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n this allegedly never-ending stream of e-commerce, it is crucial to offer high-quality 
suggestions so that consumers can choose wisely from a wide range of picks. Recommender 
Systems (RS) has proven to be an essential instrument for improving sales of online vendors 

and enabling consumers with personalized product recommendations.  Collaborative Filtering 
(CF), an extensively preferred approach for Recommender Systems, provides suggestions based 
on the ratings of users with similar interests. The primary operating component in CF is to 
measure similarity among items or users. Recommender Systems use a user-item matrix, which 
is often highly sparse and suffers from a cold start, ultimately leading to imprecise 
recommendations. Instead of relying merely on ratings that are uncertain and can be fake, we 
integrated the demographic information of users with CF to attain more precise predictions and 
recommendations in our work. To cope with the uncertainty factor in the recommendation 
process and to depict the physical world more realistically, we applied the Fuzzy set theory to 
users’ ratings and demographic features. ML-100K and ML-latest-small datasets are used to 
evaluate the accuracy of the proposed similarity measure. Compared to the most advanced 
methods, our proposed demographic fuzzy similarity computation method exhibits considerable 
achievements in terms of MAE, RMSE, and coverage metrics on standard recommendation 
datasets, which we used for experimentation. 
Keywords. Recommender Systems; Collaborative Filtering; Similarity Measures; Fuzzy Sets. 
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Introduction. 
With every moment in this fast-paced world, massive amounts of information are added 

to the pile [1]. Accessing the relevant information appears to be difficult, tedious, and time-
consuming amid this digital explosion [2] [3] [1]. Because of globalization, individuals all over 
the world connect and share information, services, and products [1]. The digital world has 
replaced previous standards by altering people’s methods of living. Traditional businesses are 
increasingly shifting to E-commerce, and customers are anxious to explore what new products 
they offer. People now have a wide range of choices and get confused when bombarded with 
apparently immense information available [4]. Recommender Systems have emerged to address 
the problem of information overload, also known as the big data problem [5] [6]. These systems 
give automatic product recommendations that assist e-businesses in reaching their relevant 
consumers while consumers find the best fit conveniently and quickly [7] [8]. These systems are 
utilized across many sectors, including e-commerce, online articles and books, online 
broadcasting, movie sites, and so forth [9] [7] [10].  

In a few decades, immense progress has been made in this domain [7]. Three filtering 
techniques are being used to process such massive data. These are Content-Based Filtering 
(CBF), Collaborating Filtering (CF), and Hybrid Filtering [7]. The CBF approach uses profile 
information about items and users to make predictions [11]. In this method, the system keeps 
track of the user’s activities and content of items liked by users in the past to suggest similar 
items [7]. When a system recommends similar items based on the user’s history, the user loses 
the opportunity to try something new [6] [1]. In reality, a user needs various options rather than 
merely homogenous possibilities [1]. In addition, extracting information from multimedia data 
in a user profile is complicated [12]. In CF, the system makes recommendations based on similar 
users or similar items liked by the users in the past [4] [13]. The Hybrid Filtering technique is a 
combination of Content-based Filtering and Collaborative filtering to utilize the key benefits of 
both [7]. 

Collaborative Filtering is the most popular technique that RS uses [4] [10] [14] because 
it is domain-independent and performs better in terms of accuracy [11]. The main idea behind 
CF is that people who have liked similar items before may like similar items in the future [7] 
[14]. CF is further sub-categorized into Model-based and Memory-based Collaborative Filtering 
[14]. A model is learned on a training dataset once, and there is no need to consult the entire 
dataset every time in model-based CF [15] [13]. These methods require training with many 
learning parameters [15]. The predictions are made based on the learned model [15]. Model-
based approaches are quick as they respond in real time, and training can be done offline [13]. 
However, their accuracy is compromised by their inability to respond immediately to new users 
and ratings [10] [15]. In contrast, memory-based CF uses a user-item matrix and considers new 
users and ratings to find similar users [15] [13]. Model-based CF lags behind memory-based CF 
methods in terms of accuracy, due to which the latter is preferred by most of the Recommender 
Systems  [14] [10] [4] like Amazon, YouTube, and Netflix [16].  

Although rich literature is available on the accomplishments of Collaborative Filtering 
for Recommender Systems, some problems, such as cold start and data sparsity, still need to be 
solved [10] [5]. Recommending items to new users who have not rated any item is challenging 
because no rating history is available [3]. Similarly, in the case of a user who has rated very few 
items, it is not easy to make accurate predictions of items that match the user’s interests [5].  
Some users have similar interests but have no co-rated items due to cold start and sparsity 
problems [3]. So, there must be a way to calculate similarity even for items users have not 
commonly rated. During the registration process, users may be prompted to rate or specify their 
interests. Collecting user preferences early on may help address the cold start problem. However, 
this might potentially irritate users, particularly if they are asked to rate numerous items or 
respond to various questions during registration, ultimately resulting in user discontent, biassed 
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data, and less dynamic recommendations. Users provide demographic information during 
registration. The proposed approach utilizes user age and user locations in the form of zip codes, 
to calculate similarities. After calculating the demographic-based similarities, the system can 
initially recommend popular items to users in specific areas or age groups. The system undergoes 
constant changes as new users participate and provide ratings. These preferences are then 
incorporated into the system, enabling a gradual transition from recommendations based on 
demographics to personalized suggestions based on real user interaction or ratings. The seamless 
integration of this technology allows it to efficiently solve the cold start problem and adjust to 
user-specific preferences over time.  

A user’s demographic information can play a significant role in revealing his current 
concerns and interests. The user’s age, gender, educational domain, work, and geographic region 
reveal much about the items the user could be interested in [17] [7]. For example, people of the 
same age group follow similar trends like similar tastes in music. Similarly, people in the same 
region experience similar cultures, traditions, and weather conditions. Some generous raters 
usually give high ratings even to the items they dislike; some users rate more items, whereas 
some do not like to rate them. Some users give honest ratings, whereas some give deceitful 
ratings [10]. This shows that different rating habits exist among users [10], and there is a 
probability that ratings are uncertain [2] and may not necessarily represent users’ actual interests  
[11].  Since distinct rating habits exist among the users [10], it clearly shows that relying merely 
on user-based ratings for items is insufficient [18]. Human thinking and reasoning involve 
fuzziness [19], which led us to devise a method that depicts the physical world more realistically. 
We want our system to cope with unreliable and incomplete information. Realizing the uncertain 
nature of user ratings, we used fuzzy set theory, where a membership function provides a degree 
of similarity between a user and a fuzzy set. The proposed novel similarity method uses the 
Fuzzy set theory by applying the Gaussian Membership Function to ratings and demographics 
to compute similarity value. The rest of the paper is organized into further sections explaining 
current methods and related work in the Literature Review. The objectives and novelty statement are 
provided in the Objectives section. Materials and Methods presents our research methodology and tools 
used in detail. Results and Discussions is dedicated to experimental results and performance comparison.  

Literature Review 
A lot of advancements have been made in recommendation methods over time [7] [14]. 

Many similarity measures have evolved to achieve better recommendations but failed to achieve 
ultimate accuracy [10] [5] [7]. Initially, the similarity was computed by simply calculating distance 
in their rating values. Euclidean distance [20] measures the length between line segments, 
whereas Manhattan distance [21] is one norm of distance between two vectors. Cosine Similarity 
[22] can be computed by taking the Cosine of angles between rating vectors in n-dimensional 
space for co-rated items with the default rating set to average or zero. Setting the same default 
rating in a highly sparse user-item matrix seems unreasonable. The drawbacks of Cosine are 
eliminated by subtracting the corresponding user average from each co-rated pair in ACOS [22]. 

PCC [1] was introduced to calculate the similarity between co-rated items and return a 
value between -1 and 1. Extending PCC, the Constrained PCC (CPCC) [1], the weighted Pearson 
Correlation Coefficient (WPCC) [23], and the sigmoid function-based Pearson Correlation 
Coefficient (SPCC) [23] were proposed later. Jaccard Measure [24] considered non co-rated 
items but ignored the absolute values of item ratings given by users. Mean Squared Differences 
(MSD) [1], a variation of Mean Absolute Differences considered absolute ratings but failed to 
provide good coverage. Jaccard lessens the deficiencies in the coverage of MSD when joined as 
JMSD [25]. PIP [16] comprising of three factors, Proximity, Impact, and Popularity, focuses 
mainly on finding the difference more than common behavior and repeatedly penalizing the 
computed value when two ratings are not in agreement is unreasonable. Besides, absolute ratings 
were not considered, and the effects of not commonly rated items were ignored. NHSM [4] is 
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an improvement of PIP, which uses multiplication again and again, which deteriorates the 
similarity value, resulting in a small similarity value. The Modified Jaccard measure used in 
NHSM must be corrected, as the numerator and denominator are unequal. For example, user 
u_1 has rated all 5 items the same as rated by user u_2. The similarity should be 1, but here, the 
similarity calculated by Jaccard in NHSM is 5/(5×5) which gives 5/25, which cannot get equal 
to 1.  

