A |
OPEN) ACCESS
© International Journal of Innovations in Science & Technology

r RESEARCH & INNOVATION @
CC :

IJIS

NOISIAI

Breaking Down Monoliths: A Graph Based Approach to

Microservices Migration
Azaz Ahmed Kiani"*, Zain ul Islam Adil', Yasir Hafeez’, Javed Igbal’, Fahad Burhan Ahmed’
'National University of Modern Languages (NUML), Rawalpindi, Pakistan.
*National University of Science and Technology (NUST), Islamabad, Pakistan.
°Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
*Correspondence: Azaz Ahmed Kiani. Azaz kiani@numl.edu.pk
Citation | Kiani. A. A, Adil. Z. I, Hafeez. Y, Igbal. J, Ahmed. F. B, “Breaking Down
Monoliths: A Graph Based Approach to Microservices Migration”, IJIST, Vol. 6 Issue. 3 pp
1076-1087, July 2024
DOI| https://doi.org/10.33411 /ijist/20246310761087
Received | July 10, 2024 Revised | July 28, 2024 Accepted| July 29, 2024 Published | July
30, 2024.
Introduction: The software industry has increasingly transitioned from Monolithic Architecture
(MA) to Microservices Architecture (MSA) due to the significant advantages offered by MSA.
A crucial first step in this migration process is the identification of suitable microservices.
Novelty Statement: This work aims to introduce an automated method for more effectively
identifying potential microservices within monolithic applications.
Materials and Methods: Our approach leverages the source code to construct a frequency-
based class dependency graph through graph analysis techniques. A clustering algorithm is then
applied to this graph to identify optimal candidate microservices.
Results and Discussion: We evaluate the effectiveness of the proposed approach using several
metrics, including the number of microservices, Newman-Girvan Modularity NGM), and F1-
Score. The results demonstrate that the approach accurately identifies candidate microservices,
achieving an average F1 score of 0.88 and an average NGM score of 0.526.
Concluding Remarks: The proposed approach proves to be an effective tool for assisting
developers in migrating from MA to MSA, facilitating a more streamlined transition process.
Keywords: Microservices; Monolithic, Clustering Algorithm; Microservices Decomposition;
Microservices Identification.

) IPIndexi XL el R RESEARCHBIB N .
Q Indexing Portal - ._:;:.-C‘teFaCtor e o @lDEAS
JOURNALS RTINDEXIN(ili iNFOBASE INDEX
. RE‘C;;"EGDAL I@/ MASTER LIST [OURNAL ABSTRACTING AND INDEXING SERVICH @ SCI Ilt
A > G IRRIIHIN]
Sha= ™ - R ResearchGate WIKIDATA
DRJI Crossref L et

July 2024 | Vol 6 | Issue 3 Page | 1076

mailto:Azaz.kiani@numl.edu.pk
https://doi.org/10.33411/ijist/20246310761087

International Journal of Innovations in Science & Technology

Introduction:

As software systems evolve, they often become larger and more complex due to the
integration of multiple functionalities. This growth leads to tightly coupled but less coherent
components. Monolithic Architecture (MA) is a traditional design approach where all
components are integrated into a single, unified system. While MA offers benefits such as ease
of development, testing, and deployment in simpler systems, it becomes problematic as
applications grow in size and complexity. Monolithic applications can become difficult to scale
and maintain, as modifying a single module often requires rebuilding, retesting, and reintegrating
the entire application [1][2][3][4][5]. Additionally, monolithic systems face challenges such as
poor fault tolerance, limited extensibility, slow development, and inadequate service capacity
[3][4](6][7]. Consequently, MA struggles to meet the demands of modern applications, especially
those with dynamic workloads [8].

