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NOISIAI

of its production is wasted due to diseases. Fungal infections caused by pathogenic

fungi are particularly harmful, greatly reducing crop yields. Manual visual inspection
of large fields is slow, exhausting, and requires specialized expertise. This research introduces a
novel combination of image augmentation, CIELLAB segmentation, and a fine-tuned pre-trained
CNN, achieving an unprecedented 98.43% accuracy in wheat fungal disease classification,
addressing gaps in current detection methods and promoting sustainable agriculture. To conduct
this research, datasets from Kaggle were merged and meticulously validated to create a
comprehensive set with five classes: healthy wheat and four fungal diseases. Preprocessing steps
included resizing, contrast enhancement and noise removal to ensure uniform and high-quality
images followed by rigorous image augmentation techniques to expand and diversify the dataset
ultimately enhancing the deep learning model's robustness and accuracy. The CNN model,
trained over 80 epochs achieved an impressive 98.43% accuracy in classifying wheat fungal
diseases. With a precision of 98.47% and an F1 score of 98.43% the model demonstrated strong
positive classification accuracy. Additionally, a recall of 98.43% and specificity of 98.47%
indicated its effectiveness in identifying true positive cases and accurately detecting disease
presence or absence.
Keywords: CNN; Wheat Fungi Diseases; Deep Learning; CIELAB Segmentation and Smart
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Introduction:

Wheat is essential for global food security, serving as a primary food source for much of
the world's population. However, wheat production is perpetually threatened by a range of
fungal diseases that significantly reduce crop yield and grain quality [1]. Diseases such as stripe
rust, septoria, brown rust, stem rust, powdery mildew, and fusarium head blight not only lower
wheat yields but also compromise its safety and nutritional value, posing severe challenges to
farmers and consumers alike [2].

Among these brown rust, yellow rust, septoria and stem rust are particularly notorious.
Brown rust also known as leaf rust is caused by the fungus Puccinia triticina. It is characterized
by small, round, orange-brown pustules scattered on the leaves. These pustules primarily affect
the upper leaf surface, reducing the photosynthetic area and thereby decreasing the grain yield
and quality [3]. Yellow rust, caused by Puccinia striiformis, is another significant wheat disease.
It manifests as yellow pustules arranged in linear rows on the leaves. This disease thrives in cool
moist environments and can lead to substantial yield losses if not managed properly [4]. Septoria
caused by Zymoseptoria tritici, leads to the disease known as Septoria tritici blotch. It is
characterized by necrotic lesions with pycnidia which are small black fruiting bodies. This disease
can significantly reduce the green leaf area adversely affecting photosynthesis and grain filling
[5]. Stem rust caused by Puccinia graminis f. sp. tritici, is perhaps the most devastating of all
wheat rusts. It forms elongated, reddish-brown pustules on stems, leaves, and spikes. Stem rust
can cause severe yield losses particularly in susceptible wheat varieties [6]. These diseases can
lead to significant financial losses for farmers, increased costs for fungicide applications and
broader economic consequences for countries that rely heavily on wheat production and export.

The economic impact of wheat fungal diseases is multifaceted. Direct yield losses are the
most immediate and visible effect. For instance, brown rust can reduce wheat yields by up to
20% in severely affected areas directly translating to millions of dollars in lost revenue for
farmers [7]. Yellow rust, thriving in cooler climates has caused yield losses exceeding 70% in
some regions leading to severe economic distress [8]. Moreover, septoria, which reduces the
green leaf area and thus the photosynthetic capacity of wheat plants necessitates increased
fungicide use. The cost of these chemical treatments along with the labor and machinery needed
for application adds to the economic burden on farmers [9]. This increased expenditure can be
particularly challenging for smallholder farmers in developing countries where access to
fungicides and modern agricultural practices is limited.

Stem rust poses an even more dire economic threat. The resurgence of virulent strains
like Ug99 has raised alarms globally. Countries like Ethiopia and Kenya, where agriculture is a
significant part of the economy, have faced severe outbreaks leading to multi-million dollar
losses in wheat production [6]. The fear of such outbreaks also leads to increased investment in
breeding resistant varieties and monitoring systems further straining agricultural budgets. On a
broader scale, these diseases impact global wheat markets. Significant yield reductions in major
wheat-producing countries can lead to increased global wheat prices affecting food security and
increasing the cost of wheat-based products worldwide [10]. This price volatility can have ripple
effects impacting not just farmers but also consumers and food industries globally. Farmers
facing consistent losses are less likely to invest in new technologies or expand their operations
potentially stunting agricultural development in affected regions [11].

