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raditional methods for controlling multi-rotors typically involve joysticks, radio
I controllers, and mobile applications. However, these methods pose significant challenges,
particulatly for novice users like farmers, due to the extensive training and understanding
required to effectively operate a copter. This paper introduces a highly adaptable architecture
designed to offer an end-to-end solution for controlling a copter using hand gestures. The
proposed system leverages a depth sensor and Convolutional Neural Network (CNN) to
recognize hand gestures, utilizing a custom dataset collected from both indoor and outdoor
environments. Through a series of simulations with novice users, the system has demonstrated
successful operation in real-world scenarios. Currently, the architecture can accurately recognize
six distinct gestures with an average accuracy of 90.5% across three different test environments
with varying lighting conditions. Key features of this proposed solution include its adaptability,
reliable performance, especially in low-light conditions, and its user-friendly design, making it
particularly well-suited for farmers and other inexperienced users.
Keywords. UAV, Hand Gestures, Human Drone Interaction, Deep Learning, Tensor Flow,
CNN, Control Architecture.
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Introduction.

In contemporary times, copters have become widely utilized for various purposes
globally, including photography/videography, surveillance, and delivery tasks [1][2][3]. One of
the rapidly growing fields benefiting from copters is agriculture. These devices offer a safe and
effective means of inspecting areas that are otherwise challenging to access, such as wild forests
or expansive agricultural fields. The applications of copters in agriculture are diverse, including
crop monitoring, planting, and spraying. These applications can potentially enhance crop yield,
reduce overall costs related to human resources and time, and improve crop quality. However,
many users are inexperienced with copters, facing difficulties with takeoff, landing, obstacle
avoidance, and safe navigation. Natural human interaction, which facilitates intuitive and
efficient control with minimal learning, could significantly improve usability in such rapidly
evolving applications [4]. A gesture-controlled copter could simplify the flying process
considerably. Hand gestures are a common form of non-verbal communication, especially useful
for hearing-impaired individuals, and are increasingly employed in Human-Computer
Interaction (HCI) to enhance automated system usability. Recognizing hand gestures involves
various factors and complexities affecting their accuracy and reliability. Vision-based methods
for gesture recognition utilize specialized image processing techniques to address specific
challenges related to image characteristics.

Conversely, deep learning approaches such as logistic regression, convolutional neural
networks (CNNs), XG Boost, Support Vector Classifiers (SVCs), Stochastic Gradient Descent
Classifiers (SGDCs), and Transformer adapt to various aspects of hand gestures, including skin
tone and system environment, through supervised learning. Particularly, CNN models excel in
pattern recognition in images, making them suitable for identifying hands, faces, and other
objects. CNNs do not require feature extraction during training and are invariant to scaling and
rotation, which enhances their effectiveness for hand gesture recognition [5][6][7]. They are well-
suited for handling the spatial complexities involved in recognizing different gestures. However,
combining CNNs with other models like Recurrent Neural Network (RNN) or Long Short-
Term Memory (LSTM) can enhance performance by incorporating temporal information,
especially in dynamic gesture recognition scenarios. Each model has its strengths, but CNNs
remain a robust choice due to their ability to directly process and interpret visual data, making
them a preferred approach for gesture recognition tasks.

Gestures can be categorized into static and dynamic types. Static gestures involve a single
hand pose in one frame, while dynamic gestures encompass sequences of hand poses across
multiple frames. Dynamic gesture recognition provides more comprehensive information but is
computationally expensive and complex due to its reliance on temporal data [8]. Dynamic
gestures are used for continuous control, such as navigation and altitude adjustment. However,
they require sophisticated tracking and processing capabilities to ensure smooth and accurate
control. It can be complex and requires robust algorithms to differentiate intended gestures from
accidental movements. e.g. using the hand upwards and downwards to control the copter
altitude or right and left movement to give direction to the copter. On the other hand, static
gestures are generally used for discrete commands like takeoff, landing, or hovering. They are
simpler to implement and can be very intuitive, improving user experience. However, they
require precise recognition and calibration to avoid misinterpretation. Gesture-controlled
copters, or drones, represent an exciting advancement in agricultural setup. Many factors
contribute to their significance and why they might be preferable to traditional methods.
Technical Complexity.

Traditional controllers or digital interfaces can be complex, with multiple buttons and
joysticks that require a steep learning curve. This can be challenging for users who are not
technologically confident. Various copter modes, such as loiter control, guided mode, stabilize
mode, and remote control, require professional expertise for effective maneuvering. For
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instance, operating a copter with a radio controller necessitates knowledge of pitch, yaw, roll,
and the functions of various switches, which are not intuitive and require considerable effort to
master.

Responsiveness.

Controllers and voice commands can introduce delays. Voice commands can be affected
by ambient noise, accents, and misinterpretations, making them less reliable in noisy
environments like farms. Additionally, they might not offer the precision needed for complex
tasks.

Ease of Use.

Natural interaction methods, being universally accessible and easy to grasp, could
simplify copter control, particularly for novice users such as farmers. Enabling farmers to
monitor their fields using hand gestures with copters could greatly enhance agricultural
efficiency.

Reduced Physical Strain.

Holding and maneuvering a traditional controller for extended periods can be physically
demanding. Gesture controls can be less tiring, as they allow for a more natural and less
physically strenuous interaction with the drone. The concept of controlling drones through hand
gestures has gained attention following the introduction of DJI’s Spark (2017) and Mavic 3
Enterprise (2020), which feature gesture control capabilities. Despite their innovation, these
drones are expensive and primarily focus on palm detection and limited gesture functions for
capturing photos or videos within a short range. In agricultural contexts, however, the ability to
operate drones at longer distances and utilize the drone's camera for monitoring, rather than for
tracking the farmer, is crucial.

Literature Review.

Research has explored hand gestures for natural human-robot interaction. One approach
involves using a LEAP motion sensor [9] for controlling copters through hand gesture detection.
However, this sensor has limitations, including a short effective range (30 — 60 cm) and poor
performance in bright outdoor environments [10]. Another study proposed a framework for
controlling a copter with an onboard camera to detect hand gestures. Results indicated a
significant drop in gesture recognition accuracy when the copter was more than 3 feet away from
the user, rendering this framework impractical for agricultural settings where the drone’s camera
is needed for crop monitoring [10]. Machine learning algorithms, such as AdaBoost and Haar
wavelet features, have been used to classify hand gestures with a low-resolution webcam [11].
While these methods can recognize 24 static gestures, they are not directly applicable to
controlling copters. Data gloves have also been employed to detect hand gestures, achieving
88% accuracy for 26 static gestures [12]. However, data gloves are impractical for farmers due
to issues with comfort, durability, and sensitivity varying with hand size.

Hand gestures have also been used to control TV operations. Studies have demonstrated
that users can manage a TV using a fixed camera with different hand gestures and hand shapes,
but the gestures must be performed within a specific rectangular region to differentiate between
hand and face skin color [13]. Another approach involves using depth data from motion and
hand location to control a TV [14]. This method involves artificially designed gestures that may
be challenging for users to learn and understand.

Voice command control of copters has been explored [15], but it is not universally
effective due to voice recognition inaccuracies. Hand gesture control devices offer a more
accessible alternative. Research has shown that a car robot can be controlled with hand gestures,
achieving 92.2% accuracy in simulated environments, although real-world applications have not
been extensively reported [16]. A gesture-controlled robot manipulator system has been
developed [17], employing accelerometers and gyroscopes to estimate arm joint angles, but it
may not perform well under harsh conditions with vibrations and shocks.
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Table 1. Comparative analysis of existing approaches of gesture recognition for copter control

Application for
Approach Strengths Weaknesses Copter Control
e High accuracy with proper ® Sensitive to  lighting Effective for
lighting and resolution. conditions. complex  gestures,
Vision- e Can recognize a wide ® Computationally but may struggle in
Based range of gestures. intensive. low-light or high-
e Does not require ® Requires a clear line of mot.ion
additional hardware. sight. cavironments.
. Bett§r performan'ce 'in . Require's depth sensors Useful for capturing
varying lighting  (e.g., Kinect). ,
- . , gestures with depth
Depth- conditions. e Limited range of motion : :
information,
Based e Can capture 3D gestures. capture. e -
> . potentially improving
e - less sensitive to ® More expensive precision.
occlusions. hardware.
e High responsiveness and y .lelted to gestures that Ideal for  quick,
low latency. involve motion. intuitive control
IMU- . . e Can be affected by drift
e Works in various . gestures, but may not
Based : g and noise.
environmental conditions. L o . handle complex
[
e Relatively low cost. cs8 fntuittve ©f commands well.
complex gestures.
® Requires wearable
S e High accuracy for hand 1e\/c[1u1p n;ent. fostabl Best for precise and
ensor and finger movements. ¢ May be uncomiortable  q.ipiled control, but
Glove- for extended use. b b
Based e Can detect fine gestures. o Limited to eestures that can be cumbersome
e Good for detailed control. . et and less flexible.
involve  wearing  the
glove.
e Requires sensors to be
e Can detect muscle Useful for gestures
. hout attached to the body. volvi |
movements even witho involvin muscle
EMG- ovem ver WIOUE o Can be influenced by vOVIng °
direct line of sight. . contractions, but
Based : muscle fatigue. S
e Allows for a wide range of ) may be less intuitive
control Option& ° May ha‘.]e hlgher Setup aﬁd require training.
complexity.
® Requires additional tags Suitable for gesture
e Can work in various oOf sensors. recognition with
RFID- environmental conditions. e Limited to predefined specific tagged
Based ® Good for identifying gestures. positions  but lacks
specific hand positions. e Tags can be misplaced or flexibility for
obstructed. complex gestures.
. Corn.bines strengths of e More complex to Offers the best of
multiple approaches. implement. .
. _ _ multiple approaches,
Hybrid e Can improve accuracy and e Higher cost and resource b :
i ut requires careful
Systems robustness. requirements. .
) ] balancing and
. Adaptgble to  various e Integratllon can  be integration.
scenarios. challenging.
Sep 2024 | Vol 6 | Issue 3 Page | 1373



International Journal of Innovations in Science & Technology

A wearable sensor suite for UAV control has been introduced [18], focusing on
mechanomyography and an inertial measurement unit to capture multimodal command signals
using convolutional neural networks. However, this system requires individual calibration, which
may not be feasible in many scenarios [19] Another study has proposed gesture-based natural
language interfaces for defining UAV trajectories but demonstrated only 41% accuracy [20].
Human-machine interaction research has explored dynamic gesture control for vehicles,
achieving 95% accuracy for three poses, though some inaccuracies persist due to gesture
similarity. This study used a camera mounted on a vehicle roof for gesture recognition [21].

To address touch screen limitations, an infrared camera mounted on the ceiling has been
proposed, achieving 96% accuracy in static scenarios, though accuracy drops to 87% in dynamic
contexts due to gesture similarity. This system handles both sunlight and nighttime conditions
using various segmentation models [22]. The Myo Armband, which detects electromyography
for controlling home appliances, offers a unique approach but causes user discomfort and
fluctuates in accuracy due to variations in arm fat tissues [23]. An IMU with a complementary
filter algorithm on a Raspberry Pi, combined with an MPUG050 sensor and a wearable glove,
has been used to navigate a DJI Tello drone, but only roll and pitch movements have been
achieved [24].

Deep neural network-based solutions for gesture recognition have been investigated,
with models designed using PointNet architecture and depth data from time-of-flight sensors.
Comparisons with 2D images and 3D point cloud datasets indicate that 3D depth information
significantly enhances gesture recognition accuracy [25]. TensorFlow and deep learning
techniques offer efficient real-time gesture recognition, utilizing built-in libraries like Mediapipe,
TensorFlow, and Keras. However, the use of a drone-mounted camera presents challenges in
open fields where the vehicle may travel beyond the farmer’s range [26]. Table 1 summarizes the
comparison of various gesture recognition approaches in the context of copter control. The
proposed system’s architecture has been designed to remain flexible while providing a
comprehensive solution to the challenge of controlling a copter through hand gestures (Figure.

1.

Copter Workstation

¢

e Microsoft Kinect 2

Hand Position

Figure 1. Conceptual diagram of hand gesture-controlled copter

Key research contributions of the paper can be summarized as.

J The proposed system recognizes and classifies hand gestures from live video feeds in
real time and translates them into predefined copter operations.

. The system offers a standardized approach to both input and output channels, making
it compatible with any RGBD input device for gesture acquisition.

. The core innovation of this architecture lies in its flexibility, allowing for the integration
of various modules to provide different functionalities. For example, modules such as
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the LEAP motion controller, Kinect, or stereo vision can be easily incorporated to

enhance gesture recognition accuracy and motion detection.
Material and Methods.

Investigation Site.

Surveys were conducted with farmers in Muridke Tehsil, near Lahore, Pakistan. The
farmers were queried about the practicality of using a gesture-controlled copter for tasks such
as field observation, spraying, and fungus detection. The feedback indicated a preference for
hand gesture control over traditional controllers and mobile applications, primarily due to a lack
of professional knowledge [27]. The proposed system was extensively tested in diverse
environments and lighting conditions, both in simulations and real field settings.

This study divides the challenge of controlling copters using hand gestures into four key
modules. (i) Gesture Acquisition, (ii) Gesture Recognition, (iif) Communication, and (iv) Control

(Figure. 2).

Gesture
Recognition

Gesture Acquisition

Frame Extraction Input Images

Acquire
Sensor Data

| | » Communication
Background .
ke Train Model

Subtraction

Save Gestures Predict Model

Control

Figure 2. Overview of the proposed architecture
Gesture Acquisition.

The architecture we designed imposes no restrictions on the choice of sensor system for
capturing images, as it supports a wide range of RGB and depth cameras. Any depth camera can
be employed for gesture capture. Given the advantages of vision-based sensors over alternatives
like data gloves or LEAP motion sensors [28], we opted for the Kinect V2 for data acquisition.
The Kinect V2 is both cost-effective and widely used in research due to its high-resolution RGB
imagery and depth-sensing capabilities [29]. Being one of the most acknowledged sensors, it can
efficiently handle issues like complex background and variation in illumination [30]. The Kinect’s
depth sensor integrates an IR projector with a CMOS sensor to capture video data in various
lighting conditions [31].

Dataset Compilation.

Existing datasets for hand gesture recognition often have limitations, such as capturing
only 2D images indoors or using special-colored gloves for hand identification [32][33]. To
address these shortcomings, we compiled our dataset, which includes both 2D images and 3D
depth information, to ensure functionality across different lighting conditions, including daylight
and nighttime. We collected a total of 24,000 images of six distinct gestures using Kinect V2.
These gestures were recorded in both indoor and outdoor settings to account for the varying
lighting conditions encountered by farmers (Figure. 3). To enrich the dataset, different hand
sizes and skin colors have been incorporated as well. Images acquired through Kinect have been
annotated using the Labeling tool [34]. The background has been eliminated from each frame
to prepare them for further processing.

Collecting data in outdoor environments was essential due to the potential overexposure
of Kinect’s IR camera in sunlight, which can impact image quality. Incorporating depth
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information into our dataset helped mitigate this issue. For integrating Kinect with our gesture
recognition program, we used libfreenect2, a driver that supports RGB image transfer, IR and
depth image transfer, and the registration of RGB and depth images. This setup requires a USB
3.0 controller for powering Kinect.

Gesture Recognition.

Accurate hand gesture detection is a critical component of this architecture, as it must
accommodate variations in hand size and skin color among different users. Several algorithms
and frameworks exist for hand gesture detection, including Haar features, skin color labeling
[35], and image clustering using K-means [30]. The study in [37] addresses gesture recognition
in cluttered backgrounds and varying lighting conditions through skin detection and posture
contour analy51s usmg Principal Component Analysis.

(a) Outdoor environment (b) Indoor environment
Figure 3. Gesture collection in different environments

Unlike traditional machine learning algorithms like AdaBoost, which enhance the
performance of simple, weak learning models, our approach leverages Convolutional Neural
Networks (CNNs) implemented using TensorFlow, an open-source library developed by
Google. TensorFlow operates on a computational graph where nodes represent mathematical
operations and edges denote the data flow between these nodes. A notable feature of
TensorFlow is its model parallelism capability, allowing different portions of the graph to be
trained simultaneously on multiple devices. TensorFlow also supports distributed training,
accommodating both similar and diverse devices for various parts of the computational graph
[38]. These features enhance the capability to handle large models and datasets, speed up
training, and ensure scalable deployment. TensorFlow also provides built-in tools for data
augmentation, which is crucial for gesture recognition. Techniques like rotation, scaling, and
flipping can help in creating more diverse training data, improving the model’s robustness. It
also offers visualization tools to monitor the training process and model architecture. This helps
in diagnosing issues and improving the model's performance.

) Up ) Down (c) Backward

I

) Forward (e) Left (f) Right

Figure 4. S1x gestures of the proposed architecture (a) Open hand towards the camera (b)
Punch (c) Closed hand with the thumb pointing downwards (d) Closed hand with the thumb
pointing right (e) Closed hand with index finger (f) Closed hand with index and pinky finger.
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In our system, depth images are utilized for background removal and feature extraction,
followed by gesture recognition, like the methods described in [39]. The system has been trained
to identify six distinct gestures, as illustrated in Figure 4. Each gesture corresponds to a specific
movement direction for the drone.

Communication.

The communication between the Odroid XU4 and Pixhawk is facilitated using an FTDI
(USB to TTL) serial cable. The Odroid XU4, a single-board computer equipped with an Exynos
5422 Octa ARM Cortex-A15 @ 2.0 GHz quad-core processor, is positioned beneath the flight
controller to maintain the drone's center of gravity. The architecture employs User Datagram
Protocol (UDP) for communication due to its capability to provide low-latency connections
essential for real-time copter control [40][41]. UDP also offers a flexible protocol that supports
various input devices. UDP is chosen over TCP or Bluetooth in scenarios where low latency is
crucial, and the application can handle or tolerate occasional data loss. Its minimal overhead and
lack of built-in reliability mechanisms make it suitable for real-time applications. In this setup,
the UDP client (the workstation) sends commands to the Odroid, which acts as a server,
forwarding these commands to the Pixhawk via its telemetry port.

The system operates in an iterative loop; upon receiving a gesture, the copter executes
the corresponding movement and then awaits the next command. If a new gesture is detected
while the copter is executing a previous command, the current gesture is overridden, and the
copter responds to the new gesture. In the event of a lost connection or Wi-Fi outage during
flight, the copter is programmed to return to its launch point immediately. The small packet size
in this configuration minimizes the likelihood of timeouts and multiple retransmissions [42]. The
system does not impose restrictions on the communication medium, though alternatives like
Bluetooth and GSM are less feasible due to their limited range and bandwidth constraints. Wi-
Fi, while having a short range, can be extended using multiple wireless access points to cover
larger areas.

Control.

Effective control of the copter necessitates precise monitoring of its stability, latency,
and movement. Each gesture introduces a latency of 634 ms, calculated using Equation 1, which
accounts for the time required to complete pre-arm checks before the copter can take action.
When a gesture is recognized, the copter's stability and movement are evaluated, alongside the
strength of the communication link. After executing the intended gesture, stability is reassessed
before processing subsequent gestures (Figure. 5).

Latency Calculation.
The latency L between the workstation and the copter is calculated as follows.
PES LD QD
~IDR ' VF 'LDR (1)

Latency is determined by several key factors. The first component is the frame
serialization time, which is calculated by dividing the packet size (PkS) of the gesture by the link
data rate (LDR) measured in bits per second. This represents the time needed to convert the
gesture packet into frames for transmission. The second factor, link media delay, is computed
by dividing the distance of the link by the velocity factor (VF), which accounts for the speed of
data transmission across the communication medium. Finally, queuing delay, which reflects the
time a packet spends waiting in a queue before being processed, is calculated by dividing the
queue depth (QD) by the link data rate. The total latency is the sum of these delays,
encompassing frame serialization time, link media delay, and queuing delay.

System Implementation and Model Choice.

Initially, the gesture recognition system was implemented using scikit-learn, a popular
Python library for machine learning. The algorithm employed was the Random Forest Classifier,
an ensemble method that builds several decision tree classifiers on various sub-samples of the

L
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dataset and averages their predictions to enhance accuracy and reduce overfitting. However, sci-
kit-learn’s Random Forest Classifier was found to be insufficient for this application due to its
lack of depth in handling complex image processing tasks and its tendency to disrupt the spatial
locality of images, resulting in reduced accuracy and excessive flickering.

Takeoff

I
I
Roll {x-axis) Pitch (y-axis) :
I
|
Forward Left I
I
|
v !t |
Backward Right l
I
|
e A\ X/
,,,,,,,,,,,,, 1 bt
Height Misc :
I
Down Camera :
I
r ! vt I
I
Up Neutral :
I
O S S |

Land

Figure 5. Component state diagram of the system

To overcome these limitations, TensorFlow was subsequently adopted for training the
gesture recognition model. This architecture includes seven convolutional layers and seven
pooling layers, as depicted in Figure 6. The model was trained using 24,000 images of six
different hand gestures, generating a meta file for prediction. In this model, Rectified Linear
Units (ReLLU) are used as activation functions. ReLU functions convert all negative values to
zero while preserving a positive slope for non-negative values, thus avoiding the vanishing
gradient problem associated with other activation functions like sigmoid or tanh. This approach
enhances the model's ability to accurately recognize gestures by maintaining spatial hierarchies
in the image data (Eq. 2).

f(z) =maz(0,z) )

convi comv2

Figure 6. A simple illustration of the Convolutional Neural Network architecture. Tensor
Flow uses seven convolutional layers, seven max pool layers, one fully connected layer, and
one softmax. The size of the image is indirectly proportional to the depth of the layer.
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Rectified Linear Units (ReLU) are employed as the activation function in this
architecture due to their simplicity and effectiveness. ReLU transforms all positive values linearly
while setting all negative values to zero, offering advantages over other activation functions used
in TensorFlow. Following the convolutional layers, a pooling layer is utilized to reduce
processing time. Specifically, a max pooling layer is implemented, which reduces the size of the
image and thereby curtails computational demands.

To streamline the data further, the tensor is reshaped into a single-dimensional tensor
using a flattening layer. This reshaped tensor is then fed into a fully connected layer, which
integrates inputs from all previous neurons. The output of this fully connected layer is calculated
through matrix multiplication, followed by the addition of a bias offset.

For optimization, the Adam Optimizer is employed to calculate gradients and adjust
weights efficiently. The learning rate is set to 0.0001 to minimize the cost function effectively.
Finally, the softmax function is applied, as described in Equation 3. This function calculates the
probability of each gesture by taking the exponential of each value and then normalizes these
values by dividing by the sum of the exponentials. This ensures that the probabilities of all
possible gestures sum to 1, providing a clear and normalized output for gesture classification.

e L
Wf()'f'] =1...N
N 3)

ofa); =

Experiments and Results.
Safety Mechanism.

Unlike traditional aircraft that rely on cockpit controls, the copter's operation is entirely
dependent on telemetry data, which includes GPS coordinates, altitude, heading, and IMU data.
To ensure safety and prevent potential crashes, the system calculates the coptet's altitude during
flight. For instance, if a downward gesture is given when the copter is already 3—4 feet above
the ground, the gesture will be ignored to avoid excessive thrust that could damage plants.
Similarly, a leftward gesture will cause the copter to move left until another gesture is received.
In case a gesture is not recognized, the copter will enter a neutral state, reducing the risk of a
crash [43] Additionally, if the GPS fails, the copter can switch to Position Hold (PosHold) mode,
allowing for manual control to return it safely. Before arming the copter, several pre-arm checks
are performed to ensure a stable flight, including.

Horizontal Dilution of Precision (HDOP). Must be less than 2.0 to ensure a good GPS fix.
. Magnetic Field Interference. This should be less than 15% to avoid navigation issues.
. Battery Charge. Must be at least 80%. If the battery is low, a failsafe mechanism will
trigger, causing the copter to land at its home location.
. Safety Switch. Should be off before takeoff to prevent accidental activation of the
motors and servos.

Alternatively, these pre-arm checks can be relaxed by increasing the
GPS_HDOP_GOOD parameter to 2.2 or 2.5, or by disabling the parameter altogether to take
off in a move that does not require GPS (such as Stabilize or AltHold) and switch to Loiter
mode after arming. However, this approach is not recommended.

Sensor Selection for Gesture Acquisition.

Various sensor technologies exist which have their strengths and weaknesses for

outdoor gesture recognition tasks.

. LiDAR and Stereo Cameras offer high precision but may be affected by
environmental factors and range limitations.

. Time-of-flight cameras provide good performance in varying lighting conditions but
can be costly.

. Radar and Ultrasonic Sensors are robust in various weather conditions but may lack
the resolution needed for detailed gesture recognition.
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. Thermal Cameras are useful for detecting heat-based gestures but may not provide the
detail needed for complex gestures.

Key reasons for selecting Kinect V2 for our project include its low-cost and high-
resolution RGB imagery with depth sensing capabilities. Its ability to handle issues like complex
background and variation in illumination makes it a good choice for outdoor usage [30].
Gesture Selection.

Designing effective hand gestures for copter control presents a challenge, as the user's
experience is closely tied to the gesture's design. Six hand gestures were selected for this study
based on the following criteria.

. Intuitive and Simple. Gestures should be easy to remember and perform. Complex
gestures, while potentially reducing incorrect operations, often lead to poor user
experiences.

. Static. Static hand gestures are preferred as they reduce system latency and minimize

the chance of false recognition. A few well-chosen static gestures are sufficient for the

field operations of a copter.

. No Mutual Intrusion. Each gesture must be distinct and distinguishable to prevent
interference between gestures.

An optimal distance of 1 to 3 feet has been recommended between the user and the
Kinect to ensure better gesture recognition.

Simulation Testing and Real-Time Testing.
Simulation Testing.

The proposed system was initially tested in a simulation environment to identify and
address potential issues before real-world implementation. This simulation aimed to verify the
accuracy of translating gestures into drone movements, thereby protecting the actual copter
from potential damage. The simulation was conducted using V-REP, a tool developed by
Corpellia Robotics, integrated with the Robot Operating System (ROS). A pre-existing copter
model in V-REP (see Figure. 7) was utilized and linked to ROS for this purpose.

L 3 @ % P |[Q ege @ >
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Iculstions: 0, detections: 0 (0 ms)
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Mill handling enebled

2OIPRERE

iCulation pesses: 10 (8 ms)
-« ® Iculations: 0. surface cut 0 mm*2 (0 ms)
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Figure 7. Testing is done in a simulated environment using V-REP and ROS
The simulation testing involved integrating the gesture recognition program with the
ROS platform running on Ubuntu. Communication between the simulator and the gesture
recognition system was facilitated using ROSBridge, which converts ROS messages into web
socket messages. Images captured by the camera were processed and sent to the simulation,
where they guided the copter's actions. Following successful simulation trials that covered a
range of scenarios, the system was then tested with a real quadcopter.
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Real-Time Testing.

For the real-time testing phase, a custom S500 quadcopter was assembled with a
Pixhawk flight controller, an Odroid XU4 companion computer, a WiFi module, and an external
GPS module. The gesture recognition was performed on a 2.50 GHz CPU running Ubuntu
16.04 LTS. Images collected for training were initially at a resolution of 512x424 but were
reduced to 256x212 when using a 2x2 kernel.

The testing involved three environments. indoor, outdoor (day), and outdoor (night),
with six test subjects having different hand sizes and colors. For testing, 360 images were
specifically excluded from the training dataset to create a confusion matrix (see Table 2). These
images were captured across all three testing environments. indoor, outdoor (daylight), and
outdoor (nighttime). The accuracy of gesture recognition was slightly reduced in sunlight due to
the IR sensor’s exposure issues with the Kinect. It has been observed that avoiding the Kinect
to be placed directly facing the sun, improves the results.

Table 2. Confusion matrix of all six gestures

Predicted Values

@ Up Down Left Right Forward Back
2| Up 55 0 0 4 0 1
S| Down 0 50 2 0 6 1
'§ Left 1 0 56 2 0 0
5| Right 3 0 0 51 0 6
<| Forward 0 4 0 0 54 2

Back 0 1 1 0 2 56

Detailed results from the experiments in different environments have been summarized
in Table 3. Overall, the proposed architecture achieved an accuracy rate of 89.8%. The accuracy
varied across environments; indoor testing achieved 95.833%, outdoor (sunlight) testing yielded
90% due to IR interference from sunlight, and outdoor (night) testing achieved 94.166% due to
Kinect’s effective night vision.

Table 3. Accuracy of six gestures in three different environments

Indoor Sunlight Night

Input Images  Gesture  Images  Gesture Images  Gesture
images detected accuracy detected accuracy detected accuracy

(%) (%) (%)
Up 20 20 100 18 90 18 90
Down 20 19 95 17 85 19 95
Left 20 18 90 18 90 19 95
Right 20 19 95 18 90 18 90
Forward 20 20 100 19 95 19 95
Backward 20 19 95 18 90 20 100
Accuracy 95.83 90 94.16

The processing time for gesture recognition is minimal compared to data collection,
ensuring that it does not impact the performance of the recognition algorithm. To enhance
accuracy and prevent misclassification, a voting mechanism is employed, where decisions are
based on four consecutive frames to confirm a single gesture recognition. It prevents the
misclassification of gestures, especially during transition between multiple gestures.

Feedback from farmers indicated a strong preference for controlling the copter through
natural hand gestures, highlighting their satisfaction with this mode of interaction compared to
traditional controllers or mobile applications. During the field testing with farmers, errors were
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noticed when a farmer didn’t comply with the required distance which is 12 — 36 cm from the
Kinect. It also becomes problematic when farmers tend to deviate from the Kinect’s field of
view. However, it briefly gets better with practice. Currently, the system has been tested with
only six subjects in real-time experiments, extensive field trials can further assist in the
improvement of the system’s effectiveness.

Conclusion.

This paper presents a robust method for controlling a copter using hand gestures,
demonstrating an average accuracy of 90.5% across different environments. The framework
incorporates a voting mechanism that uses four consecutive frames to reduce misclassification.
The safety mechanisms have prevented crashes, even with inexpetienced users. The system's
flexibility allows for the replacement of Kinect with other sensors and the adaptation of different
gesture recognition algorithms. The gesture recognition module can be updated with future
libraries that offer improved hand gesture recognition capabilities. Future work will focus on
integrating more gestures, including dynamic ones, for advanced maneuvering and camera
control, as well as exploring autonomous path planning.
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