Microservices Architecture (MSA) presents an alternative to these limitations by creating
distributed applications as small, independent services. Each microservice operates as a separate
process and communicates with others via lightweight mechanisms [5][6][9][10]{11][12]. MSA
allows services to be developed using different programming languages and data storage
technologies, and it emphasizes principles such as single responsibility, high cohesion, low
coupling, and minimal disruption to other services. Key features of MSA include scalability,
autonomous development, reusability, maintainability, and cloud compatibility [3][4]
51171181121,

The software industry has increasingly transitioned from MA to MSA due to the
advantages of MSA. Many organizations, including Netflix, eBay, Amazon, IBM, Google, Uber,
and Alibaba, have adopted or are in the process of adopting MSA [6][7](8][13]. While building
new systems with MSA from scratch can be time-consuming and costly, migrating existing
monolithic systems to MSA is often more practical. However, this migration process is
challenging [12] since it requires broad and deep analysis of software architecture. Identifying
suitable microservices is a critical and complex first step [3][8][12][14][15]. The challenge here is
to finding out how to split tightly coupled and highly cohesive components that come with MA.
To achieve the high coupling and low cohesion the migration process must address the
challenges including managing complexity of inter-service communication, defining clear service
boundaries, and ensuring data consistency across the distributed services. In order to effective
and smooth transition to MSA the migration process requires an extensive assessment of various
architectural dimensions.

Existing strategies for extracting microservices from monolithic systems often require
detailed expertise and involve complex heuristics. These methods may also fail to address all
aspects of microservice characteristics [11]. Recent systematic literature reviews highlight that
current research in microservices decomposition is still developing, with available solutions
often focusing on specific scenarios, domains, or programming languages [3].

Objective:

This work aims to introduce an automated method for more effective identification of
potential microservices from monolithic applications. The proposed approach employs a
modularity-based community detection clustering algorithm along with graph analysis
techniques. It starts by creating a class dependency tree based on the frequency of method calls
between classes. This frequency-based call dependency network is then analyzed using clustering
to identify potential microservices. The approach iterates to refine the clusters until optimal
results are achieved. Modularity based clustering approach is used to develop the loosely coupled
and functionally cohesive microservices, which is essential for robust and manageable MSA. The
objective is to optimize the balance between intra service communications and inter service
separations.

Evaluation:

July 2024 | Vol 6 | Issue 3 Page | 1077

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

The effectiveness of the proposed method is assessed using metrics such as the number
of microservices, Newman-Girvan Modularity NGM), and F1-Score. Moreover, the proposed
algorithm was compared with five different clustering algorithms found in literature (See Section
4: Algorithms). Results demonstrate that the approach accurately identifies well-defined
candidate microservices, with an average F1 score of 0.88 and an average NGM score of 0.526.
This indicates the approach's effectiveness in facilitating the migration from MA to MSA.
Structure:

The remainder of this paper is organized as follows: Section 2 reviews related literature.
Section 3 details the proposed approach. Section 4 presents the results, and Section 5 concludes
with recommendations for further research.

Literature Review:

Research into the decomposition of monolithic applications into microservices has led
to the development of various techniques. The authors of [14] proposed a method utilizing the
SArF software clustering algorithm to extract potential microservices from source code. Their
approach, which involved evaluating two distinct programs and reviewing results with two
developers, was illustrated using the Software Architecture Finder (SArF) map. Two case studies
were conducted to assess the method's effectiveness; one with the purchasing operations
division of Fujitsu for an industrial application, and another with the open-soutce "Spring Boot
Pet Clinic" application in both its monolithic and microservices forms. These case studies
showcased the method's versatility and effectiveness in various contexts.

A technique introduced by [15] transforms monolithic application code fragments into
continuous distributed vectors using a neural network. Microservice candidates are then
identified by aggregating related classes based on these vector representations. A study [11]
suggested a method for identifying microservices from monolithic object-oriented systems by
applying a quality function. This method follows architectural recommendations to enhance
outcome relevance and accuracy. [6] Outlined a strategy for converting legacy monolithic
applications to microservices architecture (MSA) through program analysis. Their approach
analyzed class inheritance, dependency relationships, and function invocation within the legacy
application.

DBSCAN hierarchical method was used by [8] based on static analysis of the monolithic
application to identify microservices. They validated their approach by comparing results with
human-designed microservices. The authors of [16] proposed decomposing monolithic
applications into microservices by analyzing Application Programming Interfaces (APIs). Their
technique involved grouping similar operation names using hierarchical clustering and word
embedding models to generate representations based on operation names. [17] Aimed to
enhance application performance by incorporating scalability considerations into their
decomposition technique. They analyzed access logs from monolithic applications with an
unsupervised machine learning approach and suggested automating resource allocation to
microservices in cloud architecture. However, this performance-based approach may be
context-specific and dependent on particular testing scenarios.