Moreover, in underdeveloped countries the diagnosis of wheat fungal diseases relies on
manual visual inspection, which is labor-intensive, time-consuming, and requires specialized
expertise [12]. The limitations of these methods underscore the necessity for automated systems
capable of providing rapid, accurate, and scalable solutions. Advances in image-based detection
techniques, particularly those utilizing deep learning, have revolutionized the diagnosis and
management of agricultural diseases [13]. CNNs have shown significant potential in improving
classification accuracy by analyzing detailed image data. However, despite progress in applying
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deep learning to agricultural disease detection, there remains a gap in developing efficient,
scalable, and reliable systems tailored to the diverse environments where wheat is cultivated [14]
[15]. Existing methods often fall short in the early stages of infection when timely intervention
is most effective [16], highlighting the need for continued research into innovative technologies
that can enhance disease detection and management.

This study aims to fill this gap by developing a deep learning-based system for detecting
and classifying wheat fungal diseases using leaf images. Our approach includes augmenting the
dataset to enhance robustness, preprocessing the images for consistency, and employing
CIELAB-based segmentation to precisely isolate diseased areas. By fine-tuning pre-trained CNN
models, we optimize their performance in identifying various fungal infections in wheat leaves,
thereby facilitating timely intervention and improved disease management practices. The
motivation behind this research is to provide a reliable and efficient tool for early disease
identification, which is crucial for mitigating crop losses and improving yield quality. By
integrating deep learning techniques with traditional image processing methods, we aim to create
a robust system that can support farmers in making informed decisions about disease
management, ultimately contributing to the sustainability of wheat production. By addressing
the limitations of traditional methods and filling the existing research gap, our study provides a
promising solution for enhancing the accuracy and efficiency of disease management in wheat
cultivation.

Objectives:

. To develop a deep learning system to automatically classify fungal diseases in wheat.
This eliminates the need for slow and labor-intensive manual detection, improving
efficiency.

. To enhance Disease Detection Accuracy: Leverage deep learning's capabilities to achieve
superior accuracy in identifying specific wheat fungal diseases compared to traditional
methods.

. To create an automated system that reduces reliance on specialized expertise for disease

identification. This empowers farmers, even those without extensive training, to

effectively monitor their crops.

. To employ image analysis techniques to potentially facilitate earlier detection of wheat
fungal diseases compared to visual inspection. This allows for timely interventions to
minimize crop damage.

Novelty Statement:

This study presents a novel deep learning approach for automatic wheat fungal disease
classification, aiming to surpass existing methods. We employ image augmentation,
preprocessing, and CIELAB segmentation to enrich the training data and extract disease-specific
features. Furthermore, a pre-trained convolutional neural network (CNN) is meticulously fine-
tuned for this task. This combination achieves a remarkable 98.43% classification accuracy on a
dataset of 7,950 wheat leaf images, outperforming current advanced methods. This approach
has the potential to significantly improve wheat disease detection and empower farmers with a
tool for earlier intervention and ultimately, more sustainable wheat production.

Literature Review:

In the field of agricultural production, ignoring the early signs of plant disease can lead
to the significant crop losses and ultimately the destruction of the global economy [16]. This
section provides a detailed review of state-of-the-art research in the specific field of foliar
diseases.

In research [17], focused on various diseases affecting wheat yield, especially leaf rust,
stem rust and stripe rust. Deep learning models such as InceptionV3 and ResNet50 achieved
classification accuracies of 95.65% and 81.57%, respectively, for identifying wheat diseases.
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Image data were collected from the Mundi.com open-source repository and the Bishoftu
Agricultural Research Institute in Ethiopia, comprising over 1,500 images of wheat diseases
across three classes. Data pre-processing including standardization, formatting, and deletion and
rescaling was done. In paper [18], categorized wheat diseases into four groups: healthy, leaf rust,
tan spot and spot blotch. A convolution neural networks model achieved highest accuracy of
97.20%, wvalidated by domain experts. This research employed machine learning, image
processing, and knowledge-based systems, utilizing handcrafted and deep features from color
and color-infrared images. Parallel feature fusion enhanced performance and compared decision
tree and deep learning models like Alex Net, VGG16, ResNet101, Google Net and Xception.
Expert opinions validated results and generated decision rules. The manually created dataset
included 1,000 samples for each category derived from color and color-infrared images captured
with RGB and near-infrared cameras. The author in [19] categorized wheat seeds into three
groups; Kama, Rosa and Canadian. Various classification algorithms were assessed for
prediction accuracy, with the ensemble classifier achieving the highest accuracy of 95% through
hard voting decisions. This research compared the performance of algorithms such as K-Nearest
Neighbors, Classification and Regression Trees, and Gaussian Naive Bayes with group
approaches. The dataset from the UCI library consisted of 210 wheat grain samples from three
cultivars characterized by seven physical attributes: area, girth, compaction, length, width,
asymmetry coefficient, and grain furrow length.