Bhattacharyya similarity (BCF) [26] computed divergence between two probability 
distributions for non co-rated items and used both local and global information to calculate 
similarity but failed to distinguish two items with the same similarity value rated by different 
numbers of users. Hellinger’s Distance [5] used all user ratings to classify items into different 
classes, stating that the rating probability distribution of each item is more similar in the same 
class. SMD [9] used all ratings and calculated the similarity between two rating vectors based on 
discovering the latent differences between both vectors. HSMD [9] is a variation of SMD, but 
HSMD deals with the absolute ratings directly without binary conversion. The user Rating 
Preference Behavior (RPB) was used with an improved model of standard PCC to form IPWR 
[10]. It focuses mainly on co-rated items and users’ rating preferences as a function of user 
average rating value and variance or standard deviation. The Triangle similarity [27] used the 
angle and lengths of the rating vectors. The Jaccard measure was combined to improve Triangle, 
making a new hybrid measure known as TMJ [27]. The obtained similarity is further 
complemented with the user rating preference (URP) to get Improved Triangle Similarity (ITR) 
[28]. Fuzzy Similarity Measure (FSR) [17] uses fuzzy logic theory and represents linguistic 
expressions mathematically, commonly in the form of a triangular or trapezoidal fuzzy number. 
Fuzzy Similarity Measure (FSR) [17] is based on MSD [1], Significance and Popularity. 
Trapezoidal fuzzy sets were used in FSR to cope with the uncertainty and relativity of user 
ratings to items and to improve accuracy. MFSR [17] is a further step to perform multi-level 
calculations. Researchers [29] introduced Fuzzy set theory in 1965; since then, different 
researchers have proposed various techniques with time. Yager [30] presented a fuzzy method 
using the users’ preference information. A Fuzzy method for context-aware RS was proposed 
in 2006 [31], whereas the HU-FCF [18] method used demographics instead of user ratings. 
Considering the drawbacks, we aim to overcome the limitations of current similarity measures 
by proposing a demographic-based similarity measure that uses a fuzzy approach to enhance 
accuracy with less complexity. 
Objectives. 

The primary objectives of the proposed research are comprehensively outlined below, 
which encompass utilizing novel concepts and approaches to augment the accuracy, 
personalization, and overall effectiveness of recommendation systems.  

• We developed a methodology that substantially enhances the accuracy and precision of 
recommendations in comparison to current methodologies.  

• We have created a robust system that provides recommendations to new users who have 
no prior history of ratings.  

• The system evaluates user behavior to enhance the relevancy and personalization of 
recommendations.  

• We have developed a technique that efficiently handles uncertainty in user ratings and 
demographic information.  

• We have implemented measures to ensure that the system gives precise and reliable 
recommendations for both co-rated and non co-rated situations.  
This study presents the Demographic-based Fuzzy Similarity (DBFS) measure, a novel 

approach that combines demographic information with fuzzy logic to solve the cold start issue 
in recommender systems. DBFS, unlike traditional techniques, incorporates demographic 
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similarities in addition to user-item ratings to boost initial recommendations. This approach 
leads to a substantial improvement in accuracy and relevance. Additionally, by integrating 
Gaussian membership functions, the approach adeptly manages uncertainty in user ratings and 
demographics. The empirical results demonstrate that DBFS surpasses current measures, 
providing a resilient solution for producing top-notch recommendations in situations with 
sparse data. 
Material and Methods. 

The proposed research is based on memory-based CF and uses users’ item rating history. 

Users’ absolute ratings are user responses to items in a user-item matrix of m × n, where ‘m’ 
represents the total number of users and ‘n’ is the total number of Items [26] [6]. Inherently, the 
matrix is sparse, with a small fraction of user ratings on items [13] [11]. In memory-based 
collaborative filtering (CF), the existing user-item ratings stored in the system are used directly 
to make predictions for new items [15]. This can be achieved by two methods, namely, user-
based and item-based recommendation [15]. The choice between a user-based and an item-
based recommendation approach has the most significant influence on the accuracy and 
efficiency of the recommender system [6]. In conventional recommender systems, where the 
number of users significantly exceeds the number of available items, item-based approaches are 
generally preferred due to their computational efficiency and the lower frequency of updates, 
but user-based approaches typically offer unique recommendations, potentially resulting in more 
satisfactory user experience [6]. User-based filtering is highly effective in situations when 
personalized recommendations are of utmost importance. We chose the User-based approach 
because it is most suitable when utilizing demographic information. This technique relies on 
user preferences rather than item features to make recommendations. On the other hand, the 
item-based approach may not provide the same degree of personalization as user-based filtering 
and can encounter difficulties when dealing with new items that lack sufficient rating data. In 
the literature review section, we highlighted the challenges that prevent accurate 
recommendations by identifying the significant problems in the Recommendation systems. To 
address the identified obstacles, let us examine the key aspects our research primarily focuses 
on. 

• Cold Start & Sparsity. When a new user or new item is added, we do not have rating 
history or co-rated items, but we can use the demographic information of users, like age, 
gender, or location, to predict user interests. 

• User Behaviour. We have observed that distinct rating habits exist among the users. 
Some users give generous ratings, some rate almost every item, some do not like to rate 
items, some give honest ratings, and some give fake ratings. 

• Co-rated Items. Users with more commonly rated items are more similar, and their 
interests seem more common. To calculate similarity, we focused on what is similar 
among users instead of considering dissimilarities, which led us to consider co-rated 
items instead of not commonly rated items. 

• Demographics. People of the same area, profession, or age group share common 
interests, leading us to use demographic information for recommendations. Moreover, 
when users have no co-rated items, they may have their demographics in common, 
which can help make predictions. 
Analyzing the complex nature of recommendation systems, we divide the proposed 

method into two parts. Rating-based similarity and Demographic-based similarity. 
A. Rating-Based Similarity. 

Rating-based similarity calculates the similarity between users by using ratings. As we 

have discussed previously, user behavior is completely subjective. For example, user u1 has rated 

3 items only, and the user u2 has rated 7 items. Another user, let us say u3, has rated 100 items. 



                                International Journal of Innovations in Science & Technology 

Aug 2024|Vol 6 | Issue 3                                                                                   Page |1173 

The co-rated items between user u1 and user u2 is 3 and between user u1and user u3 is also 3. 

The similarity between user u1 and user u2 is more credible than the similarity between user u1 

and user u3. Jaccard Similarity calculates credibility[24], which takes user behavior into account 
by calculating the number of commonly rated items of the users from the total no of items rated 

by either. For user u and user v, the Jaccard Similarity is calculated as given in (1). 

Jacc(u, v) =
|Iu  Iv|

|Iu  Iv|
(1) 

Here, Iu and Iv represent the items rated by user u and user v respectively. Instead of 
simply calculating the difference between absolute ratings and then summing it up to calculate 

a similarity value, we looked for how many items the user u1 and user u2 agreed with each other 

on commonly rated items. Let us suppose, on a rating scale of 1 to 5, a user u1 has rated 4 and 

the user u2 has rated 5 to an Item I1, which shows that both have rated above the average and 

tend to like Item I1 and their interests are in agreement. Similarly, if both users rate below the 

average, it indicates that they do not appear to have a preference for Item I1, but they still have 
a mutual agreement. The value of the agreement is 1 only if;  

(ru  =  rv) or (ru, rv  <  rmed) or (ru, rv  <  rmed) or 
(ru  =  rmed, rv  =  2)or (ru  =  2, rv  =  rmed)or 
(ru  =  rmed, rv  =  4)or (ru  =  4, rv  = rmed);  

Otherwise =  0. 
Here, rmed  =  3, the median of the rating whereas, ru and rv represent the ratings of 

user u and user v respectively. Figure 1 depicts the rationale behind the conditions that 
determine agreement. The agreement for co-rated items is calculated by the total number of 
agreements divided by the number of co-rated items as given in (2). 

