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n order to generate and give useful information to policymakers and development 
practitioners regarding the scale and trends of land use/land cover change (LULCC), it 
is necessary to have a firm grasp on its trajectories and extents. This research details the 

causes, effects, and implications of LULCC in the Finchaa catchment on long-term 
sustainable land management. The land use maps and change quantifications were created 
using data from Landsat photos taken in 1987, 2002, and 2017. The photos were classified 
using a supervised classification method and a maximum likelihood classifier. The 
socioeconomic survey combined key informant interviews, focus groups, and transect walks. 
Over the previous three decades, forestland, rangeland, grazing land, and swampy regions 
have shrunk while agricultural land, commercial farm, built-up, and water bodies have 
expanded. Lack of good catchment management practices in the name of "intensive 
agriculture" has long been a source of trouble for the region. Increasing erosion and 
sedimentation of surrounding water bodies is a consequence of increased farming on steep 
hillsides. The observed LULCC in the research area was the result of a combination of 
biophysical, socioeconomic, institutional, technological, and demographic variables. The 
main effects of LULCC in the Finchaa catchment are a decrease in agricultural yield, loss of 
biodiversity, prolonged aridity and drought, land and soil degradation, and a decrease in 
water resources. The long-standing gap between catchment area supply and demand for 
both land and water has been exacerbated by socioeconomic changes and population 
growth. Risk management will require watershed management policies that are more holistic 
and interconnected. 
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Introduction 
      Among the many factors that affect biophysical systems at all sizes, land use/land 
cover change (LULCC) is a significant one. Because of the ways in which land use and land 
cover (LULC) are linked to the most fundamental features and processes of our world, they 
are a primary source of anxiety. Land productivity, biodiversity, land degradation, the 
hydrological cycle, and environmental conditions are all processes that are affected by these 
factors [1]. Reduced ecosystem services are a direct result of LULCC, which disrupts natural 
systems' ability to provide for human needs and increases the vulnerability of people and 
resources to climate change, socio-economic crises, and political problems [2]. There has 
also been a rise in both domestic and international LULCC [3]. Historically, sustainable 
development and poverty alleviation initiatives have had less sway due to a lack of 
acknowledgment of the value of the natural environment for human well-being [4]. 
Nonetheless, there is a strong connection between natural environments and poverty, which 
has a knock-on effect on sustainability and development. The sustainability of the farming 
system, food production, revenue, and employment are all threatened by the depletion and 
degradation of land and water resources [5]. The poor, who depend mostly on land and 
natural resources, will suffer greatly as a result. Estimates put the annual cost of agricultural 
and pasture land degraded by LULCC and poor land management practice at $300 billion 
USD [6]. The highest proportion of the worldwide price tag for degraded land is borne by 
Sub-Saharan Africa (22%). Women and the poor are disproportionately affected by land 
degradation, according to a research from the Food and Agriculture Organization (FAO) [7]. 
Research into LULCC has exploded in popularity in recent years [8]. It has been 
demonstrated through research that LULCC has been particularly severe in the Ethiopian 
highlands. To meet the needs of a growing population, a number of factors, including 
intense agricultural expansion, urbanization, and the harvesting of forest products, are 
speeding up with time [9]. Yet, some research have found contradictory tendencies in 
LULCC. In the Somodo watershed, which is located in southwestern Ethiopia, for instance, 
agricultural land has decreased while grassland has expanded [10]. Grassland and shrubland 
have been expanding in the northern highlands, as observed [11]. 

