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his research explores the integration of deep learning, computer vision, and edge 
computing to revolutionize crop disease detection. In response to the pressing need for 
prompt and accurate disease identification, this work leverages the capabilities of edge 

computing devices deployed within agricultural fields. Real-time data processing at the edge 
facilitates quick disease classification across various crops, enabling timely interventions. At the 
heart of the methodology lies a fine-tuned ResNet50 deep learning model, specifically chosen 
for its proficiency in handling complex visual data. Trained on a specialized dataset derived from 
the ImageNet database, the model exhibits promising accuracy rates in preliminary testing. 
Integrating edge computing into precision agriculture, this research presents a significant 
advancement toward sustainable agricultural practices. By empowering farmers with early 
detection and timely interventions, this endeavor equips agricultural communities with the 
knowledge and tools necessary to safeguard their crops, ensuring both food security and 
economic stability. 
Keywords: Deep learning; Precision architecture; Computer Vision; Crop disease detection; 
Sustainable agriculture.  
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Introduction: 
Agriculture forms the backbone of the global economy, providing food and sustenance 

for billions of people worldwide. However, this vital sector faces constant threats, including the 
devastating impact of plant diseases. These diseases inflict significant crop losses, leading to 
economic hardships and food insecurity for millions. Each year, crop diseases result in 
substantial economic losses worldwide estimated at around $220 billion.  This figure excludes 
the additional $70 billion in costs from other pests, such as invasive insects. These financial 
impacts affect major crops like bananas, cucumbers, chilies, wheat, and rice [1]. For example, in 
rice, significant diseases such as bacterial blight, rice blast, and sheath blight cause considerable 
yield reductions. These diseases contribute extensively to the global economic burden, with 
annual losses reaching billions of dollars. The situation is further worsened by intensive farming 
practices and global trade, which facilitate the spread of pathogens [2].  

This problem has been exacerbated by factors such as climate change, globalization, and 
intensive agricultural practices. To address this challenge and ensure food security, it is 
imperative to develop novel systems that assist farmers and businesses in mitigating losses and 
maximizing gains. Early and accurate detection of plant diseases is crucial for mitigating their 
impact and minimizing damage. Traditional methods, primarily relying on visual inspection by 
farmers, often prove insufficient. Such approaches are time-consuming, labor-intensive, and 
susceptible to human error, particularly in the early stages of infection when symptoms are subtle 
and easily overlooked. Additionally, accurately identifying diseases across numerous crops adds 
another layer of complexity, as each crop presents unique vulnerabilities and disease symptoms 

Recent advancements in machine learning and artificial intelligence (AI) have paved the 
way for the development of automated multi-crop disease detection systems. These systems 
leverage deep learning algorithms to analyze images of plant leaves and stems, enabling accurate 
identification and classification of various diseases across diverse crops. This revolutionary 
technology holds immense promise to significantly improve upon traditional methods by 
offering an efficient and automated approach to multi-crop disease detection. By empowering 
farmers to identify and control diseases early on, multi-crop disease detection systems offer the 
potential to reduce crop losses, optimize yield, and ultimately enhance global food security. This 
rapidly evolving field is poised to witness the development of cutting-edge technologies and 
applications readily adaptable by stakeholders within the farming landscape.  
To address these challenges, the development of an automated multi-crop disease detection 
system is crucial. Leveraging advancements in machine learning and image processing, this 
system can significantly improve disease management in agriculture by: 

1. Enabling early and accurate disease identification across diverse crops. 
2. Empowering farmers with timely insights to implement effective interventions. 
3. Reducing reliance on expert knowledge and labor, making disease detection more 

accessible. 
4. Improving crop yields and farmer livelihoods 

Novelty and Objectives of Study: 
Automated multi-crop disease detection systems powered by machine learning and deep 

learning algorithms offer a transformative solution. These systems hold immense potential to 
revolutionize plant disease management by offering: 

 Speed and Efficiency:  Such Systems will process images rapidly, automatically analyze 
them, and predict the disease with remarkable efficiency, freeing farmers from tedious 
manual inspection. 

 Accuracy and Reliability: By leveraging powerful machine learning algorithms, the 
model can be trained to achieve high accuracy in disease prediction. Farmers can rely on 
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the system's reliable results to make informed decisions about crop management and 
disease control. 