Agree(u, v) =
# agreements

|I|
(2) 

Where I =  Iu ∩ Iv. For some co-rated items, users u and v may rate items with the 

same value. The value for the same ratings is 1 if (ru  =  rv); Otherwise =  0. We calculated 
the exact ratings by dividing the total number of the exact same values of ratings by the number 
of co-rated items as given in (3). 

Exact(u, v) =
# exactly same

|I|
(3) 

We calculated the number of remaining items where the rating values of user u and user 

v are not equal in (4). 

Rem(u, v) =
# agreements − #exactly same

|I|
(4) 

If a user gives an average rating value of 3 to an item on a rating scale of 1 to 5, it is 

unclear if the user is inclined to like the item or not. The total number of ratings nearest to rmed 

is represented as #Near, which is the sum of the number of times any of the user rates with an 

average rating value rmed and the other user rates the nearest value to the average value. The 

number of items that is nearest to rmed, is 1 if; 

(ru, rv <  rmed) or (ru, rv >  rmed) or 
(ru =  rmed, rv =  2) or (ru =  2, rv =  rmed) or 

(ru =  rmed, rv =  4) or (ru =  4, rv =  rmed);  Otherwise =  0 
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Figure 1. Flowchart of Agreements. 

Fuzzy set theory is capable of handling inherently rough or inaccurate concepts [17]. 
The fuzziness in the fuzzy set is determined by its Membership function [14]. There are various 
membership functions, such as triangular, trapezoidal, and Gaussian [32]. The triangular 
membership function is used if there is a single peak value. The Trapezoidal Membership 
function is used if data remains constant after a certain value. Meanwhile, the Gaussian 
Membership function is preferred for normal distribution. To calculate the difference between 
the absolute ratings of users, we used the Gaussian Membership Function. It maps every 
element of the universe of discourse X to the interval [0,1] [2] [14]. The Gaussian Membership 
Function (GMF) is given as (5). 

𝐺𝑀𝐹(𝑥) = 𝑒
−

1
2

 
(𝑥−𝜇)2

𝜎2 (5) 

A Gaussian membership function is a mathematical function employed in fuzzy set 
theory to quantify the extent to which a specific input is a member of a fuzzy set. The degree of 

membership is a numerical number ranging from 0 to 1. Values that are close to the mean 𝜇 
have high membership values, approaching 1. Conversely, values that are distant from the mean 
have low membership values, approaching 0. The Gaussian membership function can be 
customized to accurately represent various data distributions and membership criteria by 

modifying the mean (𝜇) and standard deviation (σ). The smoothness of the Gaussian function 
ensures that even minor changes in input values result in small changes in membership degrees. 
This characteristic is particularly beneficial in situations that need high sensitivity and precision.  
Triangular and trapezoidal functions are less complex and require less computational power, but 
they may not accurately represent the natural distribution of data as well as Gaussian functions. 
The Gaussian function is a continuous and differentiable mathematical function that smoothly 
spans membership degrees, allowing for an accurate representation of the inherent uncertainty 
and ambiguity present in real-world data. We conducted further fine-grained analysis to 
enhance the accuracy of our similarity calculations for absolute rating values. We divided them 
into the following four classes. 
Class 1. 

(𝑟𝑢, 𝑟𝑣  <  𝑟𝑚𝑒𝑑) 𝑜𝑟 (𝑟𝑢, 𝑟𝑣  >  𝑟𝑚𝑒𝑑) 
Class 2. 

(𝑟𝑢  =  𝑟𝑚𝑒𝑑, 𝑟𝑣  =  2) 𝑜𝑟 (𝑟𝑢, =  2, 𝑟𝑣  =  𝑟𝑚𝑒𝑑)  
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Class 3. 

(𝑟𝑢 =  𝑟𝑚𝑒𝑑, 𝑟𝑣  =  4) 𝑜𝑟 (𝑟𝑢  =  4, 𝑟𝑣  =  𝑟𝑚𝑒𝑑)  
Class 4. 

(𝑟𝑢, 𝑟𝑣  <  𝑟𝑚𝑒𝑑)𝑜𝑟 (𝑟𝑢, 𝑟𝑣  >  𝑟𝑚𝑒𝑑) 𝑜𝑟 (𝑟𝑢  =  𝑟𝑚𝑒𝑑, 𝑟𝑣  =  2)𝑜𝑟  
(𝑟𝑢 =  2, 𝑟𝑣  = 𝑟𝑚𝑒𝑑) 𝑜𝑟 (𝑟𝑢  =  𝑟𝑚𝑒𝑑, 𝑟𝑣  =  4) 𝑜𝑟 (𝑟𝑢  =  4, 𝑟𝑣  =  𝑟𝑚𝑒𝑑) 

The difference between absolute ratings in each class is calculated (6). 

𝑆𝑖𝑚𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢, 𝑣) =  
∑ 𝑒

−
1
2

(𝑟𝑢𝑖−𝑟𝑣𝑖)2

𝜎𝑢𝑗
2

(𝑖𝜖𝐼,𝑗𝜖𝑃)

# 𝑁𝑒𝑎𝑟
× |𝑅| (6)

 

Where 𝑖 ∈  𝑅 and 𝑗 ∈  𝑃, ‘𝑅’ is the set of items in respective class, and ‘𝑃’ is the set of 

all items rated by the user, 𝑟𝑢𝑖 and 𝑟𝑣𝑖 are the rating values of user 𝑢 and user 𝑣 for the item 𝑖 
respectively, µ𝑢 is the mean of ratings of user 𝑢 and 𝜎𝑢 is the standard deviation of ratings of 

user 𝑢. The similarity of ratings is calculated as given in (7). 

𝑆𝑖𝑚𝑟𝑎𝑡𝑖𝑛𝑔 =
∑ 𝑆𝑖𝑚𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢, 𝑣)4

𝑐=1

|𝐼|
(7) 

Where ‘𝑐’ represents the number of the class. The complete rating-based similarity is 
calculated by using (1), (2), (3), (4) and (7) as given below in (8). 

𝑆𝑖𝑚𝑅𝐵(𝑢, 𝑣) = 𝑆𝑖𝑚𝑟𝑎𝑡𝑖𝑛𝑔(𝑢, 𝑣)  × 𝑅𝑒𝑚(𝑢, 𝑣) × 𝐸𝑥𝑎𝑐𝑡(𝑢, 𝑣) × 𝐴𝑔𝑟𝑒𝑒(𝑢, 𝑣) × 𝐽𝑎𝑐𝑐(𝑢, 𝑣)(8) 
Demographic-Based Similarity. 

For calculating demographic-based similarity, we have the locations and ages of users. 

Let’s suppose 𝑋 = {𝑎𝑔𝑒𝑢1, 𝑎𝑔𝑒𝑢2, 𝑎𝑔𝑒𝑢3, . . . , 𝑎𝑔𝑒𝑢𝑚} is the set of ages of different users, 

where ‘𝑚’ represents the number of users. The similarity between users' ages is determined by 
utilizing the Gaussian membership function (GMF) described in equation (5) to calculate the 
similarity, as stated in equation (9). The key benefit of using the Gaussian membership function 
is that it gives a smooth bell-shaped curve with non-zero values at all points. 

𝑆𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣) = 𝑒
−

1
2

 
(𝑎𝑔𝑒𝑢−𝑎𝑔𝑒𝑣)2

𝜎2 (9) 

𝜎 = √
∑ (𝑎𝑔𝑒𝑢 − 𝜇)2𝑚

𝑖=1

|𝑚|
(10) 

Where ‘𝜇’ is the average age of users, and ‘𝜎’ is the standard deviation of set X which 

can be calculated using (10). For example, 𝑋 =  {40,25,28,66,41,30,35,55}.  

