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suggestions so that consumers can choose wisely from a wide range of picks. Recommender

Systems (RS) has proven to be an essential instrument for improving sales of online vendors
and enabling consumers with personalized product recommendations. Collaborative Filtering
(CF), an extensively preferred approach for Recommender Systems, provides suggestions based
on the ratings of users with similar interests. The primary operating component in CF is to
measure similarity among items or users. Recommender Systems use a user-item matrix, which
is often highly sparse and suffers from a cold start, ultimately leading to imprecise
recommendations. Instead of relying merely on ratings that are uncertain and can be fake, we
integrated the demographic information of users with CF to attain more precise predictions and
recommendations in our work. To cope with the uncertainty factor in the recommendation
process and to depict the physical world more realistically, we applied the Fuzzy set theory to
users’ ratings and demographic features. MLL.-100K and MI.-latest-small datasets are used to
evaluate the accuracy of the proposed similarity measure. Compared to the most advanced
methods, our proposed demographic fuzzy similarity computation method exhibits considerable
achievements in terms of MAE, RMSE, and coverage metrics on standard recommendation
datasets, which we used for experimentation.
Keywords. Recommender Systems; Collaborative Filtering; Similarity Measures; Fuzzy Sets.

In this allegedly never-ending stream of e-commerce, it is crucial to offer high-quality
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Introduction.

With every moment in this fast-paced world, massive amounts of information are added
to the pile [1]. Accessing the relevant information appears to be difficult, tedious, and time-
consuming amid this digital explosion [2] [3] [1]. Because of globalization, individuals all over
the world connect and share information, services, and products [1]. The digital world has
replaced previous standards by altering people’s methods of living. Traditional businesses are
increasingly shifting to E-commerce, and customers are anxious to explore what new products
they offer. People now have a wide range of choices and get confused when bombarded with
apparently immense information available [4]. Recommender Systems have emerged to address
the problem of information overload, also known as the big data problem [5] [6]. These systems
give automatic product recommendations that assist e-businesses in reaching their relevant
consumers while consumers find the best fit conveniently and quickly [7] [8]. These systems are
utilized across many sectors, including e-commerce, online articles and books, online
broadcasting, movie sites, and so forth [9] [7] [10].

In a few decades, immense progress has been made in this domain [7]. Three filtering
techniques are being used to process such massive data. These are Content-Based Filtering
(CBF), Collaborating Filtering (CF), and Hybrid Filtering [7]. The CBF approach uses profile
information about items and users to make predictions [11]. In this method, the system keeps
track of the user’s activities and content of items liked by users in the past to suggest similar
items [7]. When a system recommends similar items based on the uset’s history, the user loses
the opportunity to try something new [6] [1]. In reality, a user needs various options rather than
merely homogenous possibilities [1]. In addition, extracting information from multimedia data
in a user profile is complicated [12]. In CF, the system makes recommendations based on similar
users or similar items liked by the users in the past [4] [13]. The Hybrid Filtering technique is a
combination of Content-based Filtering and Collaborative filtering to utilize the key benefits of
both [7].

Collaborative Filtering is the most popular technique that RS uses [4] [10] [14] because
it is domain-independent and performs better in terms of accuracy [11]. The main idea behind
CF is that people who have liked similar items before may like similar items in the future [7]
[14]. CF is further sub-categorized into Model-based and Memory-based Collaborative Filtering
[14]. A model is learned on a training dataset once, and there is no need to consult the entire
dataset every time in model-based CF [15] [13]. These methods require training with many
learning parameters [15]. The predictions are made based on the learned model [15]. Model-
based approaches are quick as they respond in real time, and training can be done offline [13].
However, their accuracy is compromised by their inability to respond immediately to new users
and ratings [10] [15]. In contrast, memory-based CF uses a user-item matrix and considers new
users and ratings to find similar users [15] [13]. Model-based CF lags behind memory-based CF
methods in terms of accuracy, due to which the latter is preferred by most of the Recommender
Systems [14] [10] [4] like Amazon, YouTube, and Netflix [16].

Although rich literature is available on the accomplishments of Collaborative Filtering
for Recommender Systems, some problems, such as cold start and data sparsity, still need to be
solved [10] [5]. Recommending items to new users who have not rated any item is challenging
because no rating history is available [3]. Similarly, in the case of a user who has rated very few
items, it is not easy to make accurate predictions of items that match the usetr’s interests [5].
Some users have similar interests but have no co-rated items due to cold start and sparsity
problems [3]. So, there must be a way to calculate similarity even for items users have not
commonly rated. During the registration process, users may be prompted to rate or specify their
interests. Collecting user preferences early on may help address the cold start problem. However,
this might potentially irritate users, particularly if they are asked to rate numerous items or
respond to various questions during registration, ultimately resulting in user discontent, biassed

Aug 2024 | Vol 6 | Issue 3 Page | 1169



International Journal of Innovations in Science & Technology

data, and less dynamic recommendations. Users provide demographic information during
registration. The proposed approach utilizes user age and user locations in the form of zip codes,
to calculate similarities. After calculating the demographic-based similarities, the system can
initially recommend popular items to users in specific areas or age groups. The system undergoes
constant changes as new users participate and provide ratings. These preferences are then
incorporated into the system, enabling a gradual transition from recommendations based on
demographics to personalized suggestions based on real user interaction or ratings. The seamless
integration of this technology allows it to efficiently solve the cold start problem and adjust to
user-specific preferences over time.

A user’s demographic information can play a significant role in revealing his current
concerns and interests. The user’s age, gender, educational domain, work, and geographic region
reveal much about the items the user could be interested in [17] [7]. For example, people of the
same age group follow similar trends like similar tastes in music. Similarly, people in the same
region experience similar cultures, traditions, and weather conditions. Some generous raters
usually give high ratings even to the items they dislike; some users rate more items, whereas
some do not like to rate them. Some users give honest ratings, whereas some give deceitful
ratings [10]. This shows that different rating habits exist among users [10], and there is a
probability that ratings are uncertain [2] and may not necessarily represent users’ actual interests
[11]. Since distinct rating habits exist among the users [10], it clearly shows that relying merely
on user-based ratings for items is insufficient [18]. Human thinking and reasoning involve
fuzziness [19], which led us to devise a method that depicts the physical world more realistically.
We want our system to cope with unreliable and incomplete information. Realizing the uncertain
nature of user ratings, we used fuzzy set theory, where a membership function provides a degree
of similarity between a user and a fuzzy set. The proposed novel similarity method uses the
Fuzzy set theory by applying the Gaussian Membership Function to ratings and demographics
to compute similarity value. The rest of the paper is organized into further sections explaining
current methods and related work in the Literature Review. The objectives and novelty statement are
provided in the Objectives section. Materials and Methods presents our research methodology and tools
used in detail. Results and Discussions is dedicated to experimental results and performance comparison.
Literature Review

A lot of advancements have been made in recommendation methods over time [7] [14].
Many similarity measures have evolved to achieve better recommendations but failed to achieve
ultimate accuracy [10] [5] [7]. Initially, the similarity was computed by simply calculating distance
in their rating values. Euclidean distance [20] measures the length between line segments,
whereas Manhattan distance [21] is one norm of distance between two vectors. Cosine Similarity
[22] can be computed by taking the Cosine of angles between rating vectors in n-dimensional
space for co-rated items with the default rating set to average or zero. Setting the same default
rating in a highly sparse user-item matrix seems unreasonable. The drawbacks of Cosine are
eliminated by subtracting the corresponding user average from each co-rated pair in ACOS [22].