Anthropogenic and biophysical causes combine to set in motion the LULCC process 
[12]. Social, economic, biophysical, and political issues all play a role as LULCC catalysts 
[13]. It has been reported that the key drivers of LULCC in Ethiopia are the human and 
animal population, different agricultural practices, urbanization, the occurrence of drought, 
and poor land-use planning. Yet, causes and effects might vary greatly from one region to 
the next. In the Afar and Somali regions, for instance, overgrazing and charcoal production 
are major causes, while in the southwest of the country, forest grabbing for investments 
(coee and tea plantation and, agriculture), settlements, poor law enforcement, shifting 
cultivation, and land tenure policy have been major causes. On the other hand, there is a 
dearth of knowledge and understanding about the complexity of the change drivers and their 
ramifications in some areas. Insufficient research has been conducted at the national level to 
determine the full scope of the causes, effects, and implications of LULCC. A wide range of 
biophysical, socioeconomic, and environmental stresses are exerted on the upper Blue Nile 
Basin, which is home to a wide range of natural resources, including land, vegetation, genetic 
diversity, and water [14]. The rate of soil erosion and nutrient depletion, as well as the 
fluctuation of the climate, are among the key stressors, together with the increasing human 
population and the resulting destruction of habitats and other natural resources. Thus, the 
recent intense LULCC has been a challenge to the planned sustainable development in 
various parts of Ethiopia, including the study area. Ethiopia has an abundance of water, 
although this has had only a minor impact on the growth of the country's economy. Since 
water resource development is so crucial to the country's economic and social growth, it is a 



                         International Journal of Agriculture & Sustainable Development 

Oct 2022|Vol 4|Issue 4       Page |153 

top priority [15]. Yet, the efficiency with which future and current construction projects are 
administered will determine the water resources' usefulness in advancing sustainable 
development. The majority of Ethiopia's hydroelectric power, sugar, and ethanol all come 
from the Finchaa watershed. In contrast to neighboring regions, however, the catchment has 
seen comparatively little multidisciplinary and independent study. Finchaa catchment in 
LULCC has only had a small number of research [16]. Without taking into account the 
actual spatio-temporal LULCC, Ayana et al. [17] conducted a study on the effects of land use 
and management techniques on surface runoff and sediment output using hypothetical 
scenarios. Tefera and Sterk [18] primarily focused on studying the LULCC induced by 
hydroelectric dam building in the Finchaa watershed, while Kebebew [19] evaluated the state 
of the LULCC in the Finchaa catchment by considering solely downstream of the reservoirs. 
The mechanisms behind this, such as spatial-temporal LULCC and their impact on the entire 
Finchaa watershed, are unknown, however. Consequently, it is necessary to have a spatially 
accurate and up-to-date time series of land resource information for the catchment. To 
better understand the causes, mechanisms, and patterns of the changes at indi erent spatial 
and temporal scales[20] is the most essential activity in LULCC studies. Comparing and 
contrasting different parts of the watershed to determine which are at risk or amenable to 
change requires an understanding of the spatio-temporal trends of LULCC within a larger 
socio-ecological system at watershed scale. This allows for more proactive measures to 
maintaining water resources and land health by providing detailed insight into the status of 
the watershed and providing evidence-based interaction between the local people and the 
watershed. This research aims to learn more about the LULCC in the Finchaa catchment 
and how its magnitude and temporal variability affects the area. The specific goals of this 
research are to I examine the transitions between landuse and landcover categories and the 
LULCC associations with slope, (ii) identify the major driving factors and explore the 
implications of the LULCC in Finchaa catchment, and (iii) analyze the changes in 
landuse/landcover over the last 30 years (1987-2017). 
Materials and Methods 
Study Area 

The research took place in the Finchaa sub-basin of the upper Blue Nile Basin in 
Ethiopia's Oromia Regional State. The coordinates for the Finchaa sub-basin are 9°100–
10°000 North, 37°000–37°400 East, with a total area of 3,781 square kilometres. The 
catchment has a wide range of elevations, from 851.2 to 3213 metres above sea level, giving 
it a highly topographic profile. There are extensive irrigable fields downstream, as well as 
great hydropower potential, in this region [21]. Fincha, Amerti, and Neshe are the three 
watersheds that make up this sub-basin. The detail studyarea description is shown in Figure 
1. 