𝜇 =
40 + 25 + 28 + 66 + 41 + 30 + 35 + 55

8
= 40 

𝜎 = √
(0)2 + (−15)2 + (−12)2 + (−26)2 + (−1)2 + (−10)2 + (−5)2 + (15)2

8
= 13.20 

𝑆𝑖𝑚𝑎𝑔𝑒(𝑢1, 𝑢2) = 𝑒
−

1
2

 
(40−25)2

(13.20)2 = 0.5243 

Similarly, 

𝑆𝑖𝑚𝑎𝑔𝑒(𝑢1, 𝑢1) = 1.0000  ; 𝑆𝑖𝑚𝑎𝑔𝑒(𝑢1, 𝑢2) = 0.5243; 

𝑆𝑖𝑚𝑎𝑔𝑒(𝑢1, 𝑢3) = 0.6615 ; 𝑆𝑖𝑚𝑎𝑔𝑒(𝑢1, 𝑢4) = 0.1437; 

𝑆𝑖𝑚𝑎𝑔𝑒(𝑢1, 𝑢5) = 0.9971      ;           𝑆𝑖𝑚𝑎𝑔𝑒(𝑢1, 𝑢6) = 0.7505; 

𝑆𝑖𝑚𝑎𝑔𝑒(𝑢1, 𝑢7) = 0.9307      ;           𝑆𝑖𝑚𝑎𝑔𝑒(𝑢1, 𝑢8) = 0.5243 

The similarity value of 𝑢5 is the maximum, and the closest age to 𝑢1 from the set 𝑋 is 

41. The next closest is 𝑢7 with age 35. The closest the age to the user 𝑢, the highest the similarity 

value. It can be observed that the similarity value of 𝑢1 and 𝑢2 is 0.5243, which is the same as 
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the similarity between 𝑢1 and 𝑢8 because the difference between age 40 with age 25 is the same 
as the difference between age 40 and age 55. Similarly, we utilized the zip codes of users’ 
locations to calculate the similarity of their geographical positions. The demographic-based 
similarity is calculated using (11). 

𝑆𝑖𝑚𝐷𝐵(𝑢, 𝑣) =
𝑆𝑖𝑚𝑎𝑔𝑒(𝑢, 𝑣) + 𝑆𝑖𝑚𝑙𝑜𝑐(𝑢, 𝑣)

2
(11) 

Rating Prediction. 
Finally, the Demographic-based Fuzzy Similarity (DBFS) is calculated, which uses 

𝑆𝑖𝑚𝑅𝐵  for ratings, and in case of cold start and new user, it uses 〖Sim〗_DB for predictions. 

For the prediction of rating value, we used Resnick’s Formula [28] as given in (12). 

𝑟̂𝑢,𝑖 =  𝑟̅ +
∑ 𝑆𝑖𝑚𝑅𝐵 × (𝑟𝑣𝑖 − 𝑟̅𝑣)𝑣𝜖𝑁𝑁

∑ |𝑆𝑖𝑚𝑅𝐵|𝑣𝜖𝑁𝑁

(12) 

Where 𝑟̂𝑢,𝑖 is the predicted value of the missing rating of item 𝑖 of user 𝑢, 𝑁𝑁 denotes 

the number of nearest neighbors with similarity computed above the threshold 𝐾. The proposed 
methodology is illustrated in Figure 2. 
Evaluation Metrics. 

Evaluation metrics play a vital role in recommender systems by offering a quantitative 
method to evaluate and compare various algorithms, guaranteeing their efficacy in providing 
useful recommendations. Researchers utilize evaluation metrics to enhance scientific rigor. 
These metrics enable repeated testing of results and facilitate comparisons between studies. 
Some metrics, like as log-loss or AUC (Area Under the Curve), can be more challenging to grasp. 
Evaluation metrics such as ROC-AUC or PR-AUC (Precision-Recall Area Under the Curve) are 
useful when dealing with imbalanced datasets, but they may not offer distinct insights in 
situations when dealing with regression tasks. Therefore, the performance of the proposed 
similarity measure is evaluated using the following metrics. Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), Precision, Recall, F1 Score, and Coverage.  

The Mean Absolute Error (MAE) [33] measures the average magnitude of errors in a 
set of predictions. The MAE is calculated as given in (13). MAE is commonly employed in 
regression tasks to quantify the proximity between predictions and actual data. MAE is less 
susceptible to the influence of outliers compared to RMSE because it does not calculate the 
squared errors.  

𝑀𝐴𝐸 =
1

𝑁
∑|𝑟𝑢,𝑖 − 𝑟̂𝑢,𝑖|

𝑁

𝑖=1

(13) 

Where 𝑟𝑢,𝑖 is the actual rating, 𝑟̂𝑢,𝑖 is the predicted rating for user 𝑢 on item 𝑖 and 𝑁 

represents the total number of predictions. The MAE gives an average error from 0 to the 
maximum value of the rating scale, with lower values indicating better accuracy. The Root Mean 
Square Error (RMSE) [33] gives the squared value of errors, giving more weight to more 
significant errors and making them more sensitive to outliers. The RMSE is the average of 
squared differences between a prediction and an actual observation and is calculated using (14). 
RMSE is valuable when there is a strong aversion to huge errors since it assigns greater 
importance to them. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑|𝑟𝑢,𝑖 − 𝑟̂𝑢,𝑖|

𝑁

𝑖=1

(14) 

The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are utilized 
to assess the accuracy of the recommendation method. Precision [33] and Recall [33], in contrast 
to MAE and RMSE, approach the recommendation problem as a binary classification task 



                                International Journal of Innovations in Science & Technology 

Aug 2024|Vol 6 | Issue 3                                                                                   Page |1177 

(relevant vs. non-relevant), which is more closely aligned with user satisfaction. An item is 
considered relevant if its rating exceeds the average rating. Precision is the model’s capacity to 
identify only relevant data points, as determined by the formula in (15). Precision is essential 
when the potential consequences of false positive results are significant. 

 
Figure 2. Flowchart of Methodology. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑟𝑠

𝑁𝑠

(15) 

Where 𝑁𝑟𝑠 is the number of relevant items recommended to the user, and 𝑁𝑠 is the 
number of recommended items. Recall is a model’s ability to identify all relevant cases within a 
data set, calculated as given in (16). Recall plays a crucial role when the consequences of missing 
essential information are costly. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑟𝑠

𝑁𝑟

(16) 

Where 𝑵𝒓 is the number of relevant items. High Recall indicates that the model 
successfully identifies most of the relevant items. The F1-Measure [33] evaluates the model’s 
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accuracy and predictive ability on a dataset by combining Precision and Recall to provide a 
balanced metric. The Precision, Recall, and F1-Measure computation is performed based on the 
top-N list for the target user [13]. F1-Measure is calculated using (17). 

𝐹1 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(17) 

Table 1. Rating Distribution of Users in ML-latest-small dataset. 

Rating Values ML-latest-small 

0.5 1370 
1.0 2811 
1.5 1791 
2.0 7551 
2.5 5550 
3.0 20047 
3.5 13136 
4.0 26818 
4.5 8551 
5.0 13211 

Total 100,836 

Table 2. Rating Distribution of Users in ML-100K dataset. 

Rating Values ML-100K 

1.0 6110 
2.0 11370 
3.0 27145 
4.0 34174 
5.0 21201 

Total 100,000 

Coverage is the percentage of possible recommendations that the recommender system 
can provide [33][34]. In certain scenarios, it may be feasible to compromise on the extent of 
coverage to improve accuracy. This can be achieved by selectively delivering only very confident 
predictions to the user. However, it is crucial to prioritize achieving the highest possible 
coverage [34]. The coverage is calculated as given in (18). 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐼𝑡𝑠

𝐼𝑝

(18) 

Where 𝐼𝑡𝑠  represents the total number of items in test set whereas 𝐼𝑝 represents a 

number of items with predictions. A model’s increased coverage indicates its ability to predict a 
wider range of data points, enhancing its practicality in real-world scenarios. 

 
Figure 3. Percentage distribution of rating 

values in ML-100K dataset. 

 
Figure 4. Percentage distribution of rating 

values in ML-latest-small dataset. 
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Result and Discussions. 
Datasets Used. 

The datasets we used for our experiments are MovieLens-100K (ML-100K) [34] and 
MovieLens-latest-small (ML-latest) [34]. ML-100K is comprised of 943 users and 10, 000 ratings 
over 1682 movies, with each user rating at least 20 movies on a rating scale of 1 to 5. The ML-
100K dataset contains simple demographic information like age, gender, occupation, and user 
location in the form of zip codes. One of the reasons for choosing ML-100K is the availability 
of users’ demographic information in this dataset. The sparseness in datasets refers to the 
proportion of missing values in the user-item matrix. The sparseness of the dataset is 
approximately 0.936953 which means that about 93.7% of the user-item matrix is empty or has 
missing values. This indicates that only about 6.3% of the possible ratings are provided in the 
dataset [9]. The dataset ML-latest-small consists of 610 users and 100836 ratings over 9742 
movies where each user has rated a minimum of 20 movies on a rating scale of 0.5 to 5.0. The 
ML-latest-small dataset has a sparsity of approximately 0.98303, indicating that around 98.3% 
of the user-item matrix is either empty or contains missing values. It indicates that a mere 1.7% 
of the possible ratings are included in the dataset. The majority of users have given a rating of 4 
in both datasets. The distribution of user rating values in ML-latest-small and ML-100K datasets 
is shown in Table 1 and Table 2. The proportion of movies with a rating value of 4 in the ML-
100K dataset is 34%, whereas in the ML-latest datasets, it is 26%. Figure 3. and Figure 4 shows 
the percentage distribution of rating values in datasets.  
K-Nearest Neighbors (KNN). 