PCC [1] was introduced to calculate the similarity between co-rated items and return a
value between -1 and 1. Extending PCC, the Constrained PCC (CPCC) [1], the weighted Pearson
Correlation Coefficient (WPCC) [23], and the sigmoid function-based Pearson Correlation
Coefficient (SPCC) [23] were proposed later. Jaccard Measure [24]| considered non co-rated
items but ignored the absolute values of item ratings given by users. Mean Squared Differences
(MSD) [1], a variation of Mean Absolute Differences considered absolute ratings but failed to
provide good coverage. Jaccard lessens the deficiencies in the coverage of MSD when joined as
JMSD [25]. PIP [16] comprising of three factors, Proximity, Impact, and Popularity, focuses
mainly on finding the difference more than common behavior and repeatedly penalizing the
computed value when two ratings are not in agreement is unreasonable. Besides, absolute ratings
were not considered, and the effects of not commonly rated items were ignored. NHSM [4] is
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an improvement of PIP, which uses multiplication again and again, which deteriorates the
similarity value, resulting in a small similarity value. The Modified Jaccard measure used in
NHSM must be corrected, as the numerator and denominator are unequal. For example, user
u_1 has rated all 5 items the same as rated by user u_2. The similarity should be 1, but here, the
similarity calculated by Jaccard in NHSM is 5/(5X5) which gives 5/25, which cannot get equal
to 1.

Bhattacharyya similarity (BCF) [26] computed divergence between two probability
distributions for non co-rated items and used both local and global information to calculate
similarity but failed to distinguish two items with the same similarity value rated by different
numbers of users. Hellinger’s Distance [5] used all user ratings to classify items into different
classes, stating that the rating probability distribution of each item is more similar in the same
class. SMD [9] used all ratings and calculated the similarity between two rating vectors based on
discovering the latent differences between both vectors. HSMD [9] is a variation of SMD, but
HSMD deals with the absolute ratings directly without binary conversion. The user Rating
Preference Behavior (RPB) was used with an improved model of standard PCC to form IPWR
[10]. It focuses mainly on co-rated items and users’ rating preferences as a function of user
average rating value and variance or standard deviation. The Triangle similarity [27] used the
angle and lengths of the rating vectors. The Jaccard measure was combined to improve Triangle,
making a new hybrid measure known as TM] [27]. The obtained similarity is further
complemented with the user rating preference (URP) to get Improved Triangle Similarity (ITR)
[28]. Fuzzy Similarity Measure (FSR) [17] uses fuzzy logic theory and represents linguistic
expressions mathematically, commonly in the form of a triangular or trapezoidal fuzzy number.
Fuzzy Similarity Measure (FSR) [17] is based on MSD [1], Significance and Popularity.
Trapezoidal fuzzy sets were used in FSR to cope with the uncertainty and relativity of user
ratings to items and to improve accuracy. MEFSR [17] is a further step to perform multi-level
calculations. Researchers [29] introduced Fuzzy set theory in 1965; since then, different
researchers have proposed various techniques with time. Yager [30] presented a fuzzy method
using the users’ preference information. A Fuzzy method for context-aware RS was proposed
in 2006 [31], whereas the HU-FCF [18] method used demographics instead of user ratings.
Considering the drawbacks, we aim to overcome the limitations of current similarity measures
by proposing a demographic-based similarity measure that uses a fuzzy approach to enhance
accuracy with less complexity.

Obijectives.

The primary objectives of the proposed research are comprehensively outlined below,
which encompass utilizing novel concepts and approaches to augment the accuracy,
personalization, and overall effectiveness of recommendation systems.

o We developed a methodology that substantially enhances the accuracy and precision of
recommendations in comparison to current methodologies.

. We have created a robust system that provides recommendations to new users who have
no prior history of ratings.

. The system evaluates user behavior to enhance the relevancy and personalization of
recommendations.

o We have developed a technique that efficiently handles uncertainty in user ratings and

demographic information.
. We have implemented measures to ensure that the system gives precise and reliable
recommendations for both co-rated and non co-rated situations.
This study presents the Demographic-based Fuzzy Similarity (DBFS) measure, a novel
approach that combines demographic information with fuzzy logic to solve the cold start issue
in recommender systems. DBFS, unlike traditional techniques, incorporates demographic
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similarities in addition to user-item ratings to boost initial recommendations. This approach
leads to a substantial improvement in accuracy and relevance. Additionally, by integrating
Gaussian membership functions, the approach adeptly manages uncertainty in user ratings and
demographics. The empirical results demonstrate that DBES surpasses current measures,
providing a resilient solution for producing top-notch recommendations in situations with
sparse data.
Material and Methods.

The proposed research is based on memory-based CF and uses users’ item rating history.
Users’ absolute ratings are user responses to items in a user-item matrix of m X n, where ‘m’
represents the total number of users and ‘n’ is the total number of Items [26] [6]. Inherently, the
matrix is sparse, with a small fraction of user ratings on items [13] [11]. In memory-based
collaborative filtering (CF), the existing user-item ratings stored in the system are used directly
to make predictions for new items [15]. This can be achieved by two methods, namely, user-
based and item-based recommendation [15]. The choice between a user-based and an item-
based recommendation approach has the most significant influence on the accuracy and
efficiency of the recommender system [6]. In conventional recommender systems, where the
number of users significantly exceeds the number of available items, item-based approaches are
generally preferred due to their computational efficiency and the lower frequency of updates,
but user-based approaches typically offer unique recommendations, potentially resulting in more
satisfactory user experience [6]. User-based filtering is highly effective in situations when
personalized recommendations are of utmost importance. We chose the User-based approach
because it is most suitable when utilizing demographic information. This technique relies on
user preferences rather than item features to make recommendations. On the other hand, the
item-based approach may not provide the same degree of personalization as user-based filtering
and can encounter difficulties when dealing with new items that lack sufficient rating data. In
the literature review section, we highlighted the challenges that prevent accurate
recommendations by identifying the significant problems in the Recommendation systems. To
address the identified obstacles, let us examine the key aspects our research primarily focuses
on.

o Cold Start & Sparsity. When a new user or new item is added, we do not have rating
history or co-rated items, but we can use the demographic information of users, like age,
gender, or location, to predict user interests.

. User Behaviour. We have observed that distinct rating habits exist among the users.
Some users give generous ratings, some rate almost every item, some do not like to rate
items, some give honest ratings, and some give fake ratings.

. Co-rated Items. Users with more commonly rated items are more similar, and their
interests seem more common. To calculate similarity, we focused on what is similar
among users instead of considering dissimilarities, which led us to consider co-rated
items instead of not commonly rated items.

. Demographics. People of the same area, profession, or age group share common
interests, leading us to use demographic information for recommendations. Moreover,
when users have no co-rated items, they may have their demographics in common,
which can help make predictions.

Analyzing the complex nature of recommendation systems, we divide the proposed
method into two parts. Rating-based similarity and Demographic-based similarity.
A. Rating-Based Similarity.

Rating-based similarity calculates the similarity between users by using ratings. As we
have discussed previously, user behavior is completely subjective. For example, user U4 has rated
3 items only, and the user u, has rated 7 items. Another user, let us say ug, has rated 100 items.
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The co-rated items between user Uy and user U, is 3 and between user uyand user U3 is also 3.
The similarity between user Uy and user Uy is more credible than the similarity between user Uy
and user U3. Jaccard Similarity calculates credibility[24], which takes user behavior into account
by calculating the number of commonly rated items of the users from the total no of items rated
by either. For user u and user v, the Jaccard Similarity is calculated as given in (1).

Jacc(u,v) = LNALT (D
Iy Iy

Here, I, and I, represent the items rated by user u and user V respectively. Instead of
simply calculating the difference between absolute ratings and then summing it up to calculate
a similarity value, we looked for how many items the user u; and user u, agreed with each other
on commonly rated items. Let us suppose, on a rating scale of 1 to 5, a user u; has rated 4 and
the user U, has rated 5 to an Item I, which shows that both have rated above the average and
tend to like Item I; and their interests are in agreement. Similarly, if both users rate below the
average, it indicates that they do not appear to have a preference for Item Iy, but they still have
a mutual agreement. The value of the agreement is 1 only if;

(ru = rv) or (rur ry < I‘med) or (ru' ry < rmed) or
(fy = Tmea, Iy = 2)or (ry = 2,Iy = Ipeq)or
(ry = 'mea, Tv = 4)or (ry = 4,1y = I'med);
Otherwise = 0.