The study [20] focused on wheat stripe rust disease categorizing it into three classes:
resistant, susceptible, and healthy. The study achieved a maximum overall accuracy of 84.10%
on cropped images, using image processing techniques such as single-band and dual-band
processing, VARI calculation, image segmentation, and cropping. They also employed transfer
learning and various CNN architectures. In [21], the author classified wheat diseases into 10
groups including yellow rust, leaf rust and powdery mildew. The deep convolutional neural
network VGG19 model achieved an impressive accuracy of 97.65% in disease classification.
This study utilized image processing and deep learning techniques, extracting handcrafted and
deep features from color images and incorporating parallel feature fusion for enhanced
performance. Expert opinion was employed to validate classification results and generate
decision rules. The manually created dataset comprised 500 samples for each category of wheat
disease, derived from color images captured with an RGB camera. In another study [22], the
author employed position attention blocks focusing on extracting position information from the
feature map and used transfer learning to accelerate the model's training speed. Wheat leaves are
categorized into four classes: healthy, rust, powdery mildew and leaf spot. The proposed model
demonstrated an impressive accuracy of 96.40%, surpassing comparable models. The dataset
comprised 10,000 wheat leaf images gathered from diverse regions in China, with model
validation extended to the Plant Village open-source dataset.

A deep learning model [16], Cereal Conv, a Convolutional Neural Network developed
in classifying images of diseased wheat leaves under varied conditions_reached an impressive
97.05% classification accuracy, outperforming the best expert pathologist by 2%. Cereal Conv
utilized pre-trained networks, including VGG16, Inception V3, Mobile net, and Xception, with
transfer learning followed by fine-tuning with a short classifier network. Training has been done
on more than 19,000 images from UK and Ireland collected in the summer of 2019 with
categories like healthy plants, yellow rust, brown rust, powdery mildew and septoria leaf blotch.
In study [23] genomic prediction approaches based on machine learning algorithms including
Random Forest Classification Plus Kinship (RFC_K), Support Vector Classification Plus
Kinship (SVC_K) and Light Gradient Boosting Machine Plus Kinship (light GBM_K) were
developed and applied. These machine-learning-based genomic prediction methodologies were
widely applied to data from whole-genome association studies. The accuracies of the RFC_K,
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SVC_K, and light GBM_K models for Wheat Blast (WB) and Wheat Stripe Rust (WSR) reached
as high as 90% and 93%, respectively.

In paper [2], the author distinguishes five classes of diseases in wheat: Powdery Mildew,
Septoria Leaf Spot, Tanspot, Snow mold and one healthy class. Models such as MobileNetV2
and MobileNet demonstrated the best performance in detecting and classifying diseases on
wheat leaves. The obtained accuracies for wheat leaf disease detection by the MobileNetV2 and
MobileNet models were 0.9632 and 0.9628, respectively. The total dataset used in this research
consisted of 100 images for each class of wheat diseases after augmentation, originally starting
with 500 images in all classes but expanding to 4,000 images through augmentation for training,
validation, and testing of the models. The author [24] measurements were conducted using an
electronic nose device based on changes in gas composition where the sensors are exposed to it
and temperature modulation by changing the sensor heater voltage. A machine learning-based
model, namely the Random Forest Classification model was used to distinguish between healthy
and infected samples. The classes used were healthy wheat grains and wheat grains infected by
two Fusarium species with F. culmorum and F. graminearum. There are therefore three classes:
healthy, infected by F. culmorum and infected by F. graminearum. The achieved classification
accuracy ranged between 85% and 93% for different tested models. A performance by the best
classifier was noted by recall in the range of 88% to 94%, precision ranging between 90% and
96% and accuracy in the range of 85% to 93%. Table 1 presents a summary of state-of-the-art
research literature.

Material and Methods:

This section discusses the proposed methodologies for the identification and
classification of diseases affecting wheat fungi plants, Figure 1 presents a step-by-step visual
guide to the proposed model's operation, offering users a clear understanding of its internal
processes.

Table 1. Brief summary of existing state-of-the-art.