𝐾-Nearest Neighbors is a widely used algorithm employed to generate personalized 
recommendations in recommender systems [6]. It is a collaborative filtering technique with 
several significant advantages. Firstly, it can provide a recommendation by listing the neighbors 
with the same tastes and who are more likely to have similar preferences. Secondly, it is 
computationally and space efficient, enabling it to handle large recommender systems. Lastly, it 
demonstrates remarkable stability in an online setting, even when new users and items are 
continuously added. Another advantage of this system is its ability to generate serendipitous 
recommendations, which can help users find unexpected yet very interesting items. KNN 
identifies the K most similar users to a target user by analyzing their rating patterns. Items that 
have been highly rated by similar users but have not been rated by the target user are 
recommended to the target user. The choice of K is crucial in neighborhood-based 
recommendation methods.  The prediction accuracy follows a concave function as shown in 
Table 3, with low accuracy when using a small number of neighbors. 

As K increases, more neighbors contribute and variance is averaged out, improving 
prediction accuracy. However, accuracy drops when too many neighbors are used, as strong 
local relations are diluted. The optimal value of K should be determined through cross-
validation [35]. A neighborhood with 20 to 50 neighbors is suitable in most real-world scenarios, 
as it provides enough neighbors to balance out extremes [36][37]. The experiments are 
performed on seven similarity measures to compare user-based similarities for K Nearest 
Neighbors, where K = {5,10,15,20,25,30,35,40,45,50,55,60}. Changing the value of K results in 
different recommendations. The weighted average of the ratings provided by the neighbors can 
be used to calculate the predicted rating for an item. A detailed comparative analysis is 
performed where state-of-the-art similarity measures (Cosine, PCC, Jaccard, IPWR with 
variance, IPWR with SD, HSMD, and Hellinger’s Distance) are evaluated for ML-100K and 
ML-latest datasets. To ensure uniformity across datasets and provide a comprehensive 

evaluation, we select a value of 𝐾 for comparison [38]. The uniformity of the data facilitates the 
comparison of different analyses, making it possible to attribute differences in performance to 
the inherent qualities of the dataset rather than variances in algorithm design. 
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Table 3. Statistical Results of Mean Absolute Error (MAE) for ML-100K and ML-latest-small datasets. 

MAE (ML-100K) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 

Cos 0.881 0.848 0.836 0.831 0.827 0.825 0.823 0.822 0.822 0.821 0.821 0.82 

PCC 0.886 0.854 0.845 0.84 0.838 0.836 0.835 0.834 0.834 0.834 0.833 0.833 

Jaccard 0.847 0.82 0.813 0.81 0.808 0.808 0.807 0.806 0.807 0.807 0.808 0.808 

IPWR with SD 0.836 0.807 0.797 0.791 0.788 0.789 0.788 0.788 0.788 0.788 0.788 0.789 

IPWR with Variance 0.858 0.833 0.824 0.82 0.818 0.817 0.816 0.816 0.815 0.815 0.814 0.814 

Hellinger’s Distance 0.82 0.795 0.789 0.787 0.787 0.788 0.789 0.79 0.791 0.792 0.793 0.794 

HSMD 0.857 0.827 0.818 0.813 0.81 0.809 0.808 0.808 0.808 0.808 0.808 0.808 

DBFS 0.777 0.759 0.754 0.753 0.753 0.753 0.753 0.754 0.754 0.754 0.755 0.756 

MAE (ML-latest) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 

Cos 0.795 0.775 0.77 0.767 0.765 0.765 0.764 0.764 0.764 0.764 0.764 0.764 

PCC 0.799 0.791 0.789 0.788 0.788 0.788 0.787 0.787 0.787 0.787 0.787 0.787 

Jaccard 0.744 0.753 0.748 0.745 0.745 0.744 0.744 0.744 0.744 0.744 0.744 0.744 

IPWR with SD 0.76 0.747 0.744 0.744 0.743 0.743 0.743 0.743 0.743 0.743 0.743 0.743 

IPWR with Variance 0.786 0.775 0.772 0.771 0.771 0.771 0.771 0.771 0.771 0.77 0.77 0.77 

Hellinger’s Distance 0.759 0.75 0.75 0.75 0.752 0.753 0.753 0.754 0.754 0.755 0.755 0.755 

HSMD 0.781 0.758 0.751 0.748 0.747 0.747 0.746 0.746 0.746 0.746 0.746 0.746 

DBFS 0.72 0.715 0.714 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.714 

Table 4. Statistical Results of Root Mean Square Error (RMSE) for ML-100K and ML-latest-small datasets. 

RMSE (ML-100K) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 

Cos 1.109 1.064 1.048 1.041 1.037 1.034 1.032 1.031 1.03 1.029 1.028 1.028 

PCC 1.116 1.074 1.062 1.056 1.053 1.051 1.05 1.049 1.048 1.048 1.048 1.047 

Jaccard 1.068 1.033 1.023 1.018 1.016 1.016 1.015 1.015 1.015 1.015 1.015 1.015 

IPWR with SD 1.057 1.016 1.003 0.997 0.995 0.993 0.993 0.991 0.991 0.991 0.992 0.992 
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IPWR with Variance 1.081 1.046 1.034 1.029 1.026 1.025 1.023 1.023 1.022 1.022 1.021 1.021 

Hellinger’s Distance 1.045 1.008 0.999 0.995 0.995 0.995 0.995 0.996 0.997 0.998 0.999 1 

HSMD 1.079 1.037 1.025 1.019 1.016 1.015 1.014 1.013 1.013 1.014 1.014 1.014 

DBFS 0.999 0.975 0.967 0.965 0.964 0.964 0.964 0.964 0.964 0.964 0.964 0.965 

RMSE (ML-latest) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 

Cos 1.025 1.002 0.955 0.922 0.991 0.99 0.99 0.99 0.989 0.989 0.989 0.989 

PCC 1.034 1.024 1.021 1.021 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 

Jaccard 1 0.975 0.969 0.966 0.965 0.965 0.964 0.964 0.964 0.964 0.964 0.964 

IPWR with SD 0.987 0.972 0.97 0.969 0.968 0.968 0.968 0.968 0.968 0.968 0.968 0.968 

IPWR with Variance 1.016 1 1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

Hellinger’s Distance 0.987 0.975 0.974 0.975 0.976 0.977 0.978 0.978 0.979 0.979 0.98 0.98 

HSMD 1.004 0.978 0.97 0.967 0.966 0.965 0.965 0.965 0.965 0.965 0.965 0.965 

DBFS 0.951 0.944 0.943 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 0.942 

Table 5. Statistical Results of Precision for ML-100K and ML-latest-small datasets. 

Precision (ML-100K) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 

Cos 0.575 0.566 0.564 0.565 0.564 0.563 0.562 0.562 0.561 0.563 0.561 0.562 

PCC 0.571 0.568 0.566 0.566 0.564 0.564 0.565 0.563 0.563 0.564 0.563 0.563 

Jaccard 0.58 0.574 0.57 0.57 0.57 0.572 0.57 0.57 0.569 0.569 0.567 0.567 

IPWR with SD 0.589 0.581 0.582 0.582 0.581 0.578 0.581 0.579 0.577 0.578 0.577 0.575 

IPWR with Variance 0.575 0.569 0.564 0.564 0.564 0.562 0.561 0.559 0.561 0.561 0.562 0.563 

Hellinger’s Distance 0.595 0.594 0.589 0.59 0.589 0.583 0.583 0.584 0.58 0.578 0.577 0.578 

HSMD 0.589 0.586 0.584 0.577 0.575 0.575 0.572 0.573 0.572 0.573 0.57 0.569 

DBFS 0.589 0.587 0.587 0.586 0.586 0.586 0.586 0.587 0.587 0.586 0.586 0.588 

Precision (ML-latest) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 
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Cos 0.577 0.577 0.579 0.58 0.579 0.578 0.579 0.58 0.58 0.579 0.58 0.579 

PCC 0.569 0.567 0.569 0.568 0.568 0.568 0.569 0.568 0.568 0.568 0.568 0.568 

Jaccard 0.581 0.579 0.58 0.58 0.582 0.579 0.578 0.579 0.579 0.579 0.579 0.578 

IPWR with SD 0.584 0.584 0.587 0.59 0.588 0.588 0.587 0.587 0.587 0.587 0.587 0.587 

IPWR with Variance 0.581 0.58 0.581 0.583 0.582 0.579 0.58 0.58 0.579 0.58 0.58 0.579 

Hellinger’s Distance 0.585 0.587 0.59 0.589 0.589 0.587 0.587 0.585 0.584 0.584 0.583 0.583 

HSMD 0.597 0.592 0.59 0.588 0.589 0.587 0.586 0.587 0.586 0.584 0.584 0.585 

DBFS 0.578 0.575 0.576 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 

Table 6. Statistical Results of Recall for ML-100K and ML-latest-small datasets. 