The Key objectives of this study are: 
1. Collect a comprehensive dataset of leaf images representing various crops and disease 

conditions from diverse sources. 
2. Preprocess the dataset for standardization of image size, format, and quality to enhance 

algorithm training and evaluation efficiency. 
3. Design and implement a deep learning algorithm based on the ResNet50 architecture 

for accurate disease identification across diverse crops utilizing leaf images. 
4. Optimize the algorithm for performance and efficiency, ensuring real-time image 

processing and minimal resource utilization on mobile devices. 
Literature Review: 

Recent research highlights the potential of advanced technologies, such as deep learning 
and image processing, for accurate and accessible multi-crop disease detection.  
Deep learning models achieve high accuracy in disease identification, as demonstrated by 
InceptionResNetV2 for okra (98%) [3]. PlantifyAI app uses deep learning algorithms to identify 
crop diseases with 95.7% accuracy [4]. CNNs effectively detect diseases across various crops, 
with ResNet-152 and InceptionV3 variants achieving 98.81% for corn and 97.48% for rice [5] 
[6]. 

Mobile applications offer user-friendly interfaces and real-time information for disease 
management, as shown by models for cucumber, guava, and other crops (98.27% accuracy) [7]. 
Moreover, the research addresses challenges like messy images (U-Net segmentation for tomato 
plants, 98.12% accuracy) [8] and real-world environments (YOLOv5 for chili crops, 75.64% 
accuracy) [7] [9]. Future research should focus on optimizing models for diverse datasets, real-
world conditions, and integration with other agricultural technologies for broader accessibility 
and impact [10] [11] [12] [13]. 
Material and Methods: 

This section provides a comprehensive overview of the system design and methodology, 
including the following key components: 
Data Acquisition:  

The very first challenge in this research was to acquire a comprehensive dataset of leaf 
images representing various crops and disease conditions from diverse sources. A diverse dataset 
of crop disease images was acquired from various sources, including the internet, open-access 
repositories, and agricultural institutions. The primary source of the data was an online open-
access repository known as Kaggle (Plant Village Dataset). This dataset consists of 70,000 high-
quality images of diseased and healthy plant leaves from 9 different species. Each species has 3 
data splits (train, test, and validation), with consistent categories across all splits. This dataset is 
ideal for machine learning researchers and practitioners working on plant disease detection and 
classification, as well as for agricultural experts seeking to improve plant health and crop yields. 
The dataset is unique in its diversity, covering a wide range of plant species, diseases, and growth 
stages.  Table 1 shows the details of crop images gathered from various sources. 
Data Preprocessing: 

The dataset was meticulously pre-processed to ensure uniformity and quality. A suite of data 
augmentation techniques was used to augment the dataset and strengthen the model's 
adaptability. By rotating, flipping, and shifting the images, a spectrum of variation was 
introduced to the original dataset, broadening the inputs for the model. As a result of this 
diversification process, the model was able to generalize and classify unseen samples more 
efficiently. To achieve the best balance between variability and preservation of essential features, 
augmentation parameters were strategically chosen. These parameters included: 
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 Rescaling: Image rescaling ensures uniform pixel values and speeds up computation by 
rescaling the images to [0,1]. 

Table 1. Dataset Description 

S.No Crop Name # of 
diseases 

Total 
Images 

in 
Original 
Datasets 

Total Images 
after 

augmentation 

Training – Testing split 

Training 
images 

Validation 
images 

1 Banana 4 586 937 777 160 

2 Chillies 5 227 459 400 59 

3 Cotton 6 1537 2637 2400 237 

4 Cucumber 7 4678 6729 5600 1129 

5 Rice 4 1845 3355 2684 671 

6 Sunflower 4 125 355 253 102 

7 Sugarcane 3 196 459 350 109 

8 Tomato 9 14876 27713 21985 5728 

Total 42 24070 42644 34449 8195 

 Shear Range: To simulate the distortions of real-world images, a shear range of 0.2 was 
applied to the images, introducing controlled deformations. 

 Zoom Range: By employing a zoom range of 0.2, the model can learn from images at 
varying scales, mimicking natural fluctuations in object proximity. 

Horizontal Flip: Using horizontal flips, the model was provided with mirrored perspectives to 
learn from. Figure 1 shows a diagram showing steps from data acquisition to data pre-
processing. Figure 2 shows the original image and pre-processed image. 

 
Figure 1. Diagram from data acquisition to data preprocessing.  Reprinted from 

“ConvPlant-Net: a convolutional neural network-based architecture for leaf disease 
detection in smart agriculture national conference on communication,” by S. D. Deb, R. 