Here, rpeq = 3, the median of the rating whereas, Iy, and Iy represent the ratings of
user U and user V respectively. Figure 1 depicts the rationale behind the conditions that
determine agreement. The agreement for co-rated items is calculated by the total number of
agreements divided by the number of co-rated items as given in (2).
# agreements
— (2)

1]

Where I = I N 1. For some co-rated items, users U and V may rate items with the
same value. The value for the same ratings is 1 if (r, = ry); Otherwise = 0. We calculated
the exact ratings by dividing the total number of the exact same values of ratings by the number
of co-rated items as given in (3).

Agree(u,v) =

# exactly same

i (3)

We calculated the number of remaining items where the rating values of user u and user
Vv are not equal in (4).

Exact(u,v) =

# agreements — #exactly same
(4)
1]

If a user gives an average rating value of 3 to an item on a rating scale of 1 to 5, it is
unclear if the user is inclined to like the item or not. The total number of ratings nearest to I'meq
is represented as #Near, which is the sum of the number of times any of the user rates with an
average rating value I'meq and the other user rates the nearest value to the average value. The
number of items that is nearest to I'jeq, is 1 if;

(ru,rv < rmed) or (ru,rv > rmed) or
(ru = rpeq, v = 2)or(ru = 2,rv = Ipyeq) OF
(ru = rpeq, v = 4)or (ru = 4,rv = rpeq); Otherwise = 0

Rem(u,v) =
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co-rated

! ' v {

No if(ry . Iy < Tmed) i if Ny = Mmeg: 'v=2) No if (fy =Tmeg. w=4)

if (g = 1y) — or —> or —> or —
(fy . Ty > Tmeg) (fy=2.Ty = I'meg) (fy=4. &y = Imeqd)
| | I |
Yes Yes Yes Yes
1
A 4
Sum = #agreements | 0
‘ Agree(uv) = ‘
#agreements / |l|

Figure 1. Flowchart of Agreements.

Fuzzy set theory is capable of handling inherently rough or inaccurate concepts [17].
The fuzziness in the fuzzy set is determined by its Membership function [14]. There are various
membership functions, such as triangular, trapezoidal, and Gaussian [32]. The triangular
membership function is used if there is a single peak value. The Trapezoidal Membership
function is used if data remains constant after a certain value. Meanwhile, the Gaussian
Membership function is preferred for normal distribution. To calculate the difference between
the absolute ratings of users, we used the Gaussian Membership Function. It maps every
element of the universe of discourse X to the interval [0,1] [2] [14]. The Gaussian Membership
Function (GMF) is given as (5).

_1Gmw?
GMF(x) =e 2 o2 (5)

A Gaussian membership function is a mathematical function employed in fuzzy set
theory to quantify the extent to which a specific input is a member of a fuzzy set. The degree of
membership is a numerical number ranging from 0 to 1. Values that are close to the mean u
have high membership values, approaching 1. Conversely, values that are distant from the mean
have low membership values, approaching 0. The Gaussian membership function can be
customized to accurately represent various data distributions and membership criteria by
modifying the mean () and standard deviation (o). The smoothness of the Gaussian function
ensures that even minor changes in input values result in small changes in membership degrees.
This characteristic is particularly beneficial in situations that need high sensitivity and precision.
Triangular and trapezoidal functions are less complex and require less computational power, but
they may not accurately represent the natural distribution of data as well as Gaussian functions.
The Gaussian function is a continuous and differentiable mathematical function that smoothly
spans membership degrees, allowing for an accurate representation of the inherent uncertainty
and ambiguity present in real-world data. We conducted further fine-grained analysis to
enhance the accuracy of our similarity calculations for absolute rating values. We divided them
into the following four classes.
Class 1.

(rw L% < rmed) or (rw 7 > rmed)
Class 2.

(Tu = T"medr v = 2) or (ru;: 2Ir1] = Tmed)
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Class 3.
(" = Tmea ™y = ) or (y = 4,7 = Tea)
Class 4.
(s < Tmea)or (hw Ty > Tea) 07 (T, = Teas ™y = 2)or
(ru= 2,1 =Tmea) 07 (T, = Tmeas Ty = D) 01 (y = 47 = Tea)
The difference between absolute ratings in each class is calculated (6).

_1(rui_rvi)z
2 2
. Z(iel,jeP) e Tuj
Slmgaussian(u; v) = # Near X |R| (6)

Wherei € Randj € P, ‘R’ is the set of items in respective class, and ‘P’ is the set of
all items rated by the user, 1,; and 1y,; are the rating values of user u and user v for the item {
respectively, W, is the mean of ratings of user U and gy, is the standard deviation of ratings of
user U. The similarity of ratings is calculated as given in (7).

Zg:l Simgaussian (u,v)
] (7

Where ‘¢’ represents the number of the class. The complete rating-based similarity is
calculated by using (1), (2), (3), (4) and (7) as given below in (8).
Simgp(W, V) = SiMygeing(w, v) X Rem(u,v) X Exact(u,v) X Agree(u,v) X Jacc(u,v)(8)
Demographic-Based Similarity.

For calculating demographic-based similarity, we have the locations and ages of users.
Let’s suppose X = {agey,q,agey s ageys,...,ageym} is the set of ages of different users,
where ‘M’ represents the number of users. The similarity between users' ages is determined by
utilizing the Gaussian membership function (GMF) described in equation (5) to calculate the
similarity, as stated in equation (9). The key benefit of using the Gaussian membership function
is that it gives a smooth bell-shaped curve with non-zero values at all points.

1 (agey—agey)?

S tMyating =

Simgge(u,v) = e 2 o? €C))
|2 (age, — pw)?

Where ‘W’ is the average age of users, and ‘0’ is the standard deviation of set X which
can be calculated using (10). For example, X = {40,25,28,66,41,30,35,55}.
40+ 25+ 28+ 66+ 41+ 30+ 35+ 55

U= 3 =40
\/(0)2 + (—15)2 + (—12)%2 + (—26)? + (—1)? + (—10)% + (=5)? + (15)?
o= = 13.20
8
1 (40-25)2
Simgge(uy, up) = e 2 (13207 = (,5243
Similarly,
Simgge(uqg,uy) = 1.0000 Simgge(uq, uy) = 0.5243;
Simgge(ug,uz) = 0.6615 Simgge(ug,uy) = 0.1437,
Simgge(uq,us) = 09971 Simgge(uq, ug) = 0.7505;
Simgge(ug,u7) = 09307 Simgge(uq, ug) = 0.5243

The similarity value of Us is the maximum, and the closest age to U, from the set X is
41. The next closest is U with age 35. The closest the age to the user U, the highest the similarity
value. It can be observed that the similarity value of U, and u, is 0.5243, which is the same as
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the similarity between 1, and ug because the difference between age 40 with age 25 is the same
as the difference between age 40 and age 55. Similarly, we utilized the zip codes of users’
locations to calculate the similarity of their geographical positions. The demographic-based
similarity is calculated using (11).

Simgge(u, v) + Simyoc(u, v)

2

(11)

Simpg(u,v) =

Rating Prediction.

Finally, the Demographic-based Fuzzy Similarity (DBFS) is calculated, which uses
Simpgp for ratings, and in case of cold start and new user, it uses [Sim] _DB for predictions.
For the prediction of rating value, we used Resnick’s Formula [28] as given in (12).

Simpg X (1,; — T,
')"\'u'i — T_'+ ZUENN RB : ( vl ‘U) (12)
Yvenn|Simgg|

Where 7, ; is the predicted value of the missing rating of item i of user u, NN denotes

the number of nearest neighbors with similarity computed above the threshold K. The proposed
methodology is illustrated in Figure 2.
Evaluation Metrics.