Recall (ML-100K) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 

Cos 0.38 0.395 0.403 0.404 0.403 0.403 0.402 0.403 0.402 0.403 0.401 0.403 

PCC 0.381 0.394 0.395 0.396 0.396 0.397 0.399 0.398 0.398 0.4 0.399 0.399 

Jaccard 0.418 0.425 0.429 0.431 0.431 0.431 0.431 0.43 0.428 0.427 0.426 0.426 

IPWR with SD 0.398 0.41 0.416 0.421 0.425 0.427 0.429 0.429 0.427 0.429 0.429 0.429 

IPWR with Variance 0.393 0.405 0.406 0.409 0.408 0.408 0.406 0.409 0.409 0.409 0.409 0.412 

Hellinger’s Distance 0.402 0.424 0.43 0.434 0.434 0.434 0.436 0.435 0.433 0.431 0.433 0.432 

HSMD 0.366 0.386 0.394 0.396 0.4 0.402 0.403 0.405 0.406 0.408 0.408 0.406 

DBFS 0.491 0.497 0.498 0.499 0.498 0.497 0.496 0.497 0.495 0.494 0.493 0.494 

Recall (ML-latest) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 

Cos 0.367 0.372 0.375 0.375 0.375 0.375 0.377 0.378 0.379 0.378 0.378 0.378 

PCC 0.382 0.383 0.387 0.386 0.387 0.388 0.388 0.388 0.388 0.388 0.388 0.388 

Jaccard 0.384 0.382 0.383 0.383 0.382 0.378 0.377 0.377 0.376 0.377 0.376 0.375 

IPWR with SD 0.393 0.402 0.409 0.412 0.411 0.413 0.412 0.411 0.41 0.41 0.41 0.409 

IPWR with Variance 0.373 0.379 0.38 0.382 0.382 0.381 0.381 0.381 0.381 0.382 0.381 0.381 

Hellinger’s Distance 0.4 0.401 0.4 0.396 0.395 0.392 0.391 0.39 0.388 0.387 0.386 0.385 



                                International Journal of Innovations in Science & Technology 

Aug 2024|Vol 6 | Issue 3                                                                                   Page |1183 

HSMD 0.346 0.35 0.351 0.351 0.353 0.353 0.353 0.353 0.351 0.351 0.351 0.351 

DBFS 0.454 0.458 0.458 0.456 0.455 0.455 0.454 0.454 0.454 0.454 0.454 0.454 

Table 7. Statistical Results of F1-Measure for ML-100K and ML-latest-small datasets. 

F1-Measure (ML-100K) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 

Cos 0.456 0.464 0.469 0.47 0.469 0.468 0.468 0.468 0.467 0.468 0.466 0.468 

PCC 0.455 0.464 0.464 0.465 0.464 0.465 0.467 0.465 0.465 0.467 0.466 0.465 

Jaccard 0.485 0.488 0.488 0.49 0.489 0.491 0.49 0.489 0.488 0.487 0.486 0.485 

IPWR with SD 0.473 0.479 0.483 0.487 0.489 0.489 0.492 0.491 0.489 0.49 0.49 0.49 

IPWR with Variance 0.465 0.472 0.47 0.472 0.472 0.472 0.469 0.471 0.472 0.472 0.472 0.474 

Hellinger’s Distance 0.478 0.493 0.495 0.498 0.498 0.496 0.497 0.497 0.493 0.492 0.493 0.493 

HSMD 0.45 0.464 0.47 0.468 0.471 0.472 0.471 0.473 0.474 0.475 0.475 0.473 

DBFS 0.534 0.536 0.537 0.537 0.536 0.536 0.535 0.537 0.536 0.534 0.534 0.535 

F1-Measure (ML-latest) 

Similarity Measures 5 10 15 20 25 30 35 40 45 50 55 60 

Cos 0.448 0.452 0.455 0.455 0.455 0.455 0.457 0.458 0.458 0.457 0.458 0.457 

PCC 0.456 0.456 0.46 0.459 0.459 0.46 0.46 0.46 0.46 0.46 0.46 0.461 

Jaccard 0.46 0.458 0.46 0.46 0.46 0.456 0.455 0.455 0.455 0.455 0.455 0.454 

IPWR with SD 0.469 0.475 0.482 0.485 0.484 0.485 0.484 0.483 0.482 0.483 0.482 0.482 

IPWR with Variance 0.453 0.458 0.459 0.461 0.461 0.46 0.46 0.459 0.459 0.46 0.46 0.459 

Hellinger’s Distance 0.475 0.476 0.476 0.473 0.473 0.47 0.469 0.467 0.466 0.465 0.464 0.463 

HSMD 0.436 0.438 0.438 0.438 0.44 0.439 0.439 0.439 0.438 0.437 0.437 0.438 

DBFS 0.507 0.508 0.508 0.507 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 

 
 



                                International Journal of Innovations in Science & Technology 

Aug 2024|Vol 6 | Issue 3                                                                                   Page |1184 

 
Figure 5 (a). Performance Comparison of Mean Absolute Error (MAE) 
for ML-100K dataset 

 
Figure 5 (b). Performance Comparison of Mean Absolute Error (MAE) 
for ML-latest-small dataset. 

 
Figure 6 (a). Performance Comparison of Root Mean Square Error 

(RMSE) of ML-100K dataset. 

 
Figure 6 (b). Performance Comparison of Root Mean Square Error 

(RMSE) of ML-latest-small dataset. 
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Figure 7 (a). Performance Comparison of Precision for ML-100K 

dataset. 

 
Figure 7 (b). Performance Comparison of Precision for ML-latest-

small dataset 

 
Figure 8 (a). Performance Comparison of Recall for ML-100K dataset. 

 
Figure 8 (b). Performance Comparison of Recall for ML-latest-small 

dataset. 

0.55

0.555

0.56

0.565

0.57

0.575

0.58

0.585

0.59

0.595

0.6

5 10 15 20 25 30 35 40 45 50 55 60

P
re

ci
si

o
n

KNN

Cosine PCC Jaccard

IPWR with SD IPWR with Variance DBFS

Hellinger's Distance HSMD

0.56

0.565

0.57

0.575

0.58

0.585

0.59

0.595

0.6

5 10 15 20 25 30 35 40 45 50 55 60

P
re

ci
si

o
n

KNN

Cosine PCC Jaccard

IPWR with SD IPWR with Variance DBFS

Hellinger's Distance HSMD

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

5 10 15 20 25 30 35 40 45 50 55 60

R
e

c
a

ll

KNN

Cosine PCC Jaccard

IPWR with SD IPWR with Variance DBFS

Hellinger's Distance HSMD

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

5 10 15 20 25 30 35 40 45 50 55 60

R
e

ca
ll

KNN

Cosine PCC Jaccard

IPWR with SD IPWR with Variance DBFS

Hellinger's Distance HSMD



                                International Journal of Innovations in Science & Technology 

Aug 2024|Vol 6 | Issue 3                                                                                   Page |1186 

 
Figure 9 (a). Performance comparison of F1-Measure for ML-100K 

dataset. 