The ecosystems and land uses in the Finchaa sub-basin are important to the national 
economy. They include forest, commercial agriculture, wetland, and lake ecosystems. 
Because of its downstream relationship to the Nile basin, the sub-basin has also been a focus 
of international and national hydro-politics. Annual precipitation in the Finchaa catchment 
varies from around 1367 mm to about 1842 mm, with the lower amounts occurring in the 
northern lowlands and the higher amounts above 1500 mm happening in the southern and 
western highlands of the sub-basin. The watershed receives its majority of its annual rainfall, 
around 1604 millimetres, throughout the months of June, July, and August. [22]. The 
monthly average temperature in the watershed ranges from 15.50 to 18.62 _C. 
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Figure 1. Map of the study areas 

Data Sources and Methodology 
Spatial Data 

This investigation made use of Landsat pictures, a DEM, and data collected in the 
field. Using a 30 m DEM from the USGS's Earth Explorer 
(https://earthexplorer.usgs.gov/), the watershed was defined, and slope maps were created, 
for the area under investigation. In-field observations were made with a Global Positioning 
System (GPS), Landsat composites, and Google Earth to acquire Ground Control Points 
(GCP) for use in image classification and accuracy testing. For this study, we used USGS 
images from https://landsatlook.usgs.gov/, namely two sets of Landsat Thematic Mapper 
(TM) imagery and one set of Landsat 8 Operational Land Imager and Thermal Infrared 
Sensor (OLI-TIRs) image (Table 1). Whole photos for a given year covering the entire 
catchment on the same day were not available for the watershed due to extent and quality 
concerns. As a result, the Landsat photos for the same season were gathered using a variety 
of different pathways and rows. The acquisition dates were chosen during the same season 
each year to lessen the impact of seasonal changes in vegetation pattern and distribution. 
Table 1. Landsat’s scenes, sources, and specifications used in this study. 

Acquisition  
Date 

Satellite Image Sensor 
Spatial 

Resolution 
Used Bands Sources 

April 2000  Landsat TM  TM  30 1–5, 7  USGS 

April 2022 Landsat8 OLI  OLI-TIRs  30, 15  1–7, 9, 8 *  USGS 
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Path/row = 150/035, 150/036, 150/037. * In the table above, a spatial resolution of 15 m is 
used for the panchromatic band 8. TM: Thematic Mapper; OLI-TIRs: Operational Land 
Imager and Thermal Infrared Sensor. 
Socio-Economic Data 

To gain a better grasp of local resources, resource utilisation, citizen participation in 
policymaking, and community perspectives on emerging trends and pressing concerns, we 
conducted a socioeconomic study [23]. Socioeconomic surveys can be conducted in a 
number of ways depending on their intended use, but in this case, researchers relied on key 
informant interviews (KIIs) and focus group discussions (FGDs). Three typical sub-
watersheds were chosen for FGD and KII based on agro-ecological parameters and 
proximity to reservoirs in the catchment. The municipalities of Horro, Jima Geneti, 
AbayChomen, and Guduru are all included in the areas serviced by these smaller watersheds 
(Figure 1). The corresponding author and several agricultural specialists conducted the 
fieldwork. Seven focus group discussions were conducted altogether; two in the upper and 
lower sub-watersheds, and three in the middle. Seven community members are chosen to 
take part in each FGD. Experts in Natural Resources management, land use administration, 
and Environment and climate change participated in 22 KIIs that were held at the District 
and Zonal levels. 