Evaluation metrics play a vital role in recommender systems by offering a quantitative
method to evaluate and compare various algorithms, guaranteeing their efficacy in providing
useful recommendations. Researchers utilize evaluation metrics to enhance scientific rigor.
These metrics enable repeated testing of results and facilitate comparisons between studies.
Some metrics, like as log-loss or AUC (Area Under the Curve), can be more challenging to grasp.
Evaluation metrics such as ROC-AUC or PR-AUC (Precision-Recall Area Under the Curve) are
useful when dealing with imbalanced datasets, but they may not offer distinct insights in
situations when dealing with regression tasks. Therefore, the performance of the proposed
similarity measure is evaluated using the following metrics. Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Precision, Recall, F1 Score, and Coverage.

The Mean Absolute Error (MAE) [33] measures the average magnitude of errors in a
set of predictions. The MAE is calculated as given in (13). MAE is commonly employed in
regression tasks to quantify the proximity between predictions and actual data. MAE is less
susceptible to the influence of outliers compared to RMSE because it does not calculate the
squared errors.

N
1
MAE = NZ'T’“' — fuy (13)
i=1

Whete 1y, ; is the actual rating, 7, ; is the predicted rating for user u on item i and N
represents the total number of predictions. The MAE gives an average error from 0 to the
maximum value of the rating scale, with lower values indicating better accuracy. The Root Mean
Square Error (RMSE) [33] gives the squared value of errors, giving more weight to more
significant errors and making them more sensitive to outliers. The RMSE is the average of
squared differences between a prediction and an actual observation and is calculated using (14).
RMSE is valuable when there is a strong aversion to huge errors since it assigns greater
importance to them.

N
1
RMSE = Nzlr”'i — Pl (14)
i=1
The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are utilized

to assess the accuracy of the recommendation method. Precision [33] and Recall [33], in contrast
to MAE and RMSE, approach the recommendation problem as a binary classification task
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(relevant vs. non-relevant), which is more closely aligned with user satisfaction. An item is
considered relevant if its rating exceeds the average rating. Precision is the model’s capacity to
identify only relevant data points, as determined by the formula in (15). Precision is essential
when the potential consequences of false positive results are significant.

: USQ’T' = .‘.\:
' Rating
i History

Preprocessing

T R
e — | Similarity Fuzzy Similarity :
| Exact I Rem —
— ' | Nearest Location Age J !
Agreements |\ “———— 1 | |

Rating-based Demographic-based
Similarity Similarity

'"""'"""""""t'a",""""x

Nearest Neighbor P&:ﬁ:gzntg ﬁ:;:g
Selection { m :

| o

[ = '
= H
G :
e = !
P 9 :
= Target
. = User !
P8 i
|9 Top-N Items :
4 '
' . Recomendations | =— Ranking ltems
: e € — :

Figure 2. Flowchart of Methodology.

.. s
Precision = — (15)
N
Where N is the number of relevant items recommended to the user, and Ny is the

number of recommended items. Recall is a model’s ability to identify all relevant cases within a
data set, calculated as given in (16). Recall plays a crucial role when the consequences of missing
essential information are costly.

NTS
Recall = — 16
eca Nr ( )
Where N, is the number of relevant items. High Recall indicates that the model

successfully identifies most of the relevant items. The F1-Measure [33] evaluates the model’s
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accuracy and predictive ability on a dataset by combining Precision and Recall to provide a
balanced metric. The Precision, Recall, and F1-Measure computation is performed based on the
top-N list for the target user [13]. F1-Measure is calculated using (17).

Precision X Recall

F1—-M =2 X 17
easure Precision + Recall a7

Table 1. Rating Distribution of Users in ML-latest-small dataset.
Rating Values ML-latest-small

0.5 1370
1.0 2811
1.5 1791
2.0 7551
2.5 5550
3.0 20047
3.5 13136
4.0 26818
4.5 8551
5.0 13211
Total 100,836
Table 2. Rating Distribution of Users in MLL-100K dataset.
Rating Values ML-100K
1.0 6110
2.0 11370
3.0 27145
4.0 34174
5.0 21201
Total 100,000

Coverage is the percentage of possible recommendations that the recommender system
can provide [33][34]. In certain scenarios, it may be feasible to compromise on the extent of
coverage to improve accuracy. This can be achieved by selectively delivering only very confident
predictions to the user. However, it is crucial to prioritize achieving the highest possible
coverage [34]. The coverage is calculated as given in (18).

1 ts
Coverage = — (18)
IP
Where I;s tepresents the total number of items in test set whereas [, represents a
number of items with predictions. A model’s increased coverage indicates its ability to predict a
wider range of data points, enhancing its practicality in real-world scenarios.
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Figure 3. Percentage distribution of rating Figure 4. Percentage distribution of rating
values in MI.-100K dataset. values in MIL-latest-small dataset.
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Result and Discussions.
Datasets Used.

The datasets we used for our experiments are MovieLens-100K (ML-100K) [34] and
MovieLens-latest-small (ML-latest) [34]. ML-100K is comprised of 943 users and 10, 000 ratings
over 1682 movies, with each user rating at least 20 movies on a rating scale of 1 to 5. The ML-
100K dataset contains simple demographic information like age, gender, occupation, and user
location in the form of zip codes. One of the reasons for choosing ML-100K is the availability
of users’ demographic information in this dataset. The sparseness in datasets refers to the
proportion of missing values in the user-item matrix. The sparseness of the dataset is
approximately 0.936953 which means that about 93.7% of the user-item matrix is empty or has
missing values. This indicates that only about 6.3% of the possible ratings are provided in the
dataset [9]. The dataset ML-latest-small consists of 610 users and 100836 ratings over 9742
movies where each user has rated a minimum of 20 movies on a rating scale of 0.5 to 5.0. The
MI.-latest-small dataset has a sparsity of approximately 0.98303, indicating that around 98.3%
of the user-item matrix is either empty or contains missing values. It indicates that a mere 1.7%
of the possible ratings are included in the dataset. The majority of users have given a rating of 4
in both datasets. The distribution of user rating values in ML-latest-small and ML-100K datasets
is shown in Table 1 and Table 2. The proportion of movies with a rating value of 4 in the ML-
100K dataset is 34%, whereas in the MIL-latest datasets, it is 26%. Figure 3. and Figure 4 shows
the percentage distribution of rating values in datasets.

K-Nearest Neighbors (KNN).

K-Nearest Neighbors is a widely used algorithm employed to generate personalized
recommendations in recommender systems [6]. It is a collaborative filtering technique with
several significant advantages. Firstly, it can provide a recommendation by listing the neighbors
with the same tastes and who are more likely to have similar preferences. Secondly, it is
computationally and space efficient, enabling it to handle large recommender systems. Lastly, it
demonstrates remarkable stability in an online setting, even when new users and items are
continuously added. Another advantage of this system is its ability to generate serendipitous
recommendations, which can help users find unexpected yet very interesting items. KNN
identifies the K most similar users to a target user by analyzing their rating patterns. Items that
have been highly rated by similar users but have not been rated by the target user are
recommended to the target user. The choice of K is crucial in neighborhood-based
recommendation methods. The prediction accuracy follows a concave function as shown in
Table 3, with low accuracy when using a small number of neighbors.

As K increases, more neighbors contribute and variance is averaged out, improving
prediction accuracy. However, accuracy drops when too many neighbors are used, as strong
local relations are diluted. The optimal value of K should be determined through cross-
validation [35]. A neighborhood with 20 to 50 neighbors is suitable in most real-world scenarios,
as it provides enough neighbors to balance out extremes [36][37]. The experiments are
performed on seven similarity measures to compare user-based similarities for K Nearest
Neighbors, where K = {5,10,15,20,25,30,35,40,45,50,55,60}. Changing the value of K results in
different recommendations. The weighted average of the ratings provided by the neighbors can
be used to calculate the predicted rating for an item. A detailed comparative analysis is
performed where state-of-the-art similarity measures (Cosine, PCC, Jaccard, IPWR with
variance, IPWR with SD, HSMD, and Hellinger’s Distance) are evaluated for ML-100K and
ML -latest datasets. To ensure uniformity across datasets and provide a comprehensive
evaluation, we select a value of K for comparison [38]. The uniformity of the data facilitates the
comparison of different analyses, making it possible to attribute differences in performance to
the inherent qualities of the dataset rather than variances in algorithm design.
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Table 3. Statistical Results of Mean Absolute Error (MAE) for ML-100K and ML-latest-small datasets.

