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raditional methods for controlling multi-rotors typically involve joysticks, radio 
controllers, and mobile applications. However, these methods pose significant challenges, 
particularly for novice users like farmers, due to the extensive training and understanding 

required to effectively operate a copter. This paper introduces a highly adaptable architecture 
designed to offer an end-to-end solution for controlling a copter using hand gestures. The 
proposed system leverages a depth sensor and Convolutional Neural Network (CNN) to 
recognize hand gestures, utilizing a custom dataset collected from both indoor and outdoor 
environments. Through a series of simulations with novice users, the system has demonstrated 
successful operation in real-world scenarios. Currently, the architecture can accurately recognize 
six distinct gestures with an average accuracy of 90.5% across three different test environments 
with varying lighting conditions. Key features of this proposed solution include its adaptability, 
reliable performance, especially in low-light conditions, and its user-friendly design, making it 
particularly well-suited for farmers and other inexperienced users. 
Keywords. UAV, Hand Gestures, Human Drone Interaction, Deep Learning, Tensor Flow, 
CNN, Control Architecture. 
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Introduction. 
In contemporary times, copters have become widely utilized for various purposes 

globally, including photography/videography, surveillance, and delivery tasks [1][2][3]. One of 
the rapidly growing fields benefiting from copters is agriculture. These devices offer a safe and 
effective means of inspecting areas that are otherwise challenging to access, such as wild forests 
or expansive agricultural fields. The applications of copters in agriculture are diverse, including 
crop monitoring, planting, and spraying. These applications can potentially enhance crop yield, 
reduce overall costs related to human resources and time, and improve crop quality. However, 
many users are inexperienced with copters, facing difficulties with takeoff, landing, obstacle 
avoidance, and safe navigation. Natural human interaction, which facilitates intuitive and 
efficient control with minimal learning, could significantly improve usability in such rapidly 
evolving applications [4]. A gesture-controlled copter could simplify the flying process 
considerably. Hand gestures are a common form of non-verbal communication, especially useful 
for hearing-impaired individuals, and are increasingly employed in Human-Computer 
Interaction (HCI) to enhance automated system usability. Recognizing hand gestures involves 
various factors and complexities affecting their accuracy and reliability. Vision-based methods 
for gesture recognition utilize specialized image processing techniques to address specific 
challenges related to image characteristics. 

Conversely, deep learning approaches such as logistic regression, convolutional neural 
networks (CNNs), XG Boost, Support Vector Classifiers (SVCs), Stochastic Gradient Descent 
Classifiers (SGDCs), and Transformer adapt to various aspects of hand gestures, including skin 
tone and system environment, through supervised learning. Particularly, CNN models excel in 
pattern recognition in images, making them suitable for identifying hands, faces, and other 
objects. CNNs do not require feature extraction during training and are invariant to scaling and 
rotation, which enhances their effectiveness for hand gesture recognition [5][6][7]. They are well-
suited for handling the spatial complexities involved in recognizing different gestures. However, 
combining CNNs with other models like Recurrent Neural Network (RNN) or Long Short-
Term Memory (LSTM) can enhance performance by incorporating temporal information, 
especially in dynamic gesture recognition scenarios. Each model has its strengths, but CNNs 
remain a robust choice due to their ability to directly process and interpret visual data, making 
them a preferred approach for gesture recognition tasks. 

Gestures can be categorized into static and dynamic types. Static gestures involve a single 
hand pose in one frame, while dynamic gestures encompass sequences of hand poses across 
multiple frames. Dynamic gesture recognition provides more comprehensive information but is 
computationally expensive and complex due to its reliance on temporal data [8]. Dynamic 
gestures are used for continuous control, such as navigation and altitude adjustment. However, 
they require sophisticated tracking and processing capabilities to ensure smooth and accurate 
control. It can be complex and requires robust algorithms to differentiate intended gestures from 
accidental movements. e.g. using the hand upwards and downwards to control the copter 
altitude or right and left movement to give direction to the copter. On the other hand, static 
gestures are generally used for discrete commands like takeoff, landing, or hovering. They are 
simpler to implement and can be very intuitive, improving user experience. However, they 
require precise recognition and calibration to avoid misinterpretation. Gesture-controlled 
copters, or drones, represent an exciting advancement in agricultural setup. Many factors 
contribute to their significance and why they might be preferable to traditional methods. 
Technical Complexity. 