Researchers in [18] examined version control repositories, converting them into graphs
for potential microservice identification using a clustering algorithm. Their method employed
three extraction strategies: logical coupling, semantic coupling, and contributor coupling. A
limitation of this approach is its focus on classes without considering methods and their
input/output arguments. Authors of [19] proposed transforming graph call data into domain
entities and computing similarities between these entities. Microservices are then formed by
clustering related domain elements using a clustering method.

Proposed Work:

This section outlines the proposed approach which employs modularity-based

community detection clustering algorithm to provide a new method to identify the

July 2024 | Vol 6 | Issue 3 Page | 1078

OPEN () ACCESS
International Journal of Innovations in Science & Technology

microservices. The proposed approach optimizes the balance between external separations and
internal cohesion thus makes it easier to develop loosely coupled and functionally coherent
microservices. Unlike existing methods, the proposed approach innovates by introducing the
frequency based weighted graph and iterative modularity optimization concept. It performs well
in dynamically refining communities (i.e. microservices), which leads to better cohesion and
coupling, and a balance between global and local adjustments for optimum microservices
detection performance. The proposed approach consists of two stages.

Phase One involves constructing a frequency-based class dependency network from
the source code. Phase Two focuses on applying a clustering approach to identify potential
microservices. The following details the proposed method.

The approach begins with the source code of the monolithic system to create a weighted
class dependency network. This network represents dependencies between classes and the
frequency of interactions, serving as the foundation for microservice identification. Algorithm
1 (depicted in Figure 1) illustrates the process of generating the weighted call dependency graph.

Initially, the function extract Classes (S) is employed to extract all classes from the source
code, as these classes form the core structural components of the monolithic system. The extract
Methods (class) function is then used to retrieve the methods defined within each class. Each
method is added as a vertex to the graph G. The algorithm iterates over each method to establish
dependencies. For each method, the find References (method) function identifies all methods it
invokes. This step is crucial as it reveals interactions between various system components.

The algorithm checks if each referenced method already exists as a vertex in the graph.
If it does, the algorithm updates the edges between the methods by increasing their weights
using the increment Edge Weight (method, reference) function. This increment reflects the
frequency of interactions by adjusting the edge weight, indicating how often method calls occur.
This frequency information helps determine the strength of dependencies, which is vital for
clustering related components during the monolith's decomposition. If no edge exists, the
algorithm uses the add Edge (method, reference, weight=1) function to create a new edge with
an initial weight of 1. The resulting weighted graph GGG accurately represents the interaction
levels between methods, providing a detailed view of the system’s behavior and structure. This
detailed graph is essential for subsequent grouping and refinement processes aimed at identifying
potential microservices.

For example, consider two classes: Class A, with methods 1 and 2, and Class B, with
methods 3 and 4. If method 1 calls methods 3 and 4, and method 2 calls method 4, the graph
will include vertices for each method. Directed edges will connect method 1 to methods 3 and
4, and method 2 to method 4. The weights on these edges, initially set to 1, are incremented
based on additional calls. For instance, if method 1 calls method 3 again, the weight of the edge
from method 1 to method 3 increases to 2. This weighted class dependency graph effectively
captures method interactions and their strengths, facilitating the identification of clusters that
can be consolidated into microservices.

The second step of the proposed approach uses an iterative refinement clustering
technique to identify potential microservices from the weighted class dependency graph. This
method focuses on maximizing the graph's modularity, a metric that measures the strength of
division into clusters, to group methods into potential microservices. The process begins with
community initialization, where each method (node) in the graph is assigned to an initial
community (see Algorithm 2a in Figure 2). This initial assignment sets the stage for the iterative
refinement process (Algorithm 2b, depicted in Figure 3). The algorithm then evaluates
modularity, which assesses the effectiveness of the community structure. By iteratively refining
the community assignments based on modularity, the approach aims to optimize the clustering
of methods into cohesive microservices. To calculate modularity M, use the following formula:

July 2024 | Vol 6 | Issue 3 Page | 1079

OPEN ACCESS
8 International Journal of Innovations in Science & Technology

Kkx k
M= % ¥YX,y [AX y — ?y] o(cx, cy) (1)