 
Figure 9 (b). Performance comparison of F1-Measure for ML-latest-

small dataset. 
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Top-N Recommendations. 
Top-N Recommendations involve selecting and presenting the highest N items from 

the entire collection, based on their expected relevance to the user. Users are more concerned 
with getting a list of valuable recommendations than with the accurate predicted rating of each 
item. Usually, the output is a list of the top-N recommendations rather than a numeric value. 
The optimal value for N in top-N recommender systems might differ based on several aspects, 
such as the unique application, user preferences, and the characteristics of the recommended 
items. A top-N list is created by first estimating ratings for all unrated items, sorting the results, 
and keeping the top N items [13]. N should be carefully selected to avoid issues with efficiency 
or accuracy. If N is too large, storing the neighborhood listings and forecast ratings will require 
a lot of memory. However, if you choose a small value for N, it might affect coverage which 
means some of the items will never be recommended [6]. Top-N suggestions are more desirable 
than predicted rating values due to their better alignment with user behavior and their ability to 
simplify decision-making. Furthermore, evaluation metrics such as Precision, Recall, and F1-
Measure provide clear insights into the effectiveness of recommendations, making top-N lists a 
more practical and user-friendly choice for recommender systems. 
Five-Fold Cross Validation. 

k-fold cross-validation is a method for assessing a model’s efficacy. It involves 
partitioning the data into numerous subsets to train and evaluate the model on these subsets 
[28]. The objective is to guarantee that the model generalizes effectively to data that has not 
been observed and does not exhibit overfitting or underfitting. In k-fold cross-validation, the 
data is partitioned into k-folds of equal size, with one set aside for testing and the remaining set 
for training [28]. It determines the performance metric (e.g., precision, recall, RMSE) for each k 
fold. The average of the k fold metrics is the ultimate performance metric. Five-fold cross-
validation is implemented to compare the efficacy of the models and predict ratings where 20% 
of users are selected for testing while the remaining users are used for training. This is a 
frequently employed default option that achieves an appropriate equilibrium between variance 
and bias. This approach eliminates overfitting by ensuring that the model is tested on many 
subsets, resulting in a more reliable and generalizable evaluation. Additionally, it offers a 
comprehensive performance statistic by calculating the average of the results from all five 
iterations. This provides a more thorough insight into how the model performs across various 
data splits. 
Performance Comparison. 
Performance Comparison of Mean Absolute Error (MAE). 

In order to assess the performance of DBFS compared to its competitors in terms of 

Mean Absolute Error (MAE), experimental data were acquired for various values of 𝐾-Nearest 

Neighbors, as depicted in Table 3. For the MovieLens-100K dataset with 𝐾 = 5, the Mean 
Absolute Error (MAE) of the DBFS is 0.777. In comparison, the MAE of the IPWR with SD 

is 0.836, and the Hellinger’s distance is 0.820. When 𝐾 is increased to 30, the MAE reduces to 
0.753 for DBFS. On the other hand, the MAE of IPWR with SD is 0.789, and the Hellinger’s 

distance is 0.788. Similarly, when 𝐾 is set to 60, the DBFS produces the lowest Mean Absolute 
Error (MAE) compared to other methods, as illustrated in Figure 5 (a) In the ML-latest dataset, 

when 𝐾 =  5, the DBFS yields an MAE of 0.72. In contrast, the Jaccard has a mean absolute 
error (MAE) of 0.744, while the IPWR with SD has an MAE of 0.76. DBFS has optimal 

performance for values of 𝐾 equal to 30 and 60. The DBFS approach demonstrates the lowest 
MAE compared to other methods in both the ML-100K and ML-latest datasets, as 

demonstrated in Figure 5 (a) and Figure 5 (b). When 𝐾 is equal to 1, the prediction is based 
only on the rating given by the user who is most similar to the current user. If the rating of this 
person deviates significantly from the norm or does not accurately reflect the overall pattern, 

the prediction error can be substantial. When the value of 𝐾 is set to 5, the impact of outliers is 

diminished, resulting in an increased probability of accurate predictions compared to when 𝐾 is 

set to 1. With 𝐾 = 10, the forecast now takes into account a wider spectrum of user opinions. 
The process of averaging helps to reduce the impact of noise and outliers, resulting in a 

potentially more precise prediction and a decrease in MAE. Although increasing the value of 𝐾 
can reduce the MAE to a certain extent, there is a maximum limit beyond which further increases 

in 𝐾 will not result in any additional reduction in MAE. When the value of 𝐾 grows very large, 
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the included neighbors may exhibit reduced similarity and contribute unwanted noise, which 
could potentially lead to an increase in MAE. 
Performance Comparison of Root Mean Square Error (RMSE). 

The performance of different similarity measures is compared with DBFS, particularly 
regarding RMSE, using the experimental data as shown in Table 4. The root mean square error 

(RMSE) for DBFS is 0.999 for 𝐾 =  5 in the ML-100K dataset. In contrast, the RMSE for 
IPWR with SD is 1.057. The root mean square error (RMSE) of the DBFS reduces to 0.964 

when 𝐾 =  30. In contrast, the RMSE for the IPWR with SD is 0.993, and for the Pearson 

correlation coefficient (PCC), it is 1.051. At 𝐾 = 60, the root mean square error (RMSE) for 
DBFS is 0.965, the lowest among all the other methods listed in Table 4. The DBFS performs 
remarkably, as illustrated in Figure 6 (a). Within the ML-latest-small dataset, DBFS performs 

better than other similarity measures across various nearest-neighbor values. When 𝐾 = 5, the 

DBFS produces an RMSE value of 0.951. As the amount of 𝐾 increases, the root mean square 

error (RMSE) drops to 0.942 when 𝐾 =  60. DBFS has notable performance in RMSE, as 
illustrated in Figure 6 (a) and Figure 6 (b). 
Performance Comparison of Precision. 

The experimental results of precision, obtained using several nearest neighbors for 
similarity metrics, are presented in Table 5. for comparison. In the ML-100K dataset, the 
precision of DBFS is 0.589, which is equivalent to the precision of HSMD and IPWR. However, 

the precision is slightly higher for Hellinger’s distance, which is 0.595. At 𝐾 =  30, the precision 
of DBFS reaches its greatest value of 0.586, surpassing other similarity measures. In contrast, 

the precision of the competitors diminishes at 𝐾 = 30. Among other approaches, the precision 

of DBFS reaches its maximum value at 𝐾 =  60. The Precision performance of DBFS is 
illustrated in Figure 7 (a). The ML-latest dataset shows that the Precision of DBFS is 0.578 at 

𝐾 =  5 and is consistent at 0.575 from 𝐾 =  20 to 𝐾 =  60. The accuracy of HSMD is 0.597 

at 𝐾 =  5 and decreases to 0.590, which is equivalent to the precision of Hellinger’s distance at 

𝐾 =  20. The performance of DBFS in Precision is shown in Figure 7 (b). While high 
precision is necessary, it is insufficient to comprehend the similarity measure’s performance 
thoroughly. It should be combined with recall as in F1-Measure for a complete evaluation. The 
precision graph's fluctuations in Hellinger’s distance, HSMD, and IPWR with SD and other 
measures in Figure 7 (a) and Figure 7 (b) indicate that the system's capacity to provide 

pertinent recommendations is dependent on the selection of 𝐾. A stable precision graph of 

DBFS, in which the precision stays mostly constant while 𝐾 changes, indicates that the 

recommender system is reliable and not unduly affected by 𝐾 selection. This is usually a good 
indication that the model is probably well-tuned and successfully balances the effects of 

neighbors, offering reliable performance for a range of 𝐾 values. 
Performance Comparison of Recall. 

The performance of DBFS is evaluated against other advanced similarity measures, and 
the experimental findings are presented in Table 6. In the ML-100K dataset, the Recall value 

for DBFS is 0.491, which is the greatest compared to other methods. At 𝐾 =  20, the Recall 
value for DBFS increases to 0.499. On the other hand, the Recall value for Hellinger’s distance 

is 0.430. At 𝐾 =  60, the Recall of DBFS is consistently high at 0.494. Figure 8 (a) illustrates 
that DBFS exhibits outstanding performance compared to other similarity metrics in terms of 

Recall. In the ML-latest dataset, where 𝐾 = 5, the Recall for DBFS is 0.454, while the Recall 
for Hellinger’s distance and IPWR with SD is 0.40 and 0.393, respectively. The DBFS provides 
the highest recall among all the nearest neighbors we have chosen for comparison. The notable 
achievement of DBFS in Recall is shown in Figure 8 (b).  
Performance Comparison of F1-Measure. 