MAE (ML-100K)

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60
Cos 0.881 | 0.848 | 0.836 | 0.831 | 0.827 | 0.825 | 0.823 | 0.822 | 0.822 | 0.821 | 0.821 0.82
PCC 0.886 | 0.854 | 0.845 | 0.84 | 0.838 | 0.836 | 0.835 | 0.834 | 0.834 | 0.834 | 0.833 | 0.833
Jaccard 0.847 | 0.82 | 0.813 | 0.81 0.808 | 0.808 | 0.807 | 0.806 | 0.807 | 0.807 | 0.808 | 0.808
IPWR with SD 0.836 | 0.807 | 0.797 | 0.791 | 0.788 | 0.789 | 0.788 | 0.788 | 0.788 | 0.788 | 0.788 | 0.789

IPWR with Variance 0.858 | 0.833 | 0.824 | 0.82 | 0.818 | 0.817 | 0.816 | 0.816 | 0.815 | 0.815 | 0.814 | 0.814

Hellinger’s Distance 0.82 | 0.795 | 0.789 | 0.787 | 0.787 | 0.788 | 0.789 | 0.79 | 0.791 | 0.792 | 0.793 | 0.794

HSMD 0.857 | 0.827 | 0.818 | 0.813 | 0.81 | 0.809 | 0.808 | 0.808 | 0.808 | 0.808 | 0.808 | 0.808
DBES 0.777 | 0.759 | 0.754 | 0.753 | 0.753 | 0.753 | 0.753 | 0.754 | 0.754 | 0.754 | 0.755 | 0.756
MAE (ML-latest)

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60
Cos 0.795 | 0.775 | 0.77 | 0.767 | 0.765 | 0.765 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764 | 0.764
PCC 0.799 | 0.791 | 0.789 | 0.788 | 0.788 | 0.788 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787 | 0.787
Jaccard 0.744 | 0.753 | 0.748 | 0.745 | 0.745 | 0.744 | 0.744 | 0.744 | 0.744 | 0.744 | 0.744 | 0.744
IPWR with SD 0.76 | 0.747 | 0.744 | 0.744 | 0.743 | 0.743 | 0.743 | 0.743 | 0.743 | 0.743 | 0.743 | 0.743

IPWR with Variance 0.786 | 0.775 | 0.772 | 0.771 | 0.771 | 0.771 | 0.771 | 0.771 | 0.771 | 0.77 0.77 0.77

Hellinger’s Distance 0.759 | 0.75 0.75 0.75 | 0.752 1 0.753 | 0.753 | 0.754 | 0.754 | 0.755 | 0.755 | 0.755

HSMD 0.781 | 0.758 | 0.751 | 0.748 | 0.747 | 0.747 | 0.746 | 0.746 | 0.746 | 0.746 | 0.746 | 0.746

DBFS 0.72 | 0.715 | 0.714 | 0.713 | 0.713 | 0.713 | 0.713 | 0.713 | 0.713 | 0.713 | 0.713 | 0.714

Table 4. Statistical Results of Root Mean Square Error (RMSE) for ML-100K and ML-latest-small datasets.
RMSE (ML-100K)

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60
Cos 1.109 [1.064 |1.048 1.041 |1.037 |1.034 |1.032 |1.031 | 1.03 [1.029 |1.028 | 1.028
PCC 1.116 [1.074 |1.062 [1.056 [1.053 |1.051 | 1.05 [1.049 |1.048 |1.048 |1.048 | 1.047
Jaccard 1.068 [1.033 |1.023 [1.018 |1.016 |1.016 |1.015 |1.015 |1.015 |1.015 |1.015 | 1.015
IPWR with SD 1.057 [1.016 [1.003 [0.997 10.995 ]0.993 0.993 |0.991 [0.991 [0.991 10.992 | 0.992
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IPWR with Variance 1.081 [1.046 |1.034 |1.029 |1.026 |1.025 [1.023 |1.023 [1.022 |1.022 |1.021 | 1.021
Hellinger’s Distance 1.045 [1.008 10.999 [0.995 ]0.995 [0.995 [0.995 [0.996 [0.997 [0.998 |0.999 1
HSMD 1.079 |1.037 |1.025 |1.019 |1.016 |1.015 |1.014 |1.013 1.013 |1.014 |1.014 | 1.014
DBFS 0.999 10.975 10.967 [0.965 |0.964 10.964 0.964 |0.964 0.964 [0.964 0.964 | 0.965
RMSE (ML-latest)
Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60
Cos 1.025 [1.002 0.955 10.922 [0.991 | 0.99 |0.99 |0.99 ]0.989 [0.989 [0.989 | 0.989
PCC 1.034 [1.024 |1.021 |1.021 |1.02 | 1.02 |1.02 |1.02 |1.02 |1.02 |[1.02 | 1.02
Jaccard 1 0.975 10.969 10.966 [0.965 |0.965 [0.964 |0.964 [0.964 [0.964 [0.964 | 0.964
IPWR with SD 0.987 10.972 1 0.97 10.969 |0.968 [0.968 0.968 |0.968 0.968 [0.968 |0.968 | 0.968
IPWR with Variance 1.016 1 1 0.999 10.999 10.999 [0.999 [0.999 [0.999 |0.999 [0.999 | 0.999
Hellinger’s Distance 0.987 10.975 10.974 10.975 |0.976 10.977 10.978 ]0.978 0.979 [0.979 | 0.98 | 0.98
HSMD 1.004 10.978 | 0.97 0.967 [0.966 10.965 [0.965 [0.965 [0.965 [0.965 [0.965 | 0.965
DBFS 0.951 [0.944 (0.943 [0.942 [0.942 |0.942 |0.942 [0.942 |0.942 [0.942 |0.942 | 0.942
Table 5. Statistical Results of Precision for MLL.-100K and M1 -latest-small datasets.
Precision (ML-100K)
Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60
Cos 0.575| 0.566 | 0.564 | 0.565 | 0.564 | 0.563 | 0.562 | 0.562 | 0.561 | 0.563 | 0.561 | 0.562
PCC 0.571 | 0.568 | 0.566 | 0.566 | 0.564 | 0.564 | 0.565 | 0.563 | 0.563 | 0.564 | 0.563 | 0.563
Jaccard 0.58 | 0.574 | 0.57 | 0.57 0.57 0.572 | 0.57 0.57 0.569 | 0.569 | 0.567 | 0.567
IPWR with SD 0.589 | 0.581 | 0.582 | 0.582 | 0.581 | 0.578 | 0.581 | 0.579 | 0.577 | 0.578 | 0.577 | 0.575
IPWR with Variance | 0.575 | 0.569 | 0.564 | 0.564 | 0.564 | 0.562 | 0.561 | 0.559 | 0.561 | 0.561 | 0.562 | 0.563
Hellinger’s Distance | 0.595 | 0.594 | 0.589 | 0.59 | 0.589 | 0.583 | 0.583 | 0.584 | 0.58 | 0.578 | 0.577 | 0.578
HSMD 0.589 | 0.586 | 0.584 | 0.577 | 0.575 | 0.575 | 0.572 | 0.573 | 0.572 | 0.573 | 0.57 | 0.569
DBES 0.589 | 0.587 | 0.587 | 0.586 | 0.586 | 0.586 | 0.586 | 0.587 | 0.587 | 0.586 | 0.586 | 0.588
Precision (ML-latest)
Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60
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Cos 0.577 | 0.577 | 0.579 | 0.58 | 0.579 | 0.578 | 0.579 0.58 0.58 | 0.579 | 0.58 | 0.579
PCC 0.569 | 0.567 | 0.569 | 0.568 | 0.568 | 0.568 | 0.569 | 0.568 | 0.568 | 0.568 | 0.568 | 0.568
Jaccard 0.581 | 0.579 | 0.58 | 0.58 | 0.582 | 0.579 | 0.578 | 0.579 | 0.579 | 0.579 | 0.579 | 0.578
IPWR with SD 0.584 | 0.584 | 0.587 | 0.59 | 0.588 | 0.588 | 0.587 | 0.587 | 0.587 | 0.587 | 0.587 | 0.587