Algorithm 1: Construction of Weighted Class Dependency Graph

Input: S: Sovrce Code
Output: G =V, E, w)
classes «— extractClasses(S)
foreach class of classes do
methods «— extractblethods{class)
G +— addVertices(methods)
end
foreach method € G do
references «— findReferences(method)
foreach reference of references do
if reference £ G then
if G hasEdge(method, reference) then
G +— incrementEdgeWeight(method, reference)

elze
G +— addEdge(method, reference, weight=1)
end
end
end
end
emd

Figure 1. Algorithm (1) for Construction of Weighted Dependency Graph
Alzaorithrn 2a: hModularity Caloulstion and MNode Blovement

Input G={V.E.w) // Weighted Dependency Graph

Cratpuat: Updated compunities

def initCommmunities{ (7}

return {v: {v} for v in Gnodes()}

def calchJIodolarin G, coms):

m = sumw for _, ., win Gedgesidata="weight}

rehim sy
{ s Gju]| [+]["weizht’] for w in com for v in com if Ghas_edeeu, w]))
(s G degreein, weight="w=izght") for o in com) / (2*m))**2 for com in coms. values()
daf movellode(G, nods, coms)
best_com, best =ain = coms[node],
for n im O neighbors{nods):
if coms[n] '= coms[node]:
gain = calchlodGainineds, coms[n], G, coms)
if zain > best zam: best_zain best com = zam coms[n]
if bast_com '= coms[nods]: coms[nods] = best_com

(2*m}) -

TSTUTH COHLS
def modulanty Optimization 5
coms, prev_mod = intComprmmities{ 5}, -1
while True:
mmprovement = Falzse
for node in G-

old_coms = coms.copy{)
coms = movellods((, nods, coms)
mmprovement = (coms '=old_coms)
if not mmprovement or calchJfodulariy{G, coms) <= prev_mod: break
prev_mod = calchJJodulart (G, ooms)
refurn Comms
Figure 2. Algorithm (2a) for Modularity Calculation and Communities (Micro services)
Identification.
The Modularity (M) quantifies the strength of the split of a network into communities

by comparing the actual edge density within communities to the expected edge density if edges
Page | 1080

July 2024 | Vol 6 | Issue 3

International Journal of Innovations in Science & Technology

were distributed randomly. Where n is the sum of all edge weights in the graph, Ax y is the
weight of the edge between nodes x and y, kx is the sum of edge weights connected to node x,
and 6 (cx, cy) is 1 if nodes x and y are in the same community and 0 otherwise. This formula
assesses how well the community structure captures the internal density of edges compared to
a random distribution of such edges.

In order to optimize the modularity gain, the algorithm's core includes relocating nodes
to nearby communities iteratively. The program analyses the neighboring methods of each
method and determines the possible gain in modularity if the method were relocated to the
neighbor’s community. By analyzing the changes to the internal weights and total weights of the
impacted communities, this modularity increase is ascertained. A node is moved to a new
community if its new location results in a better modularity. Until no more nodes can be moved
to better the situation, this procedure recursively applies to every node, indicating that a locally
optimal community structure has been achieved. The algorithm manages singleton nodes and
unconnected components within each community to further refine the communities (Algorithm
2b).

If a disconnected subgraph within a community contains more than one node, it is
identified and treated as a separate community. Singleton nodes; those with weak connections
within their current community are reassigned to the nearest community based on edge weights.
This refinement ensures that the identified communities are connected and cohesive. The
process of moving nodes and adjusting communities continues iteratively until modularity
stabilizes, indicating that no further significant improvements can be made. Stabilization signifies
that the community structure optimally reflects the internal organization of the graph in its
cluster partitions.

Algonithm 2b: Refinement of Communities

Input: G=(_E.w) [/ Weighted Dependency Graph, communities
Output: Refined communities
def refineCommunities(G, coms):
new _coms= {}
for com in set{coms.values()):
for sub in findDisconnectedComponents{com, G):
if len{sub) = 1: new_coms[hash{frozenset{sub))] = sub
elze: new_coms.setdefanlt{findClosestCommunity{sub_pop(). coms,), set()).add{sub.pop())
return new_coms
def iterRefinementClustering(G):
coms = modularityOptimization(G)
prev_mod = caleModularity(G, coms)
while True:
coms = refineCommunities(G, coms)
curr_mod = caleModularity(G, coms)
if curr_mod <= prev_mod: break
prev_mod = curr_mod
return coms
G = constructWeightedClassDependencyGraph(source_code)
MS = iterRefinementClustering(()
return M3

Figure 3. Algorithm (2b) for Refinement of Identified Communities (Microservices).