Ref. Year Classes Technique Used Accuracy (%)
[17] 2021 3 InceptionV3 95.65
[18] 2021 4 Alex Net, VGG19, ResNet101, Google Net 97.20
[19] 2022 3 Ensemble Learning 95.00
[20] 2023 3 CNN 84.10
[21] 2023 10 VGG19 97.65
[22] 2023 4 Transfer Learning 96.40
[16] 2023 5 Cereal Conv 97.05
[23] 2024 2 RFC-K, SVC-K 93.00
2] 2024 5 Mobile Net 96.32
[24] 2024 3 Random Forest 93.00

Dataset: To create a robust dataset for training the deep learning model to identify wheat fungal
diseases, a search on Kaggle identified several datasets, each limited to one or two disease classes.
Two of these datasets [25][26] were merged to create a comprehensive set with five classes:
healthy wheat and four disease categories (brown rust, leaf rust, septoria, and yellow rust).
Following download, the datasets were meticulously validated. This involved checking image
labels for accuracy, ensuring consistent data formats, verifying image resolution, and confirming
a balanced distribution of images across classes. Additionally, individual images were reviewed
for blurriness, noise, or mislabeling. Any image failing these quality checks was removed. This
rigorous validation ensured only high-quality, consistent data was used for merging. The final
dataset contained 1,325 well-distributed, clear images suitable for model training. This
transparency allows for replication of the study and maintains the research's integrity. Sample
images are shown in Figure 2, and details of each class images are shown in Table 2.
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Pre-Processing:
The wheat disease image dataset underwent several preprocessing steps to enhance its
suitability for deep learning models. Firstly, images were resized to ensure uniformity in
dimensions, facilitating model training and compatibility. Contrast enhancement techniques
were applied to improve image clarity, making disease symptoms more discernible against the
plant background. Additionally, noise removal procedures were implemented to eliminate
abnormalities that obscure disease symptoms, enhancing image quality for effective analysis.
These preprocessing steps collectively contribute to accurate disease diagnosis and support
informed decision-making in crop management. Sample images are shown in Figure 3.

Table 2. Wheat Disease Merged Dataset before and after Augmentation.

Dataset 1‘Dataset 2

Dataset

v
Resize Image @ _ Contrast
100x100 Enhance Image
v
Image Noise
Augmentation Removel

v
Augmented

Dataset
v

Training ~ Validation
v
CNN Model

Model Train & Tuning Parameter

o 4
Model Validate & Evaluate

/.‘

o

l
< J
veerse TS
Prediction J DarbiE
@

Yellow Rust

Figure 1. Workflow diagram of methodology.

S. No. Classes Original Dataset Images Augmented Dataset Images
1. Brown Rust 338 2028
2. Healthy 435 2610
3, Leaf Rust 249 1494
4, Septoria 97 582
5 Yellow Rust 206 1236

Total images

1325

7950
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Figure 2. Sample images from datasets Figure 3. Sample images after pre-processing.
[25]]26].
Original Rotation up Width shift
to 40% up to 20%
Height shift Shear up to Zoom up to Horizontal flip
up to 20% 20% 20%

Figure 4. Augmentation strategies employed.
Image Augmentation:

Starting with 1,325 images across five wheat health categories (healthy and four disease
types), a variety of image augmentation techniques were implemented to bolster the dataset and
strengthen the resulting deep learning model. These techniques essentially create new, slightly
altered versions of existing images, expanding the dataset to 7,950 images. Rotations up to 40
degrees, horizontal and vertical shifts up to 20%, shearing distortions, zooming, and horizontal
flips were all applied. The details are given in Table 2, while sample images are shown in Figure
4. This diversification exposes the model to a broader spectrum of image variations, mimicking
real-world scenarios where disease appearances might differ slightly. This augmentation process
effectively enhances the dataset's robustness and the model's generalization capabilities, allowing
it to perform more accurately on unseen data.

The six augmentation techniques; rotation, width shift, height shift, shear, zoom and
horizontal flip, significantly enhance the model's ability to generalize by creating diverse training
examples [27]. Rotation and shear introduce variations in angle and perspective, while width and
height shifts adjust for positional changes. Zooming helps the model learn from different scales
and horizontal flipping aids in recognizing symmetrical features. Together, these techniques
improve the robustness and accuracy of the model by exposing it to a broader range of
conditions.
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Image Segmentation:

The Lab color space aids in segmenting wheat leaf diseases by separating color
information from luminance, emphasizing the contrast between healthy and diseased tissue [28].
This approach enhances the visibility of diseases by using the real leaf color to distinguish them
more clearly. The sharp contrast between black, representing healthy tissue, and white,
representing diseased tissue, is illustrated in Figure 5.