IPWR with Variance | 0.581 | 0.58 | 0.581 | 0.583 | 0.582 | 0.579 0.58 0.58 0.579 | 0.58 0.58 | 0.579

Hellinger’s Distance | 0.585 | 0.587 | 0.59 | 0.589 | 0.589 | 0.587 | 0.587 | 0.585 | 0.584 | 0.584 | 0.583 | 0.583

HSMD 0.597 | 0.592 | 0.59 | 0.588 | 0.589 | 0.587 | 0.586 | 0.587 | 0.586 | 0.584 | 0.584 | 0.585

DBES 0.578 | 0.575 | 0.576 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575| 0.575 | 0.575

Table 6. Statistical Results of Recall for ML.-100K and ML-latest-small datasets.
Recall (ML-100K)
Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60

Cos 0.38 10.395 |0.403 10.404 0.403 0.403 [0.402 |0.403 10.402 | 0.403 |0.401 |0.403
PCC 0.381 10.394 10.395 [0.396 0.396 0.397 10.399 10.398 [0.398 | 0.4 10.399 |0.399
Jaccard 0.418 10.425 |0.429 |0.431 0.431 0.431 [0.431 | 0.43 |0.428 | 0.427 [0.426 |0.426
IPWR with SD 0.398 | 0.41 |0.416 |0.421 0.425 0.427 10.429 10.429 |0.427 | 0.429 10.429 |0.429

IPWR with Variance  [0.393 [0.405 10.406 10.409 0.408 0.408 |0.406 0.409 0.409 | 0.409 ]0.409 [0.412
Hellinger’s Distance  [0.402 0.424 | 0.43 10.434 0.434 0.434 10.436 |0.435 |0.433 | 0.431 ]0.433 0.432
HSMD 0.366 [0.386 10.394 10.396 | 0.4 0.402 10.403 0.405 |0.406 | 0.408 |0.408 |0.406
DBFS 0.491 10.497 10.498 10.499 0.498 0.497 10.496 0.497 0.495 | 0.494 10.493 10.494
Recall (ML-latest)
Similarity Measures 5 10 15 20 25 | 30 35 40 45 50 55 60

Cos 0.367 10.372 10.375 [0.375 0.375 0.375 |0.377 0.378 [0.379 | 0.378 [0.378 |0.378
PCC 0.382 10.383 ]0.387 [0.386 0.387 10.388 |0.388 |0.388 |0.388 | 0.388 [0.388 |0.388
Jaccard 0.384 10.382 ]0.383 [0.383 0.382 0.378 |0.377 0.377 0.376 | 0.377 10.376 |0.375
IPWR with SD 0.393 10.402 |0.409 |0.412 0.411 0.413 |0.412 0.411 | 0.41 0.41 0.41 10.409

IPWR with Variance |0.373 [0.379 | 0.38 |0.382 0.382 0.381 |0.381 [0.381 |0.381 | 0.382 |0.381 |0.381
Hellinger’s Distance 0.4 10401 | 0.4 ]0.396 0.395 0.392 10.391 | 0.39 ]0.388 | 0.387 |0.386 0.385
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HSMD 0.346 | 0.35 |0.351 |0.351 (0.353 0.353 |0.353 |0.353 |0.351 | 0.351 ]0.351 |0.351

DBES 0.454 10.458 [0.458 |0.456 [0.455 10.455 |0.454 |0.454 |0.454 | 0.454 |0.454 |0.454
Table 7. Statistical Results of F1-Measure for MI.-100K and MI-latest-small datasets.

F1-Measure (ML-100K)

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60
Cos 0.456, 0.464| 0.469 | 0.47 | 0.469 0.468| 0.468| 0.468| 0.467| 0.468| 0.466/  0.468
PCC 0.455| 0.464| 0.464 | 0.465| 0.464| 0.465| 0.467| 0.465| 0.465| 0.467| 0.466| 0.465
Jaccard 0.485/ 0.488| 0.488 | 0.49 | 0.489| 0.491| 0.49 | 0.489| 0.488| 0.487| 0.486| 0.485
IPWR with SD 0.473) 0.479| 0.483 | 0.487| 0.489| 0.489| 0.492] 0.491| 0.489| 0.49 | 0.49 0.49

IPWR with Variance | 0.465 0.472] 0.47 | 0.472| 0.472] 0.472| 0.469| 0.471| 0.472) 0.472) 0.472, 0.474

Hellinger’s Distance 0.478| 0.493] 0.495 | 0.498| 0.498| 0.496| 0.497| 0.497| 0.493| 0.492| 0.493| 0.493

HSMD 0.45| 0.464| 0.47 | 0.468| 0.471| 0.472) 0.471| 0.473| 0.474| 0.475| 0.475  0.473
DBFS 0.534| 0.536| 0.537 | 0.537| 0.536| 0.536| 0.535| 0.537| 0.536| 0.534| 0.534| 0.535
F1-Measure (ML-latest)

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60
Cos 0.448| 0.452| 0.455 | 0.455] 0.455| 0.455| 0.457| 0.458| 0.458| 0.457| 0.458| 0.457
PCC 0.456 0.456] 0.46 | 0.459) 0.459| 046 0.46| 0.46| 046 | 0.46 | 0.46 0.461
Jaccard 0.46| 0.458] 0.46 | 0.46 | 0.46 | 0456 0.455| 0.455] 0.455| 0.455| 0.455| 0.454
IPWR with SD 0.469| 0.475| 0.482 | 0.485] 0.484| 0.485| 0.484| 0.483| 0.482| 0.483| 0.482| 0.482

IPWR with Variance | 0.453] 0.458| 0.459 | 0.461| 0.461| 0.46 | 0.46 | 0.459| 0.459| 0.46 | 0.46 0.459

Hellinger’s Distance 0.475| 0.476) 0.476 | 0.473| 0.473 0.47 | 0.469| 0.467| 0.466| 0.465 0.464  0.463

HSMD 0.436| 0.438| 0.438 | 0.438| 0.44 @ 0.439| 0.439| 0.439| 0.438| 0.437| 0.437  0.438

DBFS 0.507/ 0.508 0.508 | 0.507| 0.506] 0.506 0.506/ 0.506| 0.506| 0.506| 0.506| 0.506
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Top-N Recommendations.

Top-N Recommendations involve selecting and presenting the highest N items from
the entire collection, based on their expected relevance to the user. Users are more concerned
with getting a list of valuable recommendations than with the accurate predicted rating of each
item. Usually, the output is a list of the top-N recommendations rather than a numeric value.
The optimal value for N in top-N recommender systems might differ based on several aspects,
such as the unique application, user preferences, and the characteristics of the recommended
items. A top-N list is created by first estimating ratings for all unrated items, sorting the results,
and keeping the top N items [13]. N should be carefully selected to avoid issues with efficiency
or accuracy. If N is too large, storing the neighborhood listings and forecast ratings will require
a lot of memory. However, if you choose a small value for N, it might affect coverage which
means some of the items will never be recommended [6]. Top-N suggestions are more desirable
than predicted rating values due to their better alignment with user behavior and their ability to
simplify decision-making. Furthermore, evaluation metrics such as Precision, Recall, and F1-
Measure provide clear insights into the effectiveness of recommendations, making top-N lists a
more practical and user-friendly choice for recommender systems.