The proposed method employs a two-step approach to handle unconnected
components and singleton nodes, combining refinement with modularity optimization. Unlike
existing algorithms that focus solely on modularity optimization, this approach addresses issues
of single-node isolation and subgraph disconnections, ensuring that communities are both
cohesive and well-connected. This feature enhances the precision and significance of potential
microservices identification. By continually maximizing modularity and refining community

July 2024 | Vol 6 | Issue 3 Page | 1081

OPEN (5) ACCESS

International Journal of Innovations in Science & Technology

structures, the algorithm ensures that the resulting microservices are well-defined, capturing the
most coherent and strongly interacting groups of methods. This approach effectively
decomposes the monolithic system into smaller, more manageable microservices, improving
modularity and maintainability. It is particularly suited for real-world software engineering
applications, where maintaining a consistent microservices architecture is crucial.

Evaluation:

Three metrics; the number of Micro Services (MS), the NGM, and the F1-Measure
metric were used to assess the proposed approach. The details of these metrics are provided in
the subsections that follow.

F1-Measure:

To get the harmonic mean between the two communities that the community identifying
algorithms produced, we adapted the method from [12][20]. A clustering technique generates
community set X, while community set Y is the reference community set. The reference
community y € Y that x fit in then labels each community y x € X.

Furthermore, this stage will generate pairings of (x, y) by matching community x with y
that have the greatest number of matching labels. Then evaluating these community sets' quality
using recall and accuracy. By computing the ratio of the intersection of sets X and Yy to the size
of set x, where P ranges from 0 to 1, precision P expresses the percentage of correctly identified
nodes in set X (equation 2).

P= % € [0,1] @)

Below is a quantification of recall: It is the percentage of y's covered nodes divided by
x, meaning the percentage of nodes in set y that are covered by set x is quantified by recall R.
Where R is between 0 and 1.
XNy

R = o € [0,1])

The accuracy and recall of each pair can be calculated to show the over- and under-
estimations of the clustering technique in use. F-Measure can be used to calculate a harmonic
mean between precision and recall. F1- Measure is an important metric to measure the accuracy
by combining precision and recall. In our study, it is important to measure how well the
proposed approach performs. In order to demonstrate the effectiveness of the proposed
approach, this metric is crucial for ensuring that our proposed approach not only identifies
relevant microservices but also avoids incorporating irrelevant ones. F1 Measure is computed as
follows:

Fl= 2 prec-is-ion * recall (4)
precision + recall
Newman Girvan Modularity (NGM):

To evaluate the overall quality of the clusters or communities, the modularity metric is
utilized. High modularity indicates that nodes within a community are strongly interconnected.
The Next Generation Modularity NGM) metric explores the community structure of the entire
network, serving as a key measure for assessing cluster quality. NGM is widely recognized as a
standard method for evaluating community detection techniques. It is employed in this study to
evaluate the efficiency of the proposed approach. A robust and suitable MSA demands the well-
defined microservices that have robust internal relationships and few external dependencies, all
of which are indicated by high modularity in the identified microservices. It is an ideal option
for evaluating the decomposition of components in our proposed approach because of its
widespread use and sensitivity to community structure.

The metric is based on the principle that a random graph is unlikely to exhibit the core
characteristics of a well-defined cluster. Therefore, clusters are identified by comparing the actual
density of vertices within a community to the expected density if the network's nodes were

July 2024 | Vol 6 | Issue 3 Page | 1082

OPEN ACCESS
a International Journal of Innovations in Science & Technology

connected randomly, disregarding the community's structure. NGM calculate the modularity as

follows:
(2ms+ls)2

1
Qs) = 2T ce 'S (ms— Zmerioz 0
Number of Microservices:

Total number of microservices that make up an application is represented by these
metrics. It is necessary to compare this measure with the ideal amount of microservices for an
application. The total number of microservices is the definition of this metric:

MS = Ypoym ©)
Algorithms:

We compared the proposed technique with several algorithms that have been proposed
in the literature to determine the correctness and efficiency of the proposed algorithm. These
algorithms are the following: the Leiden algorithm (LA), the Louvain algorithm (LV), the
Markov clustering algorithm (MC), the Speaker Listener Label Propagation Algorithm (SLPA),
and the Rb pots algorithm (RB). Python was used to implement these algorithms.