Traditional controllers or digital interfaces can be complex, with multiple buttons and 
joysticks that require a steep learning curve. This can be challenging for users who are not 
technologically confident. Various copter modes, such as loiter control, guided mode, stabilize 
mode, and remote control, require professional expertise for effective maneuvering. For 
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instance, operating a copter with a radio controller necessitates knowledge of pitch, yaw, roll, 
and the functions of various switches, which are not intuitive and require considerable effort to 
master. 
Responsiveness. 

Controllers and voice commands can introduce delays. Voice commands can be affected 
by ambient noise, accents, and misinterpretations, making them less reliable in noisy 
environments like farms. Additionally, they might not offer the precision needed for complex 
tasks. 
Ease of Use. 

Natural interaction methods, being universally accessible and easy to grasp, could 
simplify copter control, particularly for novice users such as farmers. Enabling farmers to 
monitor their fields using hand gestures with copters could greatly enhance agricultural 
efficiency.  
Reduced Physical Strain. 

Holding and maneuvering a traditional controller for extended periods can be physically 
demanding. Gesture controls can be less tiring, as they allow for a more natural and less 
physically strenuous interaction with the drone. The concept of controlling drones through hand 
gestures has gained attention following the introduction of DJI’s Spark (2017) and Mavic 3 
Enterprise (2020), which feature gesture control capabilities. Despite their innovation, these 
drones are expensive and primarily focus on palm detection and limited gesture functions for 
capturing photos or videos within a short range. In agricultural contexts, however, the ability to 
operate drones at longer distances and utilize the drone's camera for monitoring, rather than for 
tracking the farmer, is crucial. 
Literature Review. 

Research has explored hand gestures for natural human-robot interaction. One approach 
involves using a LEAP motion sensor [9] for controlling copters through hand gesture detection. 
However, this sensor has limitations, including a short effective range (30 − 60 cm) and poor 
performance in bright outdoor environments [10]. Another study proposed a framework for 
controlling a copter with an onboard camera to detect hand gestures. Results indicated a 
significant drop in gesture recognition accuracy when the copter was more than 3 feet away from 
the user, rendering this framework impractical for agricultural settings where the drone’s camera 
is needed for crop monitoring [10]. Machine learning algorithms, such as AdaBoost and Haar 
wavelet features, have been used to classify hand gestures with a low-resolution webcam [11]. 
While these methods can recognize 24 static gestures, they are not directly applicable to 
controlling copters. Data gloves have also been employed to detect hand gestures, achieving 
88% accuracy for 26 static gestures [12]. However, data gloves are impractical for farmers due 
to issues with comfort, durability, and sensitivity varying with hand size. 

Hand gestures have also been used to control TV operations. Studies have demonstrated 
that users can manage a TV using a fixed camera with different hand gestures and hand shapes, 
but the gestures must be performed within a specific rectangular region to differentiate between 
hand and face skin color [13]. Another approach involves using depth data from motion and 
hand location to control a TV [14]. This method involves artificially designed gestures that may 
be challenging for users to learn and understand. 

Voice command control of copters has been explored [15], but it is not universally 
effective due to voice recognition inaccuracies. Hand gesture control devices offer a more 
accessible alternative. Research has shown that a car robot can be controlled with hand gestures, 
achieving 92.2% accuracy in simulated environments, although real-world applications have not 
been extensively reported [16]. A gesture-controlled robot manipulator system has been 
developed [17], employing accelerometers and gyroscopes to estimate arm joint angles, but it 
may not perform well under harsh conditions with vibrations and shocks. 
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Table 1. Comparative analysis of existing approaches of gesture recognition for copter control 

Approach Strengths Weaknesses 
Application for 
Copter Control 

Vision-
Based 

• High accuracy with proper 
lighting and resolution. 