Original Image Diseased Areas Segmentation Binary Image

Figure 5. Lab color space segmentation results.
Data Splitting:

The wheat disease dataset was divided into two sets for model training and validation
using hold out validation techniques. This ensures a variety of training samples for the model to
learn the complexity of the disease. The validation set evaluates the performance of the model
on unseen data and serves as an important checkpoint for generalization. This method helps to
fine-tune the model, avoid overfitting, and improve reliability and accuracy for real-world
scenarios.

Trained Model:

This workflow centers on training a convolutional neural network (CNN) for predicting
plant diseases. Following data preparation, augmentation, and lab color space segmentation,
CNN undergoes iterative training and tuning to identify disease features. Validation and
evaluation then gauge the model's performance against other datasets. The objective is disease
prediction, with the model classifying diseases like brown rust and leaf rust based on color labels.
The architecture model begins with a convolutional layer featuring 32 filters and a 3x3 kernel
size, applied to input images of 100x100 pixels with RGB color channels. ReLU activation
introduces non-linearity, while 'same' padding maintains output volume size. A subsequent Max
Pooling layer with a 2x2 pool size reduces spatial dimensions by half, aiding computation
reduction and preventing overfitting. Additional convolutional and Max Pooling layers follow,
increasing filters to 64 to capture complex features at varying abstraction levels.

Wheat Fungi Disease Images

Con2D 1 | Con2D 2 | Con2D 3 | Con2D 4 |
Max + Max + Max + Max
Pooling Pooling Pooling Poaling
1 | 1] 1 | 1 |
Input Layer L Feature Extraction 1
Disease ?
Septoria _

uahiel4

>
g
=
o
=
=]
m
=
=
a
2
=2
=
@
=

(XEW}Jos) UolaUN4 UNEBANDY

Output Layer

1 Classification |

Figure 6. CNN model architecture.
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Flattening transitions the 3D output model to a 1D vector, facilitating classification. A
dense layer with 256 units enables learning of nonlinear feature combinations, with ReLU
activation applied. Dropout, set at a rate of 0.2, prevents overfitting by randomly dropping 20%
of neuron connections during training. The output layer, with units equal to the number of
wheat fungal disease classes, employs 'Soft max' activation to output a probability distribution
over classes. This CNN architecture, with its convolutional, pooling, and dense layers, along
with activation functions, dropout, and SoftMax, is tailored to accurately identify and classify
wheat diseases from affected images. The CNN model architecture is shown in Figure 6.
Result and Discussion:

This results section provides detailed insights into the experimental results obtained
from the proposed deep learning CNN model. Subsequently, a comprehensive discussion of the
results obtained is presented.

Performance Evaluation Measure:

When evaluating performance metrics for wheat fungi disease detection or classification
using techniques such as machine learning models, several key metrics are commonly used.
Accuracy is a metric that measures how often a machine learning model correctly predicts the
outcome which can be calculated using Eq. (1) while precision is a metric that measures how
often a machine learning model correctly predicts the positive class and is computed using Eq.
(2). Recall, also known as the true positive rate (IPR) which is computed using Eq. (3) while the
Fl-score is computed using Eq. (4). Specificity result shows model's ability to predict a true
negative of each category and is calculated using Eq. (5)

TP+TN
Accuracy = ———— M
TP';-I;FN+FP+FN
Precision = (2
TPTP+FP
Recall =
TP+FN 1 (3)
2X Precision X Reca
F1 — Score = — “)
Precision+Recall
Specificity =
p Y = Invrp ©®)

The dataset was split into 80% for training and 20% for validation to optimize training
and ensure sufficient data for evaluation. The CNN model was trained for 80 epochs, balancing
underfitting and overfitting while ensuring proper convergence of the loss function. The trained
CNN model achieved 98.43% accuracy in identifying wheat fungal diseases as shown in Figure
7 with model loss displayed in Figure 8. Its precision was 98.47% and the F1 score balancing
precision and recall also reached 98.43% demonstrating high positive classification accuracy.

1.0
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Figure 7. Training and validation accuracy. Figure 8. Training and validation loss.

The model demonstrated a recall of 98.43% effectively identifying true positive cases
while its specificity of 98.47% showed its ability to accurately detect diseases or confirm their

July 2024 | Vol 6 | Issue 3 Page | 1053



OPEN ACCESS . . . .
a International Journal of Innovations in Science & Technology

absence. The support value was set at 255 per category in the validation set to ensure sufficient
data. The results are shown in Figure 9.