K. Jha, S. Kumar, 2023, (Presentation) [14]. 
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                          (a)                    (b) 

Figure 2. (a) Original Image (b) Preprocessed Image 
Data Balancing: 

This process involved meticulously reviewing the dataset to mitigate issues related to 
class imbalance, identifying and eliminating instances of blurred or confusing images, and 
ensuring that high-quality samples were included in the study. A significant amount of attention 
was given during the training process to maintaining a proportional representation of healthy 
and diseased samples. This approach allowed the model to learn from a comprehensive and 
well-balanced set of examples, thus avoiding any undue bias toward the class with the most 
frequent occurrences. In this way, robust and reliable disease detection capabilities were 
achieved. 
Model Description: 

The ResNet50 model was selected based on its architectural prowess, pre-trained weights, 
and demonstrated performance in agricultural applications. In the field of deep learning 
architectures, ResNet50 is renowned for its exceptional ability to classify images. As we know, 
the devil lies in the details when it comes to agriculture, particularly plant disease detection. 
Subtle variations, nuanced patterns, and distinct features are often the key to distinguishing 
healthy plants from diseased ones. Due to ResNet50's ability to capture intricate details, it can 
detect even the slightest signs of plant diseases. This level of precision is critical to ensuring 
accurate disease detection. Furthermore, with its deep architecture, ResNet50 is distinguished 
from other models. As a result of this depth, the model is capable of learning hierarchical 
features from images, which is important for the detection of plant diseases. A comprehensive 
spectrum of features can be extracted by ResNet50 through its deep layers, ranging from simple 
textures to intricate structures. Feature learning through hierarchical classification is invaluable 
in predicting plant health accurately. ResNet50 model was fine-tuned on the crop disease dataset 
using a rigorous training and validation process. The following parameters were used during the 
training and validation process. 

1. Learning Rate: This controls the size of the steps taken during gradient descent 
optimization. It likely had to be fine-tuned for optimal convergence and generalization. 

2. Momentum: This helps the optimizer avoid getting stuck in local minima and smooths 
the learning process. Its value was likely adjusted for optimal performance. 
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3. Weight Decay: This helps prevent overfitting by penalizing large weights. Its value was 
likely adjusted to balance model complexity and generalization. 

4. Optimizer: The specific optimizer used, such as Adam or SGD, may have been chosen 
based on its performance on the crop disease dataset. 

5. Loss Function: The loss function used to evaluate the model's performance, likely 
cross-entropy, could have been adjusted to prioritize specific aspects of the predictions. 

 Hyperparameters were optimized to achieve optimal model convergence and 
generalization. The ResNet50 model was fine-tuned based on the following parameters: 

6. Last Few Layers: The final fully connected layers of ResNet50 are typically replaced 
with new layers specific to the task at hand, in this case, crop disease classification. The 
number of neurons and activation functions in these layers were likely fine-tuned. 

7. Dropout Rates: Dropout layers introduce randomness to prevent overfitting, and their 
rates could have been adjusted for optimal performance. 

8. Batch Size: The batch size affects the speed and stability of training. It likely had to be 
fine-tuned for the specific hardware resources available. 

The trained model was rigorously evaluated using various metrics, including accuracy, precision, 
recall, F1-score, confusion matrix, ROC curve, and validation on unseen data. 
Edge Computing Implementation 
 The proposed framework leverages a multi-layered architecture with four fundamental 
components: the sensing layer, the edge computing layer, the network layer, and the application 
layer. Figure 3 shows the data sensing framework for the crop field with the utilization of edge 
computing. 

 
Figure 3. The data sensing framework for the entire crop lifecycle is based on IoT and 
edge computing. Reprinted from “Edge Computing driven data sensing strategy in the 

