNN, multi-feature
pyramid Unet, dilated squeeze and excitation U-net, fast and accurate U-net, using HC18
dataset shown in Table 4. The comparison focused on key metrics essential for evaluating
segmentation accuracy and biometric measurement like dice coefficient, hausdorff distance
and mean difference. We examined a few existing techniques and then compare their results
and performance with our proposed solution. Fiorentino et al [28] suggested region-proposal
CNN find the head location and regression CNN for measuring head circumference. They
achieve a2 1.90 mm mean difference but DSC is 97.76%.

In [22] Mostafa Ghelich Oghli et al used convolutional network architecture MFPUnet
for image segmentation in which feature maps are computed using the entire level of decoder
rather than U-net. They achieved a 95% dice similarity coefficient. Sobhanimia et
al[24]presented Multi-Task deep network that utilizes the Link-Net structure and incorporates
multi-scale inputs, without an ellipse tuner. It provides smooth elliptical segmentation results,
although their DSC is 96.84% with a 2.21 mm mean absolute difference and 1.72 mm mean
HD. Donghao Qiao and Farhana Zulkermine [31] modify U-net model by adding dilated
convolutional layer in last encoder and on skip block use squeeze-and-excitation blocks. Model
was trained on HC18 dataset and achieved 97.21 of dice coefficient and 2.27 mm mean
absolute difference. Thomas et al [34] applied a random forest classifier for head localization
using haar-like features and Hough transform for ellipse fitting with 97% DSC and 2.8 mm
mean absolute difference but their mean HD is 1.32 mm. Proposed model with dice
coefficient of 97.99% outperformed the other state-of-the-art methods.

Table 4. Performance comparison with state-of-art-solutions using HC18 dataset

Authors Year Dice Mean Mean Mean Data-
Coefficient Difference Absolute Hausdorff set
(%) (mm) difference distance
(mm) (mm)
Fiorentino et al [28] 2022 97.76 0.21 1.90 1.32 HC18
DonghaoQiao [31] 2020 97.24 - 2.27 - HC18
Thomas et al [34] 2019 97 0.6 2.8 2.0 HC18
Oghli et al [22] 2020 95 - - 4.5 HC18
Sobhaninia et al [24] 2019 96.84 1.13 2.12 1.72 HC18
Ashkani et al [48] 2022 97.14 - - 10.09 MEP,
HC18
Tran et al [20] 2021 97 7.15 - - HC18
Proposed Model 2023  97.99 5.86 5.89 0.56 HC18
Conclusion:

In this study, we proposed an automated solution for estimating fetal head circumference
which used variant of U-net (residual u-net) with some image processing techniques to
maximize its accuracy. The results obtained from the method demonstrated accurate detection
of the head contour, indicating its effectiveness in fetal head circumference estimation. When
compared to the ground truth, the proposed method provides a 97.99% of dice coefficient and
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0.56 mm of mean Hausdorff distance. Although our proposed method shows promising

results in estimating fetal head circumference, there is room for improvement. Some images

still exhibit results outside of the fetal skull, indicating the need for further refinement. In
future research, we aim to enhance this method and extend its application to other datasets as
well.
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