100 +
05 |
90 1
85
80
75 1
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® Precision W Specificity  © Sensitivity  » F-1 Score

Figure 9. Results of other evaluation measure.
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Figure 10. Confusion matrix.

The performance of the CNN model on specific classes like yellow rust and septoria
revealed some interesting insights and challenges. When evaluating yellow rust, the model
generally performed well but there were instances where it confused yellow rust with other rust
diseases such as brown rust. This misclassification likely occurred due to the subtle visual
similarities between the rust diseases where yellow rust and brown rust share overlapping
symptom patterns like pustules on leaves making it challenging for the model to distinguish
between them accurately. In the case of septoria, the model faced more significant challenges.
Septoria can present with symptoms that vary widely in appearance including small, water-
soaked lesions that can be confused with early stages of other diseases. Additionally, variations
in image quality and environmental factors such as lighting conditions further complicated
accurate identification. These issues led to some misclassifications where septoria was
occasionally mistaken for yellow rust or other disease classes with similar visual features. These
challenges highlight the need for augmentation and enhancing the training dataset with more
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diverse and representative images to improve the model’s ability to differentiate between
diseases with similar appearances. This would help in increasing the overall accuracy and
reliability of the CNN model in identifying specific wheat fungal diseases like yellow rust and
septoria.

The confusion matrix shown in Figure 10 represents the actual conditions on the y-axis
and the predicted conditions on the x-axis with percentages representing the model's accuracy
for each condition. The model predicted brown bell, leaf rust, and septoria conditions with 100%
accuracy. One of the main observations was that the model occasionally misclassified brown
rust as leaf rust and vice versa. This issue likely arose due to the visual similarities between the
two diseases which can present with overlapping symptoms making them difficult to distinguish
even for a trained model. Another notable challenge was with septoria, which sometimes got
confused with yellow rust. The subtle differences in symptom presentation, especially in images
with lower quality or varying lighting conditions contributed to this misclassification. The model
also faced difficulties with accurately identifying healthy wheat, occasionally misclassifying it as
one of the disease classes. This issue was more pronounced in images where the healthy wheat
had some natural discoloration or minor blemishes that could be mistaken for disease symptoms.
The model achieved 100% accuracy for some conditions due to the distinctiveness of their visual
features like the bright yellow pustules of yellow rust which are easily recognizable. In contrast,
the model struggled with diseases such as brown rust and leaf rust due to their overlapping
symptoms making them hard to differentiate. Variability in symptom presentation, like with
septoria and inconsistencies in image quality or quantity also contributed to reduced accuracy.

100 -
95
£ 90 -
&
m
S
o &5
<
30
75
[12] 113] [14] [15] (18] Proposed
SOTA Technigues |

Figure 11. Comparison with existing state of the art techniques.

Figure 11 represents results of our proposed model against state-of-the-art studies that
used different learning models. While comparing the results we specifically considered studies
that worked with the WDD-2020 and WDD-2021 dataset on wheat plant. Our analysis revealed
that our work covered more wheat fungi disease classes, and our fine-tuned, pre-trained model
achieved a leading accuracy of 98.43%.

Conclusion and Future Work:

The agricultural sector is vital for high-quality food production and a strong economy.
Fungal diseases in wheat can severely impact yields and species diversity leading to significant
losses. Early detection through accurate automated techniques can boost production quality and
reduce economic losses. Wheat, the world's third most harvested grain faces considerable waste
due to disease, particularly from pathogenic fungi. Manual inspection is time-consuming and
requires expertise, but automated classification can enhance crop quality and quantity. This study
proposes a deep learning solution to detect and classify wheat fungal diseases aiming to improve
detection, classification and accuracy. After preprocessing and augmenting dataset CIELAB-
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based segmentation is carried out to accurately isolate the diseased regions of the leaf. Then a
pre-trained Convolutional Neural Network (CNN) was adjusted for optimal hyper-parameters
and used to identify fungal diseases in wheat. We used the wheat fungi dataset containing 7,950
samples across five disease classes including healthy plants. Our experiments measured
classification accuracy, precision, recall, specificity, F1 score and support comparing results with
advanced studies. The CNN achieved 98.43% classification accuracy outperforming other state-
of-the-art models. Future research should aim to develop a pest identification model to improve
wheat health monitoring by detecting pest infestations.
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