• Can recognize a wide 
range of gestures. 

• Does not require 
additional hardware. 

• Sensitive to lighting 
conditions. 

• Computationally 
intensive. 

• Requires a clear line of 
sight. 

Effective for 
complex gestures, 
but may struggle in 
low-light or high-
motion 
environments. 

Depth-
Based 

• Better performance in 
varying lighting 
conditions. 

• Can capture 3D gestures. 

• - Less sensitive to 
occlusions. 

• Requires depth sensors 
(e.g., Kinect). 

• Limited range of motion 
capture. 

• More expensive 
hardware. 

Useful for capturing 
gestures with depth 
information, 
potentially improving 
precision. 

IMU-
Based 

• High responsiveness and 
low latency. 

• Works in various 
environmental conditions. 

• Relatively low cost. 

• Limited to gestures that 
involve motion. 

• Can be affected by drift 
and noise. 

• Less intuitive for 
complex gestures. 

Ideal for quick, 
intuitive control 
gestures, but may not 
handle complex 
commands well. 

Sensor 
Glove-
Based 

• High accuracy for hand 
and finger movements. 

• Can detect fine gestures. 

• Good for detailed control. 

• Requires wearable 
equipment. 

• May be uncomfortable 
for extended use. 

• Limited to gestures that 
involve wearing the 
glove. 

Best for precise and 
detailed control, but 
can be cumbersome 
and less flexible. 

EMG-
Based 

• Can detect muscle 
movements even without 
direct line of sight. 

• Allows for a wide range of 
control options. 

• Requires sensors to be 
attached to the body. 

• Can be influenced by 
muscle fatigue. 

• May have higher setup 
complexity. 

Useful for gestures 
involving muscle 
contractions, but 
may be less intuitive 
and require training. 

RFID-
Based 

• Can work in various 
environmental conditions. 

• Good for identifying 
specific hand positions. 

• Requires additional tags 
or sensors. 

• Limited to predefined 
gestures. 

• Tags can be misplaced or 
obstructed. 

Suitable for gesture 
recognition with 
specific tagged 
positions but lacks 
flexibility for 
complex gestures. 

Hybrid 
Systems 

• Combines strengths of 
multiple approaches. 

• Can improve accuracy and 
robustness. 

• Adaptable to various 
scenarios. 

• More complex to 
implement. 

• Higher cost and resource 
requirements. 

• Integration can be 
challenging. 

Offers the best of 
multiple approaches, 
but requires careful 
balancing and 
integration. 
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A wearable sensor suite for UAV control has been introduced [18], focusing on 
mechanomyography and an inertial measurement unit to capture multimodal command signals 
using convolutional neural networks. However, this system requires individual calibration, which 
may not be feasible in many scenarios [19] Another study has proposed gesture-based natural 
language interfaces for defining UAV trajectories but demonstrated only 41% accuracy [20]. 
Human-machine interaction research has explored dynamic gesture control for vehicles, 
achieving 95% accuracy for three poses, though some inaccuracies persist due to gesture 
similarity. This study used a camera mounted on a vehicle roof for gesture recognition [21]. 

To address touch screen limitations, an infrared camera mounted on the ceiling has been 
proposed, achieving 96% accuracy in static scenarios, though accuracy drops to 87% in dynamic 
contexts due to gesture similarity. This system handles both sunlight and nighttime conditions 
using various segmentation models [22]. The Myo Armband, which detects electromyography 
for controlling home appliances, offers a unique approach but causes user discomfort and 
fluctuates in accuracy due to variations in arm fat tissues [23]. An IMU with a complementary 
filter algorithm on a Raspberry Pi, combined with an MPU6050 sensor and a wearable glove, 
has been used to navigate a DJI Tello drone, but only roll and pitch movements have been 
achieved [24]. 

Deep neural network-based solutions for gesture recognition have been investigated, 
with models designed using PointNet architecture and depth data from time-of-flight sensors. 
Comparisons with 2D images and 3D point cloud datasets indicate that 3D depth information 
significantly enhances gesture recognition accuracy [25]. TensorFlow and deep learning 
techniques offer efficient real-time gesture recognition, utilizing built-in libraries like Mediapipe, 
TensorFlow, and Keras. However, the use of a drone-mounted camera presents challenges in 
open fields where the vehicle may travel beyond the farmer’s range [26]. Table 1 summarizes the 
comparison of various gesture recognition approaches in the context of copter control. The 
proposed system’s architecture has been designed to remain flexible while providing a 
comprehensive solution to the challenge of controlling a copter through hand gestures (Figure. 
1). 

 
Figure 1. Conceptual diagram of hand gesture-controlled copter 

Key research contributions of the paper can be summarized as. 

• The proposed system recognizes and classifies hand gestures from live video feeds in 
real time and translates them into predefined copter operations.  

• The system offers a standardized approach to both input and output channels, making 
it compatible with any RGBD input device for gesture acquisition.  

• The core innovation of this architecture lies in its flexibility, allowing for the integration 
of various modules to provide different functionalities. For example, modules such as 
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the LEAP motion controller, Kinect, or stereo vision can be easily incorporated to 
enhance gesture recognition accuracy and motion detection. 

Material and Methods. 
Investigation Site. 

Surveys were conducted with farmers in Muridke Tehsil, near Lahore, Pakistan. The 
farmers were queried about the practicality of using a gesture-controlled copter for tasks such 
as field observation, spraying, and fungus detection. The feedback indicated a preference for 
hand gesture control over traditional controllers and mobile applications, primarily due to a lack 
of professional knowledge [27]. The proposed system was extensively tested in diverse 
environments and lighting conditions, both in simulations and real field settings.  

This study divides the challenge of controlling copters using hand gestures into four key 
modules. (i) Gesture Acquisition, (ii) Gesture Recognition, (iii) Communication, and (iv) Control 
(Figure. 2). 

 
Figure 2. Overview of the proposed architecture 

Gesture Acquisition. 
The architecture we designed imposes no restrictions on the choice of sensor system for 

capturing images, as it supports a wide range of RGB and depth cameras. Any depth camera can 
be employed for gesture capture. Given the advantages of vision-based sensors over alternatives 
like data gloves or LEAP motion sensors [28], we opted for the Kinect V2 for data acquisition. 
The Kinect V2 is both cost-effective and widely used in research due to its high-resolution RGB 
imagery and depth-sensing capabilities [29]. Being one of the most acknowledged sensors, it can 
efficiently handle issues like complex background and variation in illumination [30]. The Kinect’s 
depth sensor integrates an IR projector with a CMOS sensor to capture video data in various 
lighting conditions [31]. 
Dataset Compilation. 

Existing datasets for hand gesture recognition often have limitations, such as capturing 
only 2D images indoors or using special-colored gloves for hand identification [32][33]. To 
address these shortcomings, we compiled our dataset, which includes both 2D images and 3D 
depth information, to ensure functionality across different lighting conditions, including daylight 
and nighttime. We collected a total of 24,000 images of six distinct gestures using Kinect V2. 
These gestures were recorded in both indoor and outdoor settings to account for the varying 
lighting conditions encountered by farmers (Figure. 3). To enrich the dataset, different hand 
sizes and skin colors have been incorporated as well. Images acquired through Kinect have been 
annotated using the Labeling tool [34]. The background has been eliminated from each frame 
to prepare them for further processing.  

Collecting data in outdoor environments was essential due to the potential overexposure 
of Kinect’s IR camera in sunlight, which can impact image quality. Incorporating depth 
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information into our dataset helped mitigate this issue. For integrating Kinect with our gesture 
recognition program, we used libfreenect2, a driver that supports RGB image transfer, IR and 
depth image transfer, and the registration of RGB and depth images. This setup requires a USB 
3.0 controller for powering Kinect. 
Gesture Recognition. 

Accurate hand gesture detection is a critical component of this architecture, as it must 
accommodate variations in hand size and skin color among different users. Several algorithms 
and frameworks exist for hand gesture detection, including Haar features, skin color labeling 
[35], and image clustering using K-means [36]. The study in [37] addresses gesture recognition 
in cluttered backgrounds and varying lighting conditions through skin detection and posture 
contour analysis using Principal Component Analysis. 

 
(a) Outdoor environment 

 
(b) Indoor environment 

Figure 3. Gesture collection in different environments 
Unlike traditional machine learning algorithms like AdaBoost, which enhance the 

performance of simple, weak learning models, our approach leverages Convolutional Neural 
Networks (CNNs) implemented using TensorFlow, an open-source library developed by 
Google. TensorFlow operates on a computational graph where nodes represent mathematical 
operations and edges denote the data flow between these nodes. A notable feature of 
TensorFlow is its model parallelism capability, allowing different portions of the graph to be 
trained simultaneously on multiple devices. TensorFlow also supports distributed training, 
accommodating both similar and diverse devices for various parts of the computational graph 
[38]. These features enhance the capability to handle large models and datasets, speed up 
training, and ensure scalable deployment. TensorFlow also provides built-in tools for data 
augmentation, which is crucial for gesture recognition. Techniques like rotation, scaling, and 
flipping can help in creating more diverse training data, improving the model’s robustness. It 
also offers visualization tools to monitor the training process and model architecture. This helps 
in diagnosing issues and improving the model's performance. 

 
Figure 4. Six gestures of the proposed architecture (a) Open hand towards the camera (b) 

Punch (c) Closed hand with the thumb pointing downwards (d) Closed hand with the thumb 
pointing right (e) Closed hand with index finger (f) Closed hand with index and pinky finger. 
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In our system, depth images are utilized for background removal and feature extraction, 
followed by gesture recognition, like the methods described in [39]. The system has been trained 
to identify six distinct gestures, as illustrated in Figure 4. Each gesture corresponds to a specific 
movement direction for the drone. 
Communication. 

The communication between the Odroid XU4 and Pixhawk is facilitated using an FTDI 
(USB to TTL) serial cable. The Odroid XU4, a single-board computer equipped with an Exynos 
5422 Octa ARM Cortex-A15 @ 2.0 GHz quad-core processor, is positioned beneath the flight 
controller to maintain the drone's center of gravity. The architecture employs User Datagram 
Protocol (UDP) for communication due to its capability to provide low-latency connections 
essential for real-time copter control [40][41]. UDP also offers a flexible protocol that supports 
various input devices. UDP is chosen over TCP or Bluetooth in scenarios where low latency is 
crucial, and the application can handle or tolerate occasional data loss. Its minimal overhead and 
lack of built-in reliability mechanisms make it suitable for real-time applications. In this setup, 
the UDP client (the workstation) sends commands to the Odroid, which acts as a server, 
forwarding these commands to the Pixhawk via its telemetry port. 

The system operates in an iterative loop; upon receiving a gesture, the copter executes 
the corresponding movement and then awaits the next command. If a new gesture is detected 
while the copter is executing a previous command, the current gesture is overridden, and the 
copter responds to the new gesture. In the event of a lost connection or Wi-Fi outage during 
flight, the copter is programmed to return to its launch point immediately. The small packet size 
in this configuration minimizes the likelihood of timeouts and multiple retransmissions [42]. The 
system does not impose restrictions on the communication medium, though alternatives like 
Bluetooth and GSM are less feasible due to their limited range and bandwidth constraints. Wi-
Fi, while having a short range, can be extended using multiple wireless access points to cover 
larger areas. 
Control. 

Effective control of the copter necessitates precise monitoring of its stability, latency, 
and movement. Each gesture introduces a latency of 634 ms, calculated using Equation 1, which 
accounts for the time required to complete pre-arm checks before the copter can take action. 
When a gesture is recognized, the copter's stability and movement are evaluated, alongside the 
strength of the communication link. After executing the intended gesture, stability is reassessed 
before processing subsequent gestures (Figure. 5). 
Latency Calculation. 

The latency L between the workstation and the copter is calculated as follows. 

   (1) 
Latency is determined by several key factors. The first component is the frame 

serialization time, which is calculated by dividing the packet size (PkS) of the gesture by the link 
data rate (LDR) measured in bits per second. This represents the time needed to convert the 
gesture packet into frames for transmission. The second factor, link media delay, is computed 
by dividing the distance of the link by the velocity factor (VF), which accounts for the speed of 
data transmission across the communication medium. Finally, queuing delay, which reflects the 
time a packet spends waiting in a queue before being processed, is calculated by dividing the 
queue depth (QD) by the link data rate. The total latency is the sum of these delays, 
encompassing frame serialization time, link media delay, and queuing delay. 
System Implementation and Model Choice. 

Initially, the gesture recognition system was implemented using scikit-learn, a popular 
Python library for machine learning. The algorithm employed was the Random Forest Classifier, 
an ensemble method that builds several decision tree classifiers on various sub-samples of the 



                                 International Journal of Innovations in Science & Technology 

Sep 2024|Vol 6 | Issue 3                                                                       Page |1378 

dataset and averages their predictions to enhance accuracy and reduce overfitting. However, sci-
kit-learn’s Random Forest Classifier was found to be insufficient for this application due to its 
lack of depth in handling complex image processing tasks and its tendency to disrupt the spatial 
locality of images, resulting in reduced accuracy and excessive flickering. 

 
Figure 5. Component state diagram of the system 

To overcome these limitations, TensorFlow was subsequently adopted for training the 
gesture recognition model. This architecture includes seven convolutional layers and seven 
pooling layers, as depicted in Figure 6. The model was trained using 24,000 images of six 
different hand gestures, generating a meta file for prediction. In this model, Rectified Linear 
Units (ReLU) are used as activation functions. ReLU functions convert all negative values to 
zero while preserving a positive slope for non-negative values, thus avoiding the vanishing 
gradient problem associated with other activation functions like sigmoid or tanh. This approach 
enhances the model's ability to accurately recognize gestures by maintaining spatial hierarchies 
in the image data (Eq. 2). 

   (2) 

 
Figure 6. A simple illustration of the Convolutional Neural Network architecture. Tensor 
Flow uses seven convolutional layers, seven max pool layers, one fully connected layer, and 

one softmax. The size of the image is indirectly proportional to the depth of the layer. 
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Rectified Linear Units (ReLU) are employed as the activation function in this 
architecture due to their simplicity and effectiveness. ReLU transforms all positive values linearly 
while setting all negative values to zero, offering advantages over other activation functions used 
in TensorFlow. Following the convolutional layers, a pooling layer is utilized to reduce 
processing time. Specifically, a max pooling layer is implemented, which reduces the size of the 
image and thereby curtails computational demands. 

To streamline the data further, the tensor is reshaped into a single-dimensional tensor 
using a flattening layer. This reshaped tensor is then fed into a fully connected layer, which 
integrates inputs from all previous neurons. The output of this fully connected layer is calculated 
through matrix multiplication, followed by the addition of a bias offset. 

For optimization, the Adam Optimizer is employed to calculate gradients and adjust 
weights efficiently. The learning rate is set to 0.0001 to minimize the cost function effectively. 
Finally, the softmax function is applied, as described in Equation 3. This function calculates the 
probability of each gesture by taking the exponential of each value and then normalizes these 
values by dividing by the sum of the exponentials. This ensures that the probabilities of all 
possible gestures sum to 1, providing a clear and normalized output for gesture classification. 

   (3) 
Experiments and Results. 
Safety Mechanism. 

Unlike traditional aircraft that rely on cockpit controls, the copter's operation is entirely 
dependent on telemetry data, which includes GPS coordinates, altitude, heading, and IMU data. 
To ensure safety and prevent potential crashes, the system calculates the copter's altitude during 
flight. For instance, if a downward gesture is given when the copter is already 3–4 feet above 
the ground, the gesture will be ignored to avoid excessive thrust that could damage plants. 
Similarly, a leftward gesture will cause the copter to move left until another gesture is received. 
In case a gesture is not recognized, the copter will enter a neutral state, reducing the risk of a 
crash [43] Additionally, if the GPS fails, the copter can switch to Position Hold (PosHold) mode, 
allowing for manual control to return it safely. Before arming the copter, several pre-arm checks 
are performed to ensure a stable flight, including. 
Horizontal Dilution of Precision (HDOP). Must be less than 2.0 to ensure a good GPS fix. 
• Magnetic Field Interference. This should be less than 15% to avoid navigation issues. 
• Battery Charge. Must be at least 80%. If the battery is low, a failsafe mechanism will 

trigger, causing the copter to land at its home location. 
• Safety Switch. Should be off before takeoff to prevent accidental activation of the 

motors and servos. 
Alternatively, these pre-arm checks can be relaxed by increasing the 

GPS_HDOP_GOOD parameter to 2.2 or 2.5, or by disabling the parameter altogether to take 
off in a move that does not require GPS (such as Stabilize or AltHold) and switch to Loiter 
mode after arming. However, this approach is not recommended. 
Sensor Selection for Gesture Acquisition. 

Various sensor technologies exist which have their strengths and weaknesses for 
outdoor gesture recognition tasks. 

• LiDAR and Stereo Cameras offer high precision but may be affected by 
environmental factors and range limitations. 

• Time-of-flight cameras provide good performance in varying lighting conditions but 
can be costly. 

• Radar and Ultrasonic Sensors are robust in various weather conditions but may lack 
the resolution needed for detailed gesture recognition. 
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• Thermal Cameras are useful for detecting heat-based gestures but may not provide the 
detail needed for complex gestures. 
Key reasons for selecting Kinect V2 for our project include its low-cost and high-

resolution RGB imagery with depth sensing capabilities. Its ability to handle issues like complex 
background and variation in illumination makes it a good choice for outdoor usage [30]. 
Gesture Selection. 

Designing effective hand gestures for copter control presents a challenge, as the user's 
experience is closely tied to the gesture's design. Six hand gestures were selected for this study 
based on the following criteria. 
• Intuitive and Simple. Gestures should be easy to remember and perform. Complex 

gestures, while potentially reducing incorrect operations, often lead to poor user 
experiences. 

• Static. Static hand gestures are preferred as they reduce system latency and minimize 
the chance of false recognition. A few well-chosen static gestures are sufficient for the 
field operations of a copter. 

• No Mutual Intrusion. Each gesture must be distinct and distinguishable to prevent 
interference between gestures. 
An optimal distance of 1 to 3 feet has been recommended between the user and the 

Kinect to ensure better gesture recognition.  
Simulation Testing and Real-Time Testing. 
Simulation Testing. 

The proposed system was initially tested in a simulation environment to identify and 
address potential issues before real-world implementation. This simulation aimed to verify the 
accuracy of translating gestures into drone movements, thereby protecting the actual copter 
from potential damage. The simulation was conducted using V-REP, a tool developed by 
Corpellia Robotics, integrated with the Robot Operating System (ROS). A pre-existing copter 
model in V-REP (see Figure. 7) was utilized and linked to ROS for this purpose. 

 
Figure 7. Testing is done in a simulated environment using V-REP and ROS 

The simulation testing involved integrating the gesture recognition program with the 
ROS platform running on Ubuntu. Communication between the simulator and the gesture 
recognition system was facilitated using ROSBridge, which converts ROS messages into web 
socket messages. Images captured by the camera were processed and sent to the simulation, 
where they guided the copter's actions. Following successful simulation trials that covered a 
range of scenarios, the system was then tested with a real quadcopter. 
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Real-Time Testing. 
For the real-time testing phase, a custom S500 quadcopter was assembled with a 

Pixhawk flight controller, an Odroid XU4 companion computer, a WiFi module, and an external 
GPS module. The gesture recognition was performed on a 2.50 GHz CPU running Ubuntu 
16.04 LTS. Images collected for training were initially at a resolution of 512x424 but were 
reduced to 256x212 when using a 2x2 kernel.  

The testing involved three environments. indoor, outdoor (day), and outdoor (night), 
with six test subjects having different hand sizes and colors. For testing, 360 images were 
specifically excluded from the training dataset to create a confusion matrix (see Table 2). These 
images were captured across all three testing environments. indoor, outdoor (daylight), and 
outdoor (nighttime). The accuracy of gesture recognition was slightly reduced in sunlight due to 
the IR sensor’s exposure issues with the Kinect. It has been observed that avoiding the Kinect 
to be placed directly facing the sun, improves the results. 

Table 2. Confusion matrix of all six gestures 

A
c
tu

a
l 

V
a
lu

e
s 

Predicted Values 

 Up Down Left Right Forward Back 

Up 55 0 0 4 0 1 

Down 0 50 2 0 6 1 

Left 1 0 56 2 0 0 

Right 3 0 0 51 0 6 

Forward 0 4 0 0 54 2 

Back 0 1 1 0 2 56 

Detailed results from the experiments in different environments have been summarized 
in Table 3. Overall, the proposed architecture achieved an accuracy rate of 89.8%. The accuracy 
varied across environments; indoor testing achieved 95.833%, outdoor (sunlight) testing yielded 
90% due to IR interference from sunlight, and outdoor (night) testing achieved 94.166% due to 
Kinect’s effective night vision.  

Table 3. Accuracy of six gestures in three different environments 

 
The processing time for gesture recognition is minimal compared to data collection, 

ensuring that it does not impact the performance of the recognition algorithm. To enhance 
accuracy and prevent misclassification, a voting mechanism is employed, where decisions are 
based on four consecutive frames to confirm a single gesture recognition. It prevents the 
misclassification of gestures, especially during transition between multiple gestures. 

Feedback from farmers indicated a strong preference for controlling the copter through 
natural hand gestures, highlighting their satisfaction with this mode of interaction compared to 
traditional controllers or mobile applications. During the field testing with farmers, errors were 

  Indoor Sunlight Night  
Input 

images 
Images 
detected 

Gesture 
accuracy 

(%) 

Images 
detected 

Gesture 
accuracy 

(%) 

Images 
detected 

Gesture 
accuracy 

(%) 

Up 20 20 100 18 90 18 90 
Down 20 19 95 17 85 19 95 
Left 20 18 90 18 90 19 95 
Right 20 19 95 18 90 18 90 
Forward 20 20 100 19 95 19 95 
Backward 20 19 95 18 90 20 100 

Accuracy   95.83  90  94.16 
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noticed when a farmer didn’t comply with the required distance which is 12 – 36 cm from the 
Kinect. It also becomes problematic when farmers tend to deviate from the Kinect’s field of 
view. However, it briefly gets better with practice. Currently, the system has been tested with 
only six subjects in real-time experiments, extensive field trials can further assist in the 
improvement of the system’s effectiveness. 
Conclusion. 

This paper presents a robust method for controlling a copter using hand gestures, 
demonstrating an average accuracy of 90.5% across different environments. The framework 
incorporates a voting mechanism that uses four consecutive frames to reduce misclassification. 
The safety mechanisms have prevented crashes, even with inexperienced users. The system's 
flexibility allows for the replacement of Kinect with other sensors and the adaptation of different 
gesture recognition algorithms. The gesture recognition module can be updated with future 
libraries that offer improved hand gesture recognition capabilities. Future work will focus on 
integrating more gestures, including dynamic ones, for advanced maneuvering and camera 
control, as well as exploring autonomous path planning. 
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