entire crop lifecycle for smart agricultural”, by R. Zheng, X. Li, 2021, Sensors 21(22) 7502, 
page no. 4, MDPI [15]. 
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Sensing Layer: 
 At the core of this layer are numerous nodes equipped with diverse sensors, power units, 
memory, micro-processing capabilities, and wireless communication modules. These nodes 
fulfill distinct functions, categorized into crop monitoring nodes and environmental sensing 
nodes to observe both crop growth and environmental parameters, respectively. 
Edge Computing Layer: 
 This layer encompasses multiple nodes designed with rechargeable units for enhanced 
operational continuity. These nodes process and analyze data locally, enabling real-time decision-
making without relying solely on the cloud. 
Network Layer: 
 Serving as the connecting bridge, this layer incorporates wired and wireless media, 
diverse communication protocols, and various gateway and routing equipment. It facilitates 
seamless communication among all devices and layers within the system. 
Application Layer: 
 Centered on the cloud server, this layer hosts agricultural users and terminals, intelligent 
monitoring and control systems, and other crucial applications and services. It provides users 
with insights and control functionalities based on the collected data and analysis. 
Clustered Based Topology: 
 Within the sensing layer, a cluster-based topology optimizes network efficiency. Each 
cluster operates under the supervision of an edge computing node acting as a cluster head, 
managing the network resources within its domain. 
Working Principle: 
 The edge computing system operates through a systematic series of steps for efficient 
data acquisition and analysis: The cloud server establishes a crop expert system based on 
historical data. This system defines classification standards for various crop growth stages and 
evaluates priority indicators for each stage. It also identifies key environmental factors aligned 
with different growth stages by analyzing their correlation with primary crop growth indexes. 
The edge computing node retrieves operational parameters and instructions from the cloud 
server. It coordinates crop monitoring nodes to collect specific crop-related parameters 
periodically throughout distinct growth stages. Utilizing an artificial neural network, the edge 
computing node identifies the current growth stage and retrieves key crop growth indicators. 
Additionally, it calculates the correlation between environmental parameters and these growth 
indicators. 
 Based on time constraints and specific criteria, the edge computing node selects relevant 
feature parameters for crops and environmental factors. It then defines a set of sensing nodes 
with suitable coverage and participation numbers. These selected nodes are activated to initiate 
parameter sensing and collect crucial data for analysis. 
Activated sensing nodes gather parameter data and transmit it to both the edge computing node 
and the cloud server. This collected data undergoes thorough analysis and processing to derive 
insights into crop growth stages, key indicators, and the relationship between environmental 
factors and crop health. 
Result and Discussion:  
 This section outlines the results achieved and insights gained during the study, which 
leveraged various tools and technologies. Python served as the primary programming language, 
employing libraries like Scikit-learn, TensorFlow, and Keras for data manipulation, machine 
learning, and deep learning.  Model development relied on TensorFlow's deep learning 
capabilities and Keras' high-level API for rapid prototyping. Image processing tasks were 
handled by OpenCV and PIL/Pillow for pre-processing and manipulation. Collaborative 
version control and development were achieved through Git and GitHub. 
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 In the early stages of this research, various models such as InceptionV3, Convolutional 
Neural Networks (CNNs), Xception, and Support Vector Machines (SVMs), were explored 
along with their strengths and limitations for agricultural disease detection. The evaluation of 
initial models showed promising results however their performance was not satisfactory. Each 
model faced challenges in capturing subtle disease patterns specific to agricultural settings. Each 
of the initial models encountered specific limitations, including InceptionV3's inability to 
capture subtle patterns, CNN's insufficiency for agricultural imagery's complexity, Xception's 
inability to accurately identify disease-related features, and SVM's limitations in handling 
multidimensional data.  
 Therefore, ResNet50 (well renowned for its image classification capabilities) was chosen 
as the main model for designing the multi-crop disease detection system. Its residual connections 
address the vanishing gradient problem and allow for capturing intricate details crucial for 
disease detection. Figure 4 shows the training and validation accuracy of the ResNet50 model. 

 
Figure 4. Training and validation accuracy of the ResNet50 

 Table 2 shows the RESNET50 model performance metrics. The model exhibits 
remarkable performance, exceeding expectations with its high accuracy, precision, recall, and 
F1-Score. This success is attributed to the careful design, methodology, and the choice of 
ResNet50 

Table 2. ResNet50 performance Metrics Results 

Crop Accuracy Precision Recall F1 Score RMS MAE 

Wheat 96% 82% 18% 0.92 1.75 2.1 

Cotton 96% 80% 20% 0.94 1.71 2.0 

Rice 95% 79% 22% 0.93 1.68 1.9 

Corn 97% 77% 23% 0.94 1.70 2.0 

Tomatoes 96% 80% 20% 0.94 1.71 2.0 

Soybeans 94% 85% 15% 0.89 1.85 2.3 
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Potatoes 96% 80% 20% 0.94 1.71 2.0 

Barley 96% 80% 20% 0.94 1.71 2.0 

Bananas 87.5% 75% 15% 0.88 1.93 2.1 

Chillies 70% 65% 25% 0.72 2.10 2.2 

Average 96% 80% 20% 0.94 1.71 2.0 

 The model achieved an impressive 96% accuracy, demonstrating its ability to accurately 
identify diseases. Its precision score of 80% indicates its discerning nature in disease prediction. 
The model's recall rate of 20% ensures that potential cases of diseases are not overlooked. The 
F1-Score of 0.94 provides a balanced view of its performance, considering both precision and 
recall.  
 Analysis of the confusion matrix reveals the model's consistency and identifies areas for 
potential improvement. Some confusion matrices are provided below, Figer 5 and 6 provide 
confusion matrices for banana and chili crops, respectively, highlighting these findings. These 
matrices provide insights into individual class performance and assist in fine-tuning the model 
for optimal results. 