Test Case Applications:

We took into consideration many small to medium sized applications in order to evaluate
the suggested approach and compare it with other competing algorithms. Table 1 displays the
applications' specifics:

Table 1. Details of Test Case Application used in Study
Test Case Applications
Sr. No. Application Name Description
1 Acme Air Functionalities like booking and searching flights
are provided by a monolithic Java program used
as an example aitline.

2 Spring blog A Spring Boot Framework-created microservices
application. It's just a basic blog website.
3 J Pet Store application Java was used to develop a reference monolithic

application. There is a microservices equivalent to
this application that may be utilized to compare
the findings of this study.

Results:

Proposed algorithm was evaluated using three distinct monolithic applications. Its
performance was compared against five alternative clustering algorithms. Additionally, three
assessment measures were utilized to benchmark the clustering algorithms and evaluate the
effectiveness of the proposed approach.

F1 Scores
1.2
1
0.8
0.6
04
0.2
0
LA RB LV SPLA NMC Proposed

B AcmeAir W S-Blog Petstore

Figure 4. F1 Results comparing proposed and other clustering algorithms on test case
applications.

u o ssue age
ly 2024 | Vol 6 | 1 3 Pag 1083

OPEN ACCESS
8 International Journal of Innovations in Science & Technology

Figure 4 displays the Fl-measure results, which offer a balanced view of the
decomposition approach's accuracy by combining precision and recall. With an average F1 score
of 0.86, the LLA algorithm demonstrated superior performance compared to the other
algorithms. Conversely, the MC algorithm performed the worst, with an average F1 score of
0.61. The proposed method achieved an average F1 score of 0.88, indicating a significant
improvement over the other algorithms.

Figure 5 presents the output of the clustering algorithms based on the NGM metric. For
the Acme Air application, most methods achieved the highest possible score for this criterion,
while LV reached a maximum score of 0.67. Consistent with the F1 results, the MC algorithm
performed the poorest. The proposed method also scored 0.67 for the Acme Air application,
reflecting robust and clear connections among classes compared to previous algorithms. Table
2 provides additional details on the average outcomes of the various clustering techniques. The
RB and LA algorithms show similar results, ranking highest overall with average F1 values of
0.86 and 0.85, respectively, and NGM scores of 0.49 and 0.48. However, LA slightly
outperforms RB with its higher F1 score. NGM scores range from 0.12 to 0.52 across different
algorithms, with GN and MC showing notably lower scores of 0.33 and 0.12, respectively.

NGM

0.8

0.7

0.6

0.5

04

0.3

0.2 I

% | =

RB LA vV SPLA MC Proposed

B Acmeair M S-blog M Petstore

Figure 5. NGM Results comparing proposed and approach and other clustering algorithms
The proposed approach outperforms the other algorithms by a large margin, as seen by
the scores for all three criteria (averaged F1-score of 0.88 versus 0.86 and average NGM score
of 0.526 versus 0.520). As a result, the suggested solution outperforms the other strategies in
terms of accuracy.

Statistical analysis

NGM F1

w M ean WSD mSE © Median

Figure 6. Statistical analysis of the proposed approach.
Figure 6 shows statistical summary of the proposed migration approach. The mean F1
score 0.86, with Standard Deviation (SD) 0.14 indicates the high accuracy. With SD 0.9 and
mean NGM score of 0.526 implies good clustering quality. The accuracy of mean estimates is

July 2024 | Vol 6 | Issue 3 Page | 1084

International Journal of Innovations in Science & Technology

shown by F1 and NGM standard errors (SE) which are 0.04 and 0.045 respectively. These results
show that the proposed approach identifies the more structured microservices from MA with
robustness and reliability.

Table 2. Average F1 and NGM results of comparison.

