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lant diseases can significantly hinder food crop production, leading to substantial 
economic losses and posing a threat to global food security. Machine learning, particularly 
deep learning, plays a crucial role in object detection and classification. In this study, we 

present an AI-based plant monitoring system for detecting and classifying plant diseases using 
visual images. Our deep learning models are trained on plant images obtained from natural 
environments. Manual detection and classification are both challenging and labor-intensive, 
making accurate and timely diagnoses from an automatic system highly beneficial for treating 
plant diseases. Traditionally, plant disease detection using deep learning has relied on images 
taken in controlled environments, which do not support in-situ detection for remote 
monitoring. The Plantdoc dataset, a popular resource consisting of plant images from actual 
field conditions, is used in our study. We employ the YOLOv5 algorithm from the field of 
computer vision to the Plantdoc dataset, achieving results that surpass previous work on the 
same dataset. This success is attributed to our selected model and data augmentation techniques. 
Our model can classify and detect various diseased and healthy leaf classes with a mean Average 
Precision (mAP) of 92%. This capability enables farmers and researchers to remotely monitor 
plant health and diagnose plant diseases, thereby saving time, reducing costs, and minimizing 
crop loss. 
Keywords. Machine Learning; Deep Learning; Artificial Intelligence; Plant Diseases and 
YOLOV5. 
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Introduction. 
Plant diseases adversely affect agricultural productivity, causing significant damage to 

crops and impacting food production. According to the United Nations Food and Agriculture 
Organization (FAO), plants are key contributors to food security, with 80% of the human diet 
dependent on plants. Food production needs to increase by about 70% from current levels by 
2050 to meet the food requirements of the growing world population. Plant diseases and pests 
are responsible for approximately 20% to 45% of global food production losses, amounting to 
over $220 billion annually, a substantial loss to economies and individual farmers [1]. For 
instance, in Sub-Saharan Africa, cassava mosaic disease (CMD) and cassava brown streak disease 
(CBSD) cause annual losses exceeding $1 billion [2]. Plant diseases can affect different parts of 
the plant, such as the root, stem, or leaf, with leaf diseases having the most significant impact 
on production [3,4]. Traditional methods of plant disease detection include visual inspection, 
fluorescence-based techniques, thermography, and hyperspectral imaging [5]. 

• Fluorescence. Utilizes DNA probes combined with microscopy to detect bacterial and 
pathogen infections in plants. 

• Thermography. Uses thermographic cameras to detect infrared rays emitted from plant 
leaves, analyzing color differences to determine water loss caused by stomata damage 
from pathogens. 

• Hyperspectral imaging. Employs hyperspectral cameras to collect data in three 
dimensions over wide geographical areas, analyzing reflectance resulting from 
biophysical and biochemical changes due to pathogens. 
These traditional methods are time-consuming, expensive, and impractical for small 

farm holders [6]. An efficient, cost-effective solution for accurate automatic disease detection 
would benefit farming economies and enhance global food security. AI technologies, 
particularly machine learning (ML) and deep learning (DL), have shown robustness to variations 
in lighting conditions, plant poses, and types, offering a viable alternative. 

Advancements in hardware and neural networks have accelerated the application of AI 
in various fields, including agriculture. AI-based systems leveraging computer vision have made 
significant progress in object detection and classification from visual images [7]. Research in the 
agriculture sector has explored automatic plant disease detection and classification systems using 
models [8] such as convolutional neural networks (CNN) [9], generative adversarial networks 
(GAN) [10], and hyperspectral methods [11]. These models have achieved success in extracting 
and identifying various types of crop information. Sophisticated and expensive equipment is 
often used for ground surveys or remote monitoring of crop health [12]. For example, the US 
forest health monitoring program collects data on forest ecosystems through meticulous manual 
observations and instrument recordings, followed by detailed analysis [13]. 

The agriculture sector employs chemical sprays, such as bactericides, fungicides, and 
nematicides, to control plant diseases. However, these sprays have side effects on the 
environment and plants, causing severe damage to the agroecosystem and incurring high costs. 
There is a need for more environmentally friendly and cost-effective methods for early plant 
disease detection to reduce the use of chemical sprays, ensuring less residual toxic chemicals on 
agricultural products, protecting groundwater from contamination, and minimizing 
environmental impact [13,31]. Early disease diagnosis with AI systems can reduce the need for 
chemical treatments and prevent disease spread. 