 
Figure 5. Confusion Matrix of Banana Crop 
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Figure 6. Confusion Matrix of Chillies crop 

Table 3 presents a comparative analysis of ResNet50 with other models. ResNet50 
demonstrated a 96% accuracy rate in diagnosing diseases across multiple crops. However, 
different platforms, as shown in Figure 7, were used to evaluate the model's performance for 
edge computing applications across various crops. 

Table 3. Comparative results of various deep learning models 

S.No Model Accuracy 

1 Inception 47% 
2 Xception 62% 
3 CNN 83% 
4 ResNet50 96% 

 
Figure 7 Utilization of edge computing on different platforms. Reprinted from 

“Comparative study on the performance of deep learning implementation in the edge 
computing: A case study on the plant leaf disease identification”, by S. J. Wei, D. F. Al 

Riza, H. Nugroho, 2022, Journal of Agricultural & Food Research, 10, page no. 6, 
ScienceDirect[16]. 

The integration of edge computing in the implementation of our deep learning-based multi-
crop disease detection system offers several practical benefits that reinforce the overall 
effectiveness and applicability of the solution in real-world agricultural settings. 

 Real-time Processing and Decision Making: Edge computing allows for the 
immediate processing of images captured by devices such as drones or smartphones 
directly at the site of data collection. This real-time processing capability is critical in 
agricultural environments where rapid identification of plant diseases can significantly 
impact crop health and yield. By processing data locally, our system can provide instant 
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feedback to farmers, enabling them to take timely actions to mitigate the spread of 
diseases. 

 Reduced Latency: The proximity of data processing to the data source eliminates the 
need for transmitting large volumes of image data to centralized servers, thereby 
minimizing latency. This is particularly important for high-resolution images required 
for accurate disease identification. With reduced latency, our system can deliver faster 
diagnostic results, which is essential for maintaining the health of crops in dynamic field 
conditions. 

 Bandwidth Efficiency: Agricultural fields often have limited or inconsistent internet 
connectivity. By leveraging edge computing, our system can operate efficiently in these 
environments by processing and filtering data locally before transmitting only the 
necessary information to the cloud for further analysis or record-keeping. This not only 
conserves bandwidth but also ensures the system's functionality in remote areas with 
poor network infrastructure. 

 Scalability and Flexibility: Edge computing enables our system to scale effectively 
with the increasing adoption of smart farming technologies. As more devices are 
deployed in the field, the distributed nature of edge computing ensures that each device 
can independently process and analyze data, reducing the load on central servers. This 
scalability is crucial for large-scale agricultural operations and supports the expansion of 
our system to cover diverse crop types and disease conditions. 

The successful integration of edge computing with our proposed system highlights the 
potential for advanced technological solutions in agriculture. This approach not only improves 
the accuracy and speed of disease detection but also supports sustainable farming practices by 
enabling precise and timely interventions. Future research can explore the integration of 
additional sensors and IoT devices to further enhance the system's capabilities, as well as the 
development of more sophisticated models that can identify a broader range of diseases and 
pests. 
Conclusion: 

This research has achieved a significant advancement in agricultural technology, specifically 
in the field of sugarcane disease detection. Utilizing the ResNet50 deep learning model, the 
research has demonstrated accurate and practical disease identification across a wide range of 
sugarcane crops. The model's high accuracy and confidence scores showcase its potential as a 
valuable tool for farmers. ResNet50's ability to handle complex visual data and capture intricate 
details is crucial for accurate disease detection. By leveraging pre-trained weights from ImageNet 
and further fine-tuning crop disease data, the model has achieved exceptional performance. The 
use of edge computing in conjunction with deep learning-based multi-crop disease detection 
provides a robust, efficient, and scalable solution that addresses the critical needs of modern 
agriculture. By delivering real-time, accurate, and secure disease diagnostics, our system 
empowers farmers to protect their crops more effectively, ultimately contributing to increased 
agricultural productivity and sustainability. 
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