Algorithm F1 NGM No. of MS
LA 0.86 0.526 4.2
RB 0.85 0.480 4.1
LV 0.71 0.520 4.8
SPLA 0.70 0.330 0.6
MC 0.61 0.120 7.75
Proposed 0.88 0.526 4.3

Discussions:

The performance evaluation of the proposed technique, using three monolithic
applications and three evaluation measures, reveals significant results compared to five
alternative clustering algorithms. The proposed algorithm achieved the highest average F1 score
of 0.88 and excelled in the NGM metric, attaining an average score of 0.526 for the Acme Air
application, slightly surpassing the LV algorithm's score of 0.52. The proposed approach
consistently delivered top scores across all metrics, including an average NGM score of 0.526,
compared to average F1 scores of 0.86 and 0.85 for the RB and LA algorithms, respectively.
Detailed data further support the superiority of the proposed algorithm, demonstrating its
effectiveness in accuracy and efficiency for application decomposition. The proposed approach
has been tested on three different monolithic applications, proving its robustness and
adaptability. It outperformed existing methods and proved its effectiveness in handling the
different software architecture scenarios due to its high accuracy and successful decomposition.
Conclusion and Future Work:

A crucial step in migrating from Monolithic Applications (MA) to Microservices
Architecture (MSA) is the identification of potential Microservices. This paper introduces a
novel method for discovering potential microservices. The proposed approach consists of two
key steps: Frequency-Based Class Dependency Graph: The first step involves creating a
frequency-based class dependency graph using graph analysis techniques on the source code.
Clustering for Microservices Identification: The second step utilizes a proposed clustering
algorithm to identify the most promising microservice candidates.

To evaluate the proposed algorithm, we tested it on three distinct small- to medium-
sized applications, some of which were also used in previous research. The proposed algorithm
was compared with five other clustering algorithms, demonstrating superior results with an
average F1 score of 0.88 and an average NGM score of 0.526. The high F1 score indicates strong
accuracy in identifying the anticipated microservices, while the NGM score confirms that the
generated microservice candidates are not random but exhibit well-defined linkages among the
clustered classes. Future work will involve testing the proposed algorithm on larger applications
and incorporating additional algorithms to create a comprehensive and robust comparison.
Acknowledgement: The authors acknowledged that this study has not been published before,
nor it is under consideration.

Author’s Contribution:
. Azaz Ahmed Kiani and Zain ul Islam Adil: Proposed the idea, conceptualize the
study and prepared the draft.
e Javed Igbal: Supervise the study and validate the outcomes.

. Yasir Hafeez and Fahad Burhan Ahmed: Performed the data analysis,
experimentation, algorithm implementations and scientific discussions.
Conflict of Interest: The Authors declare that they have no conflict of interest.

July 2024 | Vol 6 | Issue 3 Page | 1085

0
OPEN °) ACCESS

International Journal of Innovations in Science & Technology

References:

[1] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From Monolith to
Microservices: A Classification of Refactoring Approaches,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11350
LNCS, pp. 128-141, Jul. 2018, doi: 10.1007/978-3-030-06019-0_10.

(2] J. Kazanavicius and D. Mazeika, “Migrating Legacy Software to Microservices
Architecture,” 2019 Open Conf. Electr. Electron. Inf. Sci. eStream 2019 - Proc., Apr.
2019, doi: 10.1109/ESTREAM.2019.8732170.

[3] Y. Abgaz et al, “Decomposition of Monolith Applications Into Microservices
Architectures: A Systematic Review,” IEEE Trans. Softw. Eng., vol. 49, no. 8, pp. 4213—
4242, Aug. 2023, doi: 10.1109/TSE.2023.3287297.

(4] D. Kuryazov, D. Jabborov, and B. Khujamuratov, “Towards Decomposing Monolithic
Applications into Microservices,” 14th IEEE Int. Conf. Appl. Inf. Commun. Technol.
AICT 2020 - Proc., Oct. 2020, doi: 10.1109/AICT50176.2020.9368571.

[5] L. De Lauretis, “From monolithic architecture to microservices architecture,” Proc. -
2019 IEEE 30th Int. Symp. Softw. Reliab. Eng. Work. ISSREW 2019, pp. 93-96, Oct.
2019, doi: 10.1109/ISSREW.2019.00050.

[6] Z. Ren et al., “Migrating web applications from monolithic structure to microservices
architecture,” ACM Int. Conf. Proceeding Ser., Sep. 2018, doi:
10.1145/3275219.3275230.