Each municipality's useful GIS data was compiled. Both the KIIs and the FGDs 
made use of free-form questions to elicit responses from participants about the most notable 
changes in LULC and its associated biophysical, institutional, socioeconomic, and 
demographic factors. In order to learn about the management's point of view, assess the e 
orts made towards resource management, and identify the obstacles they face, they 
organized discussions on the practices and rules that govern land management in their 
region. Land deterioration was also discussed, along with the most pressing problems that 
need fixing. The goals of the interviews and discussions were to learn about the history and 
current state of LULCC, to pin down the underlying causes of the shifts, and to assess the 
effects of LULCC on local economies, communities, and ecosystems. Transect walks, field 
walks, and informal interviews with individuals in their farms/fields were utilized to gain a 
better understanding of the most prominent issues seen in the watershed and resource 
management practice. Farmers were questioned about the altered terrain and the factors that 
led to the changes. The farmers were also prompted to talk on how the shifts in their 
environment, livelihood, and lifestyle had affected them. Farmers were also questioned on 
the societal and economic effects of their farming practices on the shift in land usage. The 
situation in the watershed was observed in the field using pre-made checklists, and key areas 
were photographed to supplement the study. Table 2 shows the eight groups of land 
use/land cover types that were determined with the help of field observation, information 
from specialists, and an examination of documentation from national and regional agencies. 
This study's LULCC analysis is based on these categories. 
Table 2. Description of land use/land cover (LULC) classes identified in Finchaa 
catchment. 

LULC Classes  Description 

Agricultural 
land 

Areas used for crop cultivation (both annual and perennial), fallow plots, 
scattered rural settlements, some pastures and plantations around settlements. 
Sparsely located settlements and roads constructed from earthwork were 
included here as it was difficult to separate them from agricultural lands. 

S Forest 
Sparsely located trees with brush and shrub form types, bushes, woodlands, 
grasses, mixed rangelands, and transitional forests (less dense forests) were 
included. 
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T Forest 
Areas covered with a dense growth of trees that include: evergreen forests, 
mixed forest land, deciduous forest lands. Plantations of indigenous specious 
of trees were also considered here. 

Urban and 
built-up 

Residential, commercial and services, recreational sites, public installation, 
infrastructures. Due to their similar reflectance, bare lands and rock query sites 
were considered here. Roads made from pavement are also included in this 
category. 

Soil Sand, bare soil, baren soil. 

Water bodies Areas that are completely inundated by water like lakes and major rivers. 

Snow Area under snow. 

Data Analysis 
Using the use of Landsat image processing, classification, and post-processing, we 

were able to analyze and quantify the spatio-temporal dynamics of the LULC from 1987 to 
2017. Geometric and radiometric corrections were performed during pre-processing of 
images before analysis. The image processing for LULC classification in this study only made 
use of six TM spectral bands (bands 1-5 and 7) and eight Landsat 8 OLI spectral bands 
(bands1-7 and 9). Using the use of the Principal Component Analysis (PCA) tool in ERDAS, 
a 15-m spatial resolution layer (band 8) from OLI was combined with multispectral bands 
with a 30-m spectral resolution. The OLI picture was just pan-sharpened so that it would be 
easier to see details and understand what was going on. 

Each pixel was assigned a category based on the known ground truth using the 
maximum probability parametric rule. In order to accurately classify images using maps with 
fewer than 12 categories, 50 samples are required, as stated in [24]. Following the advice, 50 
reference samples were used for picture classifications across all classes. Data for the two 
years (1987 and 2002) were gathered from Google Earth as points of reference. The 
following are the broad steps taken throughout the picture classification process. At first, we 
had to pick some places to do our training [25]. The processed photos were utilized to build 
polygons for a certain spectral class, allowing for the polygon sampling approach to be used 
to sample the training sites. During this procedure, we used a variety of banding schemes, 
image enhancing techniques, and color compositions to isolate and analyse surface elements 
in the photos. Each band is a group of data files for a certain region of the electromagnetic 
spectrum, and their combination was chosen based on their usefulness in detecting the 
study's aspects. Histogram analysis was used to assess the retrieved signatures from the 
sample, and several approaches were tried until a unimodal distribution was attained. Then, 
all signatures inside a given class were selected and combined into a single one. Cumulated 
(merged signature) data was utilized in a supervised classification process to generate a land 
cover map. The images were classified based on their contents using the class signatures 
generated from the training data sets. 
Accuracy Assessment 