Five-Fold Cross Validation.

k-fold cross-validation is a method for assessing a model’s efficacy. It involves
partitioning the data into numerous subsets to train and evaluate the model on these subsets
[28]. The objective is to guarantee that the model generalizes effectively to data that has not
been observed and does not exhibit overfitting or underfitting. In k-fold cross-validation, the
data is partitioned into k-folds of equal size, with one set aside for testing and the remaining set
for training [28]. It determines the performance metric (e.g., precision, recall, RMSE) for each k
fold. The average of the k fold metrics is the ultimate performance metric. Five-fold cross-
validation is implemented to compare the efficacy of the models and predict ratings where 20%
of users are selected for testing while the remaining users are used for training. This is a
frequently employed default option that achieves an appropriate equilibrium between variance
and bias. This approach eliminates overfitting by ensuring that the model is tested on many
subsets, resulting in a more reliable and generalizable evaluation. Additionally, it offers a
comprehensive performance statistic by calculating the average of the results from all five
iterations. This provides a more thorough insight into how the model performs across various
data splits.

Performance Comparison.
Performance Comparison of Mean Absolute Error (MAE).

In order to assess the performance of DBFS compared to its competitors in terms of
Mean Absolute Error (MAE), experimental data were acquired for various values of K-Nearest
Neighbors, as depicted in Table 3. For the MovieLens-100K dataset with K = 5, the Mean
Absolute Error (MAE) of the DBFS is 0.777. In comparison, the MAE of the IPWR with SD
is 0.8306, and the Hellinger’s distance is 0.820. When K is increased to 30, the MAE reduces to
0.753 for DBFS. On the other hand, the MAE of IPWR with SD is 0.789, and the Hellinger’s
distance is 0.788. Similarly, when K is set to 60, the DBFS produces the lowest Mean Absolute
Error (MAE) compared to other methods, as illustrated in Figure 5 (a) In the ML-latest dataset,
when K = 5, the DBFS yields an MAE of 0.72. In contrast, the Jaccard has a mean absolute
error (MAE) of 0.744, while the IPWR with SD has an MAE of 0.76. DBFS has optimal
performance for values of K equal to 30 and 60. The DBFS approach demonstrates the lowest
MAE compared to other methods in both the ML-100K and ML-latest datasets, as
demonstrated in Figure 5 (a) and Figure 5 (b). When K is equal to 1, the prediction is based
only on the rating given by the user who is most similar to the current user. If the rating of this
person deviates significantly from the norm or does not accurately reflect the overall pattern,
the prediction error can be substantial. When the value of K is set to 5, the impact of outliers is
diminished, resulting in an increased probability of accurate predictions compared to when K is
set to 1. With K = 10, the forecast now takes into account a wider spectrum of user opinions.
The process of averaging helps to reduce the impact of noise and outliers, resulting in a
potentially more precise prediction and a decrease in MAE. Although increasing the value of K
can reduce the MAE to a certain extent, there is a maximum limit beyond which further increases
in K will not result in any additional reduction in MAE. When the value of K grows very large,
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the included neighbors may exhibit reduced similarity and contribute unwanted noise, which
could potentially lead to an increase in MAE.
Performance Comparison of Root Mean Square Error (RMSE).

The performance of different similarity measures is compared with DBES, particularly
regarding RMSE, using the experimental data as shown in Table 4. The root mean square error
(RMSE) for DBES is 0.999 for K = 5 in the ML-100K dataset. In contrast, the RMSE for
IPWR with SD is 1.057. The root mean square error (RMSE) of the DBFS reduces to 0.964
when K = 30. In contrast, the RMSE for the IPWR with SD is 0.993, and for the Pearson
correlation coefficient (PCC), it is 1.051. At K = 60, the root mean square error (RMSE) for
DBES is 0.965, the lowest among all the other methods listed in Table 4. The DBES performs
remarkably, as illustrated in Figure 6 (a). Within the ML-latest-small dataset, DBFS performs
better than other similarity measures across various neatrest-neighbor values. When K = 5, the
DBES produces an RMSE value of 0.951. As the amount of K increases, the root mean square
error (RMSE) drops to 0.942 when K = 60. DBFS has notable performance in RMSE, as
illustrated in Figure 6 (a) and Figure 6 (b).

Performance Comparison of Precision.

The experimental results of precision, obtained using several nearest neighbors for
similarity metrics, are presented in Table 5. for comparison. In the ML-100K dataset, the
precision of DBFS is 0.589, which is equivalent to the precision of HSMD and IPWR. However,
the precision is slightly higher for Hellinget’s distance, which is 0.595. At K = 30, the precision
of DBES reaches its greatest value of 0.586, surpassing other similarity measures. In contrast,
the precision of the competitors diminishes at K = 30. Among other approaches, the precision
of DBES reaches its maximum value at K = 60. The Precision performance of DBES is
illustrated in Figure 7 (a). The ML-latest dataset shows that the Precision of DBFS is 0.578 at
K = 5 and is consistent at 0.575 from K = 20 to K = 60. The accuracy of HSMD is 0.597
at K = 5 and decreases to 0.590, which is equivalent to the precision of Hellinget’s distance at
K = 20. The performance of DBFS in Precision is shown in Figure 7 (b). While high
precision is necessary, it is insufficient to comprehend the similarity measure’s performance
thoroughly. It should be combined with recall as in F1-Measure for a complete evaluation. The
precision graph's fluctuations in Hellinger’s distance, HSMD, and IPWR with SD and other
measures in Figure 7 (a) and Figure 7 (b) indicate that the system's capacity to provide
pertinent recommendations is dependent on the selection of K. A stable precision graph of
DBES, in which the precision stays mostly constant while K changes, indicates that the
recommender system is reliable and not unduly affected by K selection. This is usually a good
indication that the model is probably well-tuned and successfully balances the effects of
neighbors, offering reliable performance for a range of K values.

Performance Comparison of Recall.

The performance of DBFES is evaluated against other advanced similarity measures, and
the experimental findings are presented in Table 6. In the ML-100K dataset, the Recall value
for DBES is 0.491, which is the greatest compared to other methods. At K = 20, the Recall
value for DBFS increases to 0.499. On the other hand, the Recall value for Hellinger’s distance
is 0.430. At K = 60, the Recall of DBES is consistently high at 0.494. Figure 8 (a) illustrates
that DBFS exhibits outstanding performance compared to other similarity metrics in terms of
Recall. In the ML-latest dataset, where K = 5, the Recall for DBFS is 0.454, while the Recall
for Hellinger’s distance and IPWR with SD is 0.40 and 0.393, respectively. The DBES provides
the highest recall among all the nearest neighbors we have chosen for comparison. The notable
achievement of DBFS in Recall is shown in Figure 8 (b).

Performance Comparison of F1-Measure.

The experimental results of the F1-Measure for compared similarity measures are
presented in Table 7. In the ML-100K dataset, the F1-Measute value for DBFS at K = 5 is
0.534, which is much higher than the other values. The DBFES achieves the highest '1-Measure
value at K = 15 and K = 20, reaching a value of 0.537. The F1-Measure has consistently
high results compared to the other similarity measures, as depicted in Figure 9 (a). In the ML-
latest dataset, the F1-Measure of DBFS with a value of K = 30 is 0.507. In contrast, the F1-
Measure for Hellinger’s distance is 0.478, and for Jaccard it is 0.485. The F1-Measure exhibits
an increase to 0.508 when K = 19 and thereafter decreases to 0.506 when K = 25. The DBFS
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yields a maximum value of 0.508 for the 10 and 15 nearest neighbors. The ML-100K dataset
has an average F'1-Measure of 0.535, whereas the MIL-latest dataset has an average I'1-Measure
of 0.506. Figure 9 (b) displays the F1-Measure performance for the ML-latest dataset.
Performance Comparison of Coverage.

The proposed Demographic-based Fuzzy similarity measure outperforms the other
similarity measures in terms of Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), F1 score, and other evaluation metrics. In addition,
it attains 100% coverage. Consequently, the novel similarity measure not only enhances the
accuracy of predictions but also guarantees the inclusion of all items in the dataset in the
recommendations.

Table 8. Comparison of the proposed DBES with other Similarity Measures in ML-100K and
ML -latest-small datasets.