[7] A.F. A. A. Freire, A. F. Sampaio, L. H. L. Carvalho, O. Medeiros, and N. C. Mendonga,
“Migrating production monolithic systems to microservices using aspect oriented
programming,” Softw. Pract. Exp., vol. 51, no. 6, pp. 1280-1307, Jun. 2021, doi:
10.1002/SPE.2956.

[8] K. Sellami, M. A. Saied, and A. Ouni, “A Hierarchical-DBSCAN Method for Extracting
Microservices from Monolithic Applications,” pp. 11-2022, Jun. 2022, doi:
10.1145/3530019.3530040.

[9] H. Ren, Q. H., 11, S. L., Qiao, “Method of Refactoring a Monolith into Micro-services,”
J. Softw., vol. 13, no. 12, pp. 646—653, 2018.

[10] J. Kazanavicius and D. Mazeika, “The Evaluation of Microservice Communication
While Decomposing Monoliths,” Comput. INFORMATICS, vol. 42, no. 1, pp. 1-36—
1-36, May 2023, doi: 10.31577/CAI_2023_1_1.

[11] A. Selmadji, A. D. Seriai, H. L. Bouziane, R. Oumarou Mahamane, P. Zaragoza, and C.
Dony, “From monolithic architecture style to microservice one based on a semi-
automatic approach,” Proc. - IEEE 17th Int. Conf. Softw. Archit. ICSA 2020, pp. 157-
168, Mar. 2020, doi: 10.1109/ICSA47634.2020.00023.

[12] O. Al-Debagy and P. Martinek, “Dependencies-based microservices decomposition
method,” Int. J. Comput. Appl, vol. 44, no. 9, pp. 814-821, 2022, doi:
10.1080/1206212X.2021.1915444.

[13] “An Innovative Methodology for Transitioning from Monolith to Microservices.”
Accessed: Jul. 31, 2024. [Online]. Available:
http:/ /www.icicel.org/ell/contents /2023 /4 /¢l-17-04-10.pdf

[14] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, “Extracting Candidates of
Microservices from Monolithic Application Code,” Proc. - Asia-Pacific Softw. Eng.
Conf. APSEC, vol. 2018-December, pp. 571-580, Jul. 2018, doi:
10.1109/APSEC.2018.00072.

[15] O. Al-Debagy and P. Martinek, “A Microservice Decomposition Method Through
Using Distributed Representation of Source Code,” Scalable Comput. Pract. Exp., vol.
22, no. 1, pp. 39-52, Feb. 2021, doi: 10.12694/SCPE.V2211.1836.

[16] O. Al-Debagy and P. Martinek, “A new decomposition method for designing

July 2024 | Vol 6 | Issue 3 Page | 1086

D
M O International Journal of Innovations in Science & Technology
microservices,” Period. Polytech. Electr. Eng. Comput. Sci., vol. 63, no. 4, pp. 274-281,
2019, doi: 10.3311/PPEE.13925.

[17] M. Abdullah, W. Igbal, and A. Erradi, “Unsupervised learning approach for web
application auto-decomposition into microservices,” J. Syst. Softw., vol. 151, pp. 243—
257, May 2019, doi: 10.1016/].JSS.2019.02.031.

[18] G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from Monolithic
Software Architectures,” Proc. - 2017 IEEE 24th Int. Conf. Web Serv. ICWS 2017, pp.
524-531, Sep. 2017, doi: 10.1109/ICWS.2017.61.

[19] N. Santos and A. Rito Silva, “A complexity metric for microservices architecture
migration,” Proc. - IEEE 17th Int. Conf. Softw. Archit. ICSA 2020, pp. 169-178, Mar.
2020, doi: 10.1109/1CSA47634.2020.00024.

[20] G. Rossetti, L. Pappalardo, and S. Rinzivillo, “A Novel Approach to Evaluate
Community Detection Algorithms on Ground Truth,” Stud. Comput. Intell., vol. 644,
pp. 133-144, 2016, doi: 10.1007/978-3-319-30569-1_10.

@ @ Copyright © by authors and 50Sea. This work is licensed under
Creative Commons Attribution 4.0 International License.

July 2024 | Vol 6 | Issue 3 Page | 1087