Generating a collection of points from the classified image and comparing their 
locations with those of points whose locations were established by the ground truth data and 
matching coordinates from the original maps was the method used to evaluate the accuracy 
of the classification [26][27]. The data sets used here were sampled at random. A group of 
points was picked at random. Accuracy was not evaluated using data utilized during classifier 
training. As a result, an error matrix was constructed using data from 460 randomly 
generated locations [28]. The 2017 points of reference were gathered from the 
corresponding Google Earth, original Landsat photos, earlier reports and maps, and field 
observation for 1987 and 2002. We were able to calculate the historical LULC with the help 
of data gleaned through interviews and focus groups [29][30]. This data included the 
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locations of forests, pasture land, and water supplies. High-resolution Google Earth was 
utilized to better identify the land-use classes than the low-resolution historical maps for 
1987 provided from the Ethiopian Mapping Agency. Other research utilized a similar 
method in areas of Ethiopia [31] and Italy [32] where historical maps were inadequate. The 
overall accuracy, user accuracy, producer accuracy, and kappa statistics were calculated from 
the error matrix [33]. Most kappa coefficients will be between 0 and 1. Strong agreement is 
indicated by a kappa value of 0.8 or above, moderate agreement by a value between 0.4 and 
0.8, and poor agreement by a value of 0.3 or lower, as stated by Viera and Garrett [34][35]. 
Land Use/Land Cover Change Analysis Once the land cover classifications were derived, 
Arc Geographic and Information System (ArcGIS10.1) was used to prepare the LULC maps 
of 1987, 2002, and 2017. Then, the areas of the LULC classes were calculated from the 
maps, and analysis of LULCC and rates of changes were computed. Total LULCC between 
the two periods is calculated as follows: 

Total LULC Gain/loss = Area of the final year - Area of the initial year  
 (1) 

Percentage of LULC Gain/loss =
(Area of the final year − Area of the initial year)

Total area of the catchment 
 

 (2) 
A LULC matrix was developed by ArcGIS to analyze the LULC inter-category 

transitions and examined the catchment experience in LULC transitions. The matrix was 
developed for the1987–2002and 2002–2017 transitions. Through the matrix, the area of 
gains, losses, persistence, and swapping between the LULC types are calculated. The terrain 
slope–LULC relationship was developed by overlaying the slope generated from the DEM 
of the study area and the classified maps. Then, the distribution of LULCC with slope was 
quantified. The result was helpful to see how continuous demand for agricultural land had 
brought changes in LULC of higher slope areas. The socio-economic data from the KIIs 
and FGDs were analyzed thematically with the focus on the past and current conditions of 
LULC, drivers, and implications of the LULCC. The ranking was used to identify the most 
common drivers and consequences of the changes. 
Result and Discussion 

Table 3 shows the confusion error matrix and Kappa statistics for the accuracy of 
classifying the LULC maps from 1987, 2002, and 2017. Overall, the accuracy of the 1987 
map was 81.7%, the 2002 map was 85.4%, and the 2017 map was 89.7%. Kappa values 
ranged from 0.78 to 0.83 to 0.88 for the 1987, 2002, and 2017 maps, respectively. According 
to the Kappa figures, the years 2002 and 2017 had the highest degree of agreement, while 
1987 had the best degree of agreement. 

Table 3. Accuracy of land use/land cover maps for 2000, 2022. 

2
0
0
0
 

LULC 
Built 
up 

Soil Crop 
S 

Forest 
T Forest Water Snow 

Row 
Total 

User 
Accuracy 

(%) 

Built up 92 8 0 0 0 0 0 100 92.00 

Soil 6 89 5 0 0 0 0 100 89.00 

Crop 0 1 87 8 4 0 0 100 87.00 

S Forest 0 0 9 84 6 1 0 100 84.00 

T Forest 1 0 4 6 89 0 0 100 89.00 

Water 0 0 0 0 0 93 7 100 93.00 

Snow 0 0 0 0 0 4 21 25 84.00 

Column Total 99 98 105 98 99 98 28  
 

Producer's 92.93 90.82 82.86 85.71 89.90 94.90 75.00  
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Accuracy (%) 