The experimental results of the F1-Measure for compared similarity measures are 

presented in Table 7. In the ML-100K dataset, the F1-Measure value for DBFS at 𝐾 =  5 is 
0.534, which is much higher than the other values. The DBFS achieves the highest F1-Measure 

value at 𝐾 =  15 and 𝐾 =  20, reaching a value of 0.537. The F1-Measure has consistently 
high results compared to the other similarity measures, as depicted in Figure 9 (a). In the ML-

latest dataset, the F1-Measure of DBFS with a value of 𝐾 =  30 is 0.507. In contrast, the F1-
Measure for Hellinger’s distance is 0.478, and for Jaccard it is 0.485. The F1-Measure exhibits 

an increase to 0.508 when 𝐾 = 19 and thereafter decreases to 0.506 when 𝐾 =  25. The DBFS 
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yields a maximum value of 0.508 for the 10 and 15 nearest neighbors. The ML-100K dataset 
has an average F1-Measure of 0.535, whereas the ML-latest dataset has an average F1-Measure 
of 0.506. Figure 9 (b) displays the F1-Measure performance for the ML-latest dataset. 
Performance Comparison of Coverage. 

The proposed Demographic-based Fuzzy similarity measure outperforms the other 
similarity measures in terms of Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE), F1 score, and other evaluation metrics. In addition, 
it attains 100% coverage. Consequently, the novel similarity measure not only enhances the 
accuracy of predictions but also guarantees the inclusion of all items in the dataset in the 
recommendations. 
Table 8. Comparison of the proposed DBFS with other Similarity Measures in ML-100K and 

ML-latest-small datasets. 

 ML-100K ML-latest-small 

Similarity 
Measures 

MAE RMSE Precision Recall F1 MAE RMSE Precision Recall F1 

Cos 0.831 1.042 0.564 0.400 0.466 0.768 0.994 0.578 0.375 0.455 

PCC 0.788 1.058 0.565 0.396 0.464 0.788 1.021 0.568 0.386 0.459 

Jaccard 0.812 1.022 0.570 0.427 0.488 0.745 0.968 0.579 0.379 0.456 

IPWR with 
SD 0.794 1.000 0.580 0.422 0.486 0.744 0.970 0.586 0.408 0.481 

IPWR with 
Variance 0.821 1.031 0.563 0.406 0.471 0.772 1.000 0.580 0.380 0.459 

Hellinger’s 
Distance 0.792 1.000 0.585 0.429 0.493 0.753 0.978 0.586 0.392 0.469 

HSMD 0.815 1.022 0.576 0.398 0.469 0.750 0.97 0.587 0.351 0.438 

DBFS 0.756 0.968 0.568 0.495 0.535 0.713 0.943 0.575 0.455 0.506 

Comparison of DBFS with Other Similarity Measures. 
Table 8 presents the average values of MAE, RMSE, Precision, Recall, and F1-Measure 

for the ML-100K and ML-latest datasets. It compares the performance of the proposed DBFS 
measure with other similarity measures. The averages were calculated for twelve distinct values 

of the number of nearest neighbors, with 𝐾 set to 𝐾 =  {5, 10, 15, . . . , 60}. The MAE and 
RMSE specifically emphasize the prediction accuracy of each measure. Table 8 demonstrates 
that the DBFS measure attains the lowest MAE and RMSE values, signifying a substantial 
decrease in prediction error in comparison to the other measures in both ML-100K and ML-
latest datasets. This enhancement in accuracy is additionally demonstrated in Figure 10 (a) and 
Figure 10 (b). The average precision of DBFS is a bit low as illustrated in Figure 10 (c) but 
Recall is high compared to other methods, it means the system is very good at retrieving relevant 
items but also includes irrelevant items in its recommendations. Although precision evaluates 
the correctness of positive predictions, it does not consider the omission of relevant items. 
Consequently, it is frequently employed alongside with Recall to offer a more thorough 
assessment of overall performance. DBFS exhibits a high average Recall in both datasets 
compared to other similarity measures, as depicted in Figure 10 (d). 

 
Figure 10 (a). Comparison of Average 

MAE of DBFS with other Similarity 
Measures. 

 
Figure 10 (b). Comparison of Average 
RMSE of DBFS with other Similarity 

Measures. 
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Figure 10 (c). Comparison of Average 
Precision of DBFS with other Similarity 

Measures. 

 
Figure 10 (d). Comparison of Average 

Recall of DBFS with other Similarity 
Measures. 

 
Figure 10 (e). Comparison of Average F1-Measure of DBFS with other Similarity Measures. 

Personalization seeks to customize recommendations based on the distinct tastes and 
preferences of each user. As a result of personalization, the system may suggest a diverse range 
of objects that it deems to be potentially relevant to the user. While attempting to encompass a 
user's diverse interests and nuances in their profile, the system may suggest items that are only 
marginally related or items that the user may find intriguing but are not exactly what they actually 
want. This can increase the number of false positives, thereby lowering precision. For example, 
the system recommends songs similar to what the user has listened to before, ensuring that most 
genres and artists of interest are covered (high recall). However, it might also recommend slightly 
less relevant songs, reducing precision. The system throws in some completely new artists or 
genres that the user has never explored, aiming to pleasantly surprise them. While this can lead 
to discovering new favorites, it also increases the likelihood of irrelevant recommendations (low 
precision). Despite the irrelevant items, the number of relevant articles ensures the user stays 
informed about a wide range of topics, and the overall effectiveness (F1-Measure) of DBFS is 
high compared to other methods as illustrated in Figure 10 (e). Although precision is low, it is 
not so low as to drag down the F1-Measure of DBFS significantly. This implies that while there 
are false positives, they are not overwhelming compared to the true positives. The F1-Measure 
is higher in both ML-100K and ML-latest-small datasets, compared to other methods which 
means that despite the lower precision, the overall trade-off between precision and recall is more 
favorable in the proposed DBFS method. If the system is designed to promote diversity in 
recommendations, it might include a wider variety of items, some of which are less relevant. 
This can lead to lower precision but might improve overall user satisfaction by introducing users 
to a broader range of content. 
Key Findings Discussion. 

Compared to other metrics, such as HSMD, IPWR with SD, and Hellinger’s Distance, 
the proposed DBFS significantly outperforms all. In the ML-100K dataset, the average MAE 
for the DBFS is 0.756, whereas HSMD, Hellinger’s Distance, and IPWR with SD have average 
MAEs of 0.815, 0.792, and 0.794, respectively. The DBFS demonstrates a 4.9% improvement 
in MAE and a 2.7% improvement in RMSE over HSMD, a 4.5% improvement in MAE and a 
3.29% improvement in RMSE over Hellinger’s Distance, and a 4.7% improvement in MAE and 
a 3.2% improvement in RMSE over IPWR with SD. Additionally, DBFS improves Precision by 
1.7% over HSMD, 1.03% over IPWR with SD, and 0.1% over Hellinger’s Distance. 
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In the ML-latest dataset, the average MAE for the novel DBFS is 0.713, compared to 
0.750 for HSMD, 0.753 for Hellinger’s Distance, and 0.744 for IPWR with SD. The DBFS 
shows a 4.9% improvement in MAE over HSMD, a 5.3% improvement over Hellinger’s 
Distance, and a 4.1% improvement over IPWR with SD. In terms of RMSE, DBFS improves 
by 2.7% over both HSMD and IPWR with SD, and by 3.5% over Hellinger’s Distance. Precision 
improvements with DBFS are 1.8% over both Hellinger’s Distance and IPWR with SD, and 
1.54% over HSMD. Empirical results demonstrate that DBFS consistently achieves lower MAE 
and RMSE values across multiple datasets, indicating its superior accuracy and reliability. 
Specifically, DBFS provides significant improvements in precision, ensuring more accurate 
recommendations. 
Conclusion. 

The development of recommendation systems that are more efficient and user-centric 
is becoming increasingly important in a wide variety of applications, ranging from e-commerce 
to content streaming. The objective of this study is to enhance the accuracy of memory-based 
Collaborative Filtering by considering user rating patterns and including demographic data. The 
suggested method surpasses previous methods in terms of MAE, RMSE, Precision, Recall, and 
F1-Measure, demonstrating its efficacy in predicting user preferences and delivering useful 
recommendations. Nevertheless, the study is constrained by limitations such as the dependence 
on unavailable demographic data and the possibility of computational complexity. The research 
has the potential to be extended to provide accurate suggestions in diverse systems, and 
additional fuzzy membership functions might be investigated to achieve even higher precision. 
The suggested strategy improves the accuracy of predictions and achieves complete coverage, 
making it a scalable and effective approach ideal for a wide range of applications.  
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