Previous research on plant disease detection and classification using ML and DL models 
has relied on datasets such as PlantVillage, Digipathos, Northern Leaf Blight (NLB), and CD&S, 
which contain leaf images taken in controlled environments [14]. Results indicate that controlled 
or lab-based datasets are unsuitable for real-time plant disease detection and prediction. The 
PlantDoc dataset, introduced in 2020 by Davinder et al., consists of plant images captured in 
real environmental conditions [15]. Images with multiple leaves in background and different 
lightening condition are present. Their study achieved a mean average precision (mAP) of up to 
39% using the Faster-RCNN-Inception-ResNet model after preliminary data processing and 
retaining only 27 classes with adequate representation. 

We apply diverse data augmentation techniques to increase training data size and 
improve model generalization capabilities. Using the highly proficient You Only Look Once 
version 5 (YOLOv5) algorithm, [16] we developed an AI-based system for plant disease 
detection and classification. For the 27 classes, we achieved a mAP of 49% [15]. By balancing 
the dataset and removing underrepresented classes (retaining only 17 classes), we further 
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improved the mAP to 92%. This enhanced system enables farmers and researchers to remotely 
monitor plant health, diagnose diseases early, and reduce crop loss and costs. 
Literature Review. 

Plant diseases can be detected using direct or indirect methods. Direct methods involve 
molecular-level analysis and require a large number of samples. Indirect methods include 
observing plants visually or examining their stress or volatility profile [17]. Common indirect 
methods are fluorescence, thermography, and hyperspectral imaging [5]. 

• Thermography detects variations in leaf temperature caused by infections from 
pathogens. Thermographic cameras capture color differences in leaves, indicating water 
loss due to stomata damage. However, this technique cannot identify specific diseases 
[17]. 

• Fluorescence Imaging detects chlorophyll fluorescence as a function of incident light 
on a leaf. This method is used to detect rust in wheat leaves by analyzing chlorophyll 
fluorescence variations at 470 nm [18]. 
In automatic plant disease detection, image processing techniques like image 

segmentation, clustering, and classification are used. The support vector machine (SVM) 
classifier has been utilized to detect and classify healthy and diseased plant leaves. Arivazhagan, 
Sai, et al. [19] used image segmentation and color co-occurrence as attributes to detect various 
diseases in 30 plants from around 500 images. Zhang, Shanwen, et al. [20] used the K-means 
clustering algorithm to segment diseased leaf images and separate healthy from diseased 
cucumber leaves using sparse representation. 

Convolutional neural networks (CNN) have significantly advanced plant disease 
detection and classification. Kawasaki, Yusuke, et al. [21] proposed CNN-based methods for 
cucumber disease classification. Ferentinos [22] used different CNN algorithms like VGG, 
GoogLeNet, and AlexNet to classify various diseased and healthy leaf classes for 25 plant 
species. Another study used a deep convolutional neural network (Deep CNN) to classify 13 
plant disease species from leaf images [23]. Durmuş et al. [24] deployed CNN algorithms 
AlexNet and SqueezeNet for tomato plant disease detection and classification, achieving 
successful deployment on Nvidia Jetson TX1. 

Studies on the open-access PlantVillage dataset, consisting of images from 14 crop 
species and 26 diseases, used the DADCNN-5 architecture, achieving 99.93% accuracy on the 
test dataset and 97.33% accuracy on another dataset. The PlantDoc dataset has also been 
explored with a Siamese network for classification and detection [25]. Despite extensive research 
using machine learning and deep learning algorithms, deploying a practical and accurate system 
in the field remains challenging. Our literature review indicates the need for an automatic system 
for plant disease detection that is efficient and based on real environmental conditions for direct 
monitoring. 

The YOLO algorithm, currently one of the most popular and efficient object detection 
and classification algorithms, is a single-stage neural network known for its speed and accuracy 
[26,30]. Singh, Davinder, et al. used the PlantDoc dataset and trained R-CNN and MobileNet 
models, achieving low accuracy [15]. We propose using the YOLOv5 algorithm, along with 
modifications to the dataset, to design a more accurate and efficient system for real-time plant 
disease detection. 
Material and Methods. 

The methodology of this research work consists of the following steps which are shown 
in figure 1. 
Proposed Method. 

The proposed method involves the implementation of YOLOv5 using Roboflow[27]. 
YOLOv5, pre-trained on the COCO dataset [28], is employed for its efficient object detection 
and classification capabilities. The PlantDoc dataset is uploaded and preprocessed using 
Roboflow, which ensures secure and confidential access to the dataset for training and testing. 
Dataset Collection. 