ML-100K ML-latest-small
Similarity [MAE RMSE Precision [Recall | F1 MAE RMSE [Precision [Recall | F1
Measures
Cos 0.831 | 1.042 0.564 10.400 (0.466 |0.768 | 0.994 0.578 10.375 [0.455
PCC 0.788 | 1.058 0.565 10.396 [0.464 |0.788 | 1.021 0.568 0.386 [0.459
Jaccard  |0.812 | 1.022 0.570  10.427 10.488 ]0.745 | 0.968 0.579  10.379 (0.456
IPWR with
SD 0.794 | 1.000 0.580  0.422 |0.486 ]0.744 | 0.970 0.586  [0.408 [0.481
IPWR with
Variance |0.821 | 1.031 0.563 0.406 (0.471 ]0.772 | 1.000 0.580 [0.380 [0.459
Hellinger’s
Distance ]0.792 | 1.000 0.585 10.429 10.493 10.753 | 0.978 0.586  [0.392 0.469
HSMD  ]0.815 | 1.022 0.576  10.398 10.469 ]0.750 | 0.97 0.587 10.351 [0.438
DBFS 0.756 | 0.968 0.568 10.495 (0.535 0.713 | 0.943 0.575  10.455 [0.506

Comparison of DBFS with Other Similarity Measures.

Table 8 presents the average values of MAE, RMSE, Precision, Recall, and F1-Measure
for the MIL-100K and ML-latest datasets. It compares the performance of the proposed DBFS
measure with other similarity measures. The averages were calculated for twelve distinct values
of the number of nearest neighbors, with K set to K = {5,10,15,...,60}. The MAE and
RMSE specifically emphasize the prediction accuracy of each measure. Table 8 demonstrates
that the DBFS measure attains the lowest MAE and RMSE values, signifying a substantial
decrease in prediction error in comparison to the other measures in both ML-100K and ML-
latest datasets. This enhancement in accuracy is additionally demonstrated in Figure 10 (a) and
Figure 10 (b). The average precision of DBES is a bit low as illustrated in Figure 10 (c) but
Recall is high compared to other methods, it means the system is very good at retrieving relevant
items but also includes irrelevant items in its recommendations. Although precision evaluates
the correctness of positive predictions, it does not consider the omission of relevant items.
Consequently, it is frequently employed alongside with Recall to offer a more thorough
assessment of overall performance. DBES exhibits a high average Recall in both datasets
compared to other similarity measures, as depicted in Figure 10 (d).

ML-latest ML-100K ML-latest ML-100K
HSMD HSMD
¢ Helinger's Distance ¢ Helinger's Distance
2 DBFS 2 DBFS
£ IPWR with Variance £ IPWR with Variance
Z IPWR with SD g IPWR with SD
-‘—é Jaccard '—é Jaccard
a PCC a PCC
Cosine Cosine
0.65 0.7 0.75 0.8 0.85 0.85 0.9 0.95 1 1.05 1.1

Average MAE Average RMSE

Figure 10 (a). Comparison of Average
MAE of DBFS with other Similarity
Measures.

Figure 10 (b). Comparison of Average
RMSE of DBFS with other Similarity
Measures.
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B ML-latest ML-100K W ML-latest ML-100K
HSMD HSMD
0 Helinger's Distance g Helinger's Distance
3 DBFS 3 DBFS
©
2 IPWR with Variance £ IPWR with Variance
g IPWR with SD g IPWR with SD
S K]
T Jaccard T Jaccard
Cosine Cosine
0.55 0.56 0.57 0.58 0.59 0 0.1 0.2 0.3 0.4 0.5 0.6
Average Precision Average Recall
Figure 10 (c). Comparison of Average Figure 10 (d). Comparison of Average
Precision of DBFS with other Similarity Recall of DBFS with other Similarity
Measures. Measures.

H ML-latest ML-100K

HSMD
» Helinger's Distance
< IPWR with Variance I ——
_Lé JaCCard [
Cosine

o

01 02 03 04 05 06

Average F1-Measure

Figure 10 (e). Comparison of Average F1-Measure of DBFS with other Similarity Measures.

Personalization seeks to customize recommendations based on the distinct tastes and
preferences of each user. As a result of personalization, the system may suggest a diverse range
of objects that it deems to be potentially relevant to the user. While attempting to encompass a
uset's diverse interests and nuances in their profile, the system may suggest items that are only
marginally related or items that the user may find intriguing but are not exactly what they actually
want. This can increase the number of false positives, thereby lowering precision. For example,
the system recommends songs similar to what the user has listened to before, ensuring that most
genres and artists of interest are covered (high recall). However, it might also recommend slightly
less relevant songs, reducing precision. The system throws in some completely new artists or
genres that the user has never explored, aiming to pleasantly surprise them. While this can lead
to discovering new favorites, it also increases the likelihood of irrelevant recommendations (low
precision). Despite the irrelevant items, the number of relevant articles ensures the user stays
informed about a wide range of topics, and the overall effectiveness (IF1-Measure) of DBES is
high compared to other methods as illustrated in Figure 10 (e). Although precision is low, it is
not so low as to drag down the F1-Measure of DBES significantly. This implies that while there
are false positives, they are not overwhelming compared to the true positives. The F1-Measure
is higher in both ML-100K and ML-latest-small datasets, compared to other methods which
means that despite the lower precision, the overall trade-off between precision and recall is more
favorable in the proposed DBFS method. If the system is designed to promote diversity in
recommendations, it might include a wider variety of items, some of which are less relevant.
This can lead to lower precision but might improve overall user satisfaction by introducing users
to a broader range of content.

Key Findings Discussion.

Compared to other metrics, such as HSMD, IPWR with SD, and Hellinger’s Distance,
the proposed DBFS significantly outperforms all. In the ML-100K dataset, the average MAE
for the DBFS is 0.756, whereas HSMD, Hellinger’s Distance, and IPWR with SD have average
MAEs of 0.815, 0.792, and 0.794, respectively. The DBFS demonstrates a 4.9% improvement
in MAE and a 2.7% improvement in RMSE over HSMD, a 4.5% improvement in MAE and a
3.29% improvement in RMSE over Hellinger’s Distance, and a 4.7% improvement in MAE and
a 3.2% improvement in RMSE over IPWR with SD. Additionally, DBFS improves Precision by
1.7% over HSMD, 1.03% over IPWR with SD, and 0.1% over Hellinger’s Distance.
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In the ML-latest dataset, the average MAE for the novel DBFS is 0.713, compared to
0.750 for HSMD, 0.753 for Hellinger’s Distance, and 0.744 for IPWR with SD. The DBFS
shows a 4.9% improvement in MAE over HSMD, a 5.3% improvement over Hellinger’s
Distance, and a 4.1% improvement over IPWR with SD. In terms of RMSE, DBFS improves
by 2.7% over both HSMD and IPWR with SD, and by 3.5% over Hellinger’s Distance. Precision
improvements with DBFS are 1.8% over both Hellinger’s Distance and IPWR with SD, and
1.54% over HSMD. Empirical results demonstrate that DBES consistently achieves lower MAE
and RMSE values across multiple datasets, indicating its superior accuracy and reliability.
Specifically, DBES provides significant improvements in precision, ensuring more accurate
recommendations.

Conclusion.

The development of recommendation systems that are more efficient and user-centric
is becoming increasingly important in a wide variety of applications, ranging from e-commerce
to content streaming. The objective of this study is to enhance the accuracy of memory-based
Collaborative Filtering by considering user rating patterns and including demographic data. The
suggested method surpasses previous methods in terms of MAE, RMSE, Precision, Recall, and
F1-Measure, demonstrating its efficacy in predicting user preferences and delivering useful
recommendations. Nevertheless, the study is constrained by limitations such as the dependence
on unavailable demographic data and the possibility of computational complexity. The research
has the potential to be extended to provide accurate suggestions in diverse systems, and
additional fuzzy membership functions might be investigated to achieve even higher precision.
The suggested strategy improves the accuracy of predictions and achieves complete coverage,
making it a scalable and effective approach ideal for a wide range of applications.
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