Overall 
Classification 
Accuracy (%) 

88.8               
  

2
0
2
2
 

LULC 
Built 
up 

Soil Crop 
S 

Forest 
T Forest Water Snow 

Row 
Total 

User 
Accuracy 

(%) 

Built up 88 12 0 0 0 0 0 100 88.00 

Soil 4 91 5 0 0 0 0 100 91.00 

Crop 0 2 89 7 2 0 0 100 89.00 

S Forest 0 0 9 84 6 1 0 100 84.00 

T Forest 1 0 3 4 92 0 0 100 92.00 

Water 0 0 0 0 0 95 5 100 95.00 

Snow 0 0 0 0 0 2 23 25 92.00 

Column Total 93 105 106 95 100 98 28  
 

Producer's 
Accuracy (%) 

94.62 86.67 83.96 88.42 92.00 96.94 82.14  
 

Overall 
Classification 
Accuracy (%) 

89.92               
  

Analysis of Finchaa Catchment's Land Use and Land Cover Changes across Time 
and Space The watershed is dominated by agricultural areas, which accounted for 36.27 
percent of the area in 1987, 42.64 percent in 2002, and 51.86 percent in 2017. (Table 4). 
Commercial farms and urban and built-up regions both saw growth between 1987 and 2017. 
In 1987, 0.12% of the total area was urban and built-up; by 2002, 0.27 percent; and by 2017, 
1.91% of the total area was urban and built-up. Wetlands and bodies of water occupied 3.57 
percent and 4.31 percent of the watershed, respectively, in 1987; 3.12 percent and 5.94 
percent, in 2002; and 2.49 percent and 6.0 five percent, in 2017. Sugar cane cultivation first 
appeared in the catchment's lowland parts around 1994, following the development of a 
sugar factory there. Around 4577.5 hectares (1.38%) of land was used for commercial 
farming in 2002. The sugarcane plantation was expanded so that the firm could meet its goal 
of doubling sugar output. In addition, the new plantation was set up in the area just below 
the Neshe hydropower station in about 2012. The farm was increased in 2017 to a total area 
of 18372 hectares (5.55 %). Land used for forest, range, and pasture made up 21.55 percent, 
20.63 percent, and 13.55 percent of the catchment in 1987, respectively. In both 2002 and 
2017, the majority of LULC was comprised of forest, range, and grazing land. The greatest 
reduction occurred in forest and rangeland between 1987 and 2002 and between 2002 and 
2017, whereas the greatest gain occurred in agricultural land. The LULCC increased more 
rapidly between 2002 and 2017 than it did between 1987 and 2002. Figure 2 depicts the 
prevalence of LULCC throughout a 30-year time span. Continuous decline was seen in 
forested, grazing, range, and swampy areas, while continuous growth was shown in 
agricultural, commercial farm, and urban and built-up areas. 

Table 4. LULC area coverage, status, and changes between 2000 & 2022. 

LULC  
Types 

Area Change (Gain/ Loss) 

2000 2022 2000 - 2022 

sq km 
% 

Age 
sq km 

% 
Age 

sq km % Age 

Built Up 482.36 2.8 2204.73 12.7 1722.37 357.07 
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Soil 5219.62 29.9 1458.08 8.4 -3761.54 -72.07 

T Forest 789.22 4.5 1068.49 6.1 279.27 35.39 

S Forest 3134.39 18.0 5370.88 30.8 2236.49 71.35 

Crops 505.43 2.9 1386.00 8.0 880.56 174.22 

Water 231.28 1.3 598.37 3.4 367.09 158.72 

Snow 7065.52 40.5 5341.26 30.6 -1724.26 -24.40 

Total 17427.81 100 17427.81 100     

 
Figure. 2: LULC distribution 

Pathways of Change and Transition Across LULC Domains 
Finchaa saw complex LULC transitions, as evidenced by the LULCC analysis. 

The LULC matrix was created for the decades between 1987 and 2002 and between 
2002 and 2017. Areas gained, lost, maintained, and traded between LULC kinds were 
determined using the matrix (Table 5). The rangeland class experienced the greatest decline 
between 1987 and 2002, followed by the forest land class and the grazing land class. The 
least damage was found in urban and built-up areas, followed by water and swampy terrain. 
Rangeland had the biggest loss, followed by forest land and agricultural land, while urban 
and built-up areas showed the lowest loss, followed by marshy area and water bodies, 
between 2002 and 2017. Agricultural land, followed by rangeland and forest land, had the 
greatest increase between 1987 and 2002, while urban and built-up land, followed by water 
bodies, showed the smallest increase. Waterbodies, marshy areas, and urban and built-up 
areas had the lowest growth rates between 2002 and 2017, followed by agricultural land, then 
rangeland, and finally grazing land. 

Table 5. LULC change transition matrices for 2000-2022. 

LULC Classes 
To 2022 

Built 
Up 

Crops 
S 

Forest 
Snow Soil 

T 
Forest 

Water 
Grand 
Total 

Loss 

F
ro

m
 2

0
0
0
 

Buit Up 235.38 120.33 105.01 4.64 15.41 0.49 1.03 482.29 246.91 

Crops 102.50 241.45 147.38 4.60 5.27 3.92 0.26 505.37 263.92 

S Forest 192.36 460.18 2237.50 7.15 20.20 219.13 1.27 3137.79 900.29 

Snow 588.57 14.22 211.50 5260.36 458.74 86.55 443.38 7063.33 1802.97 

Soil 1060.59 545.36 2398.69 61.26 926.84 142.26 83.74 5218.74 4291.90 

T 
Forest 

6.80 4.25 239.86 1.06 1.41 533.51 2.30 789.19 255.67 

Water 19.41 0.06 30.58 2.10 30.07 82.59 66.29 231.11 164.82 

Grand 2205.62 1385.85 5370.51 5341.17 1457.94 1068.46 598.27 17427.81  

0.00
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2000.00
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2000 2022
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Total 

Gain 1970.24 1144.40 3133.01 80.81 531.10 534.94 531.98     

The diagonals (written in bold) indicate area of land that remained unchanged for each class 
during the transition. The net persistence of the LULC during 1987–2002 and 2002–2017 is 
presented in Figure 4. 

 
Figure. 4: LULC Persistence 

The largest net change to persistence ratio for the study periods of 1987–2002 and 
2002–2017 was found for the diagonals of each class, urban, and built-up area. The LULC 
class with the highest net change to persistence ratio is the least persistent one. Urban and 
built-up areas had the lowest persisting LULC class in the Finchaa catchment, followed by 
rangeland, while agricultural land and grazing land had the highest persisting LULC class. 
For the period from 2002-2017, the LULC classes with the lowest persistence were urban 
and built-up areas and commercial farms, whereas the LULC classes with the highest 
persistence were water bodies and agricultural lands, in that order. 
Conclusion 

Satellite image interpretations have yielded quantifiable spatial and temporal evidence 
demonstrating that Finchaa has suffered considerable LULCC since 1987. Rangeland, 
grazing grounds, and swampy area all shrank between 1987 and 2017, whereas agricultural 
land, commercial farm land, and urban and built-up areas all expanded. Both the change 
trajectories and the transition matrix used to evaluate the flow of information between 
categories in LULC systems shed insight on the most important dynamics and internal 
transformations that occur within these systems. The ratio of net change to persistence is 
highest in urban and built-up regions and lowest in agricultural land throughout the period 
between 1987 and 2002. In general, the least stable LULC classes have the highest net 
change to persistence ratios. The spatial distribution of LULCC demonstrates that 
agriculture and settlement have been expanding, while forest and swamp areas have been 
shrinking, along all slopes. No slope type has escaped the reduction in rangeland; only the 
hilly slope types have fared better. Major drivers of LULCC have been recognized as 
agricultural expansion, urbanization and