We utilize the PlantDoc dataset, originated by researchers at the Indian Institute of 
Technology and publicly available. According to the originators, this dataset closely mimics real 
field conditions, making it more representative than other available datasets [15]. The PlantDoc 
dataset contains 2,569 images with 8,851 labels, covering 13 plant species and 30 classes of 
diseased and healthy leaves. The classes include Apple Scab Leaf, Apple Leaf, Apple Rust Leaf, 
Bell Pepper Leaf Spot, Bell Pepper Leaf, Blueberry Leaf, Cherry Leaf, Corn Gray Leaf Spot, 
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Corn Leaf Blight, Corn Rust Leaf, Peach Leaf, Potato Leaf Early Blight, Potato Leaf Late Blight, 
Potato Leaf, Raspberry Leaf, Soybean Leaf, Squash Powdery Mildew Leaf, Strawberry Leaf, 
Tomato Early Blight Leaf, Tomato Septoria Leaf Spot, Tomato Leaf Bacterial Spot, Tomato 
Leaf Late Blight, Tomato Leaf Mosaic Virus, Tomato Leaf Yellow Virus, Tomato Leaf, Tomato 
Mold Leaf, Tomato Two-Spotted Spider Mites Leaf, Grape Leaf Black Rot, and Grape Leaf. 
Some samples from the PlantDoc dataset are illustrated in Figure 2. 

 
Figure 1. Steps of methodology. 

 
Figure 2. Samples of plantdoc dataset. 

Data Augmentation and Pre-Processing. 
Upon analyzing the dataset, we observed a significant class imbalance, with some classes 

having too few images while others had a large number. To resolve this issue and enhance model 
performance, we employed data augmentation techniques. When the dataset was uploaded to 
Roboflow, it provided a detailed analysis of the dataset's health, including the exact number of 
classes and the number of images in each class. The results of this analysis by Roboflow [4] are 
shown in Figure 3. 

We selected 17 classes from the total of 30 shown in Figure 3 and aimed to achieve class 
balance through data augmentation. The chosen classes are apple leaf, bell pepper leaf spot, bell 
pepper leaf, blueberry leaf, cherry leaf, corn leaf blight, peach leaf, potato leaf late blight, potato 
leaf, raspberry leaf, soybean leaf, squash powdery mildew leaf, strawberry leaf, tomato Septoria 
leaf spot, tomato leaf bacterial spot, tomato leaf late blight, tomato leaf mosaic virus, tomato 
leaf yellow virus, and tomato mold leaf. 

We applied a range of augmentation techniques to the dataset, including horizontal flips, 
90° clockwise and counter-clockwise rotations, rotations of -15° and +15°, shear 
transformations of ±15° horizontally and vertically, and adjustments in saturation and 
brightness ranging from ±25%. Additionally, we introduced blurring up to 2.5 pixels and noise 
up to 5% of pixels. These augmentation processes were implemented using Roboflow. As a 
result, the total number of images increased to 12,990. Figure 4 illustrates some of the samples 
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from the PlantDoc dataset after applying these augmentation steps. Furthermore, the dataset's 
health improved, as depicted in Figure 5, following the augmentation procedures. 

 
Figure 3. Original plantdoc dataset health, images in each class and total classes shown by 

Roboflow. 

 
Figure 4. Samples after augmentation applied. 

 
Figure 5. Improved dataset health after augmentation applied. 

For model training and testing, we utilized Google Colab, benefiting from its free access 
to powerful GPUs. We are grateful to Google Colab for this resource. The training process 
spanned 100 epochs, taking a total of 3 hours and 20 minutes to complete. The YOLOv5 
algorithm consists of three main components. the head, neck, and backbone. Figure 5 displays 
the full architecture of YOLOv5, as provided by Ultralytics. 
Backbone. 

The YOLOv5 algorithm employs the CSP (Cross-Stage Partial Networks) backbone, a 
convolutional neural network that extracts image features at various granular levels. The 
backbone incorporates the BottleNeckCSP [29], which enriches the feature extraction process 
and reduces gradient duplication during CNN optimization. Additionally, the SPP (Spatial 
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Pyramid Pooling) module is integrated to expand the receptive field of the network, enhancing 
its ability to capture spatial hierarchies [29]. 
Neck. 

The neck of YOLOv5 comprises several network layers that aggregate and refine image 
features before passing them to the prediction layer. Feature pyramids are created through these 
layers, aiding the model in generalizing across different object scales. YOLOv5 utilizes PANet 
[5] for this purpose, generating feature pyramids that improve the model’s performance on a 
range of object sizes and scales. 
Head. 

The head of the network is responsible for predicting bounding boxes, classifying 
objects, and identifying image features. YOLOv5 operates on a regression-based approach with 
a streamlined pipeline, enabling high-speed processing. It can handle real-time video streams 
with a latency of less than 25 seconds. During training, YOLOv5 focuses on global context 
within the target regions, aiming to classify objects and predict bounding boxes directly from 
the entire input image. 

 
Figure 6. Architecture of YOLOv5 model. 

Results and Discussion. 
Our results, obtained using the YOLOv5 small model, demonstrate significant 

improvement over those reported by Davinder et al. [15]. These enhancements stem from 
dataset modifications, including data augmentation and class balancing. Table 1 displays the 
performance metrics of YOLOv5 on the original PlantDoc dataset. In contrast, Table 2 presents 
results from the augmented and balanced dataset, showing substantial improvements. 
Specifically, our model achieved a mean Average Precision (mAP) of 92.0%, surpassing the 
38.9% mAP reported by Davinder et al. [6]. This improvement underscores the effectiveness of 
our data processing techniques and YOLOv5's capabilities in plant disease detection. 

Table 1. Results based on original plantdoc dataset. 

Model Pre Trained Weights mAP@50% 

YOLOv5 COCO 49.7 

Table 2. Comparison of results with existing work. 

Model, Use By Pre Trained Weights mAP@50% 

MobileNet, Davinder, et al. COCO 32.8 
MobileNet, Davinder, et al. COCO+PVD 22.4 
Faster rcnn inception resnet, Davinder, et al. iNaturalist 36.1 
Faster rcnn inception resnet, Davinder, et al. COCO 38.9 
YOLOv5, our model COCO 92.0 

The YOLOv5 model significantly enhances the detection of both small and large 
disorders. Key performance metrics, including mean Average Precision (mAP), precision, recall, 
and F1 score, show notable improvement, particularly when using a balanced dataset. The F1 
score, which ranges from 0 to 1, is a measure of a model's accuracy that balances precision and 
recall. A score of 0 indicates no accuracy or recall, while a score of 1 signifies perfect accuracy 
and recall. Similarly, mAP is calculated by averaging the Average Precision (AP) across all 
classes, providing a comprehensive assessment of the model's overall performance [5]. 

Figure 7 presents the confusion matrix of the model, a critical tool for assessing its 
performance. The confusion matrix provides a clear view of the model's predictive accuracy by 
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showing the relationships between actual and predicted classes. It includes key metrics such as 
True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN), which 
are essential for calculating accuracy, recall, precision, and specificity. 

 
Figure 7. Confusion matrix. 

The F1 score, a weighted harmonic mean of precision (P) and recall (R), is used to 
evaluate the model's balance between these two metrics. An F1 score of 0.87 is achieved with a 
confidence value of 0.503, indicating optimized recall and precision. As shown in Figure 8, both 
confidence and F1 score are ideally maximized. The accuracy is represented by the confidence 
interval, which helps define the effect magnitude. Larger sample sizes improve estimate 
precision. The confidence interval, with a range of 0.935, reflects a precision level of 1.00. A 
larger sample size leads to more accurate estimates, and the confidence interval indicates the 
recall with which the effect magnitude is recorded. Practically, sample size significantly impacts 
recall accuracy. The recall value and confidence interval together provide a comprehensive 
understanding, as depicted in Figure 8, where a recall value of 0.00 falls within the effects of a 
0.99 confidence interval.  
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Figure 8. Recall-confidence, Precision-recall, F1 and Precision-confidence curves. 

The precision and recall curve shown in Figure 8 illustrates the tradeoff between 
precision and recall across various thresholds. A high area under the curve signifies both high 
precision and recall. High precision is associated with a low false positive rate, while high recall 
is linked to a low false negative rate. As indicated in Table 2 and Figure 8, we achieved a Mean 
Average Precision (mAP) of 0.920. The model was trained for 100 epochs using both the 
training and validation sets. During this process, we tracked the detection frame loss, detection 
object loss, and classification loss for both sets, as shown in Figure 9. The dataset included 
11,930 training and validation images, with 450 images reserved for testing. The improvements 
in model performance are attributed to the modifications and augmentations applied to the 
dataset. 

 
Figure 9. Loss graph of the dataset. 

Conclusion. 
Plant disease detection is crucial for timely treatment, which helps enhance the 

production and quality of agricultural products. This article demonstrates significant 
improvements in plant disease detection by leveraging the state-of-the-art object detection 
model, YOLOv5. YOLOv5 outperforms other CNN models such as SVM, VGG, GoogLeNet, 
and AlexNet in terms of accuracy. Using the PlantDoc dataset, which was augmented to include 
12,990 images, the YOLOv5 small model achieved benchmark results with an accuracy of 
92.0%, as shown in Table 2. This represents a substantial improvement over existing models. 

This paper focuses on developing an advanced plant disease detection system based on 
YOLOv5 and a dataset reflecting real field conditions. Although YOLOv5 has been employed 
in various research studies for object detection and classification, further refinements are needed 
to address the complexities of diverse plant species and environmental backgrounds. Future 
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work will aim to optimize YOLOv5 models for faster and more accurate detection in 
increasingly complex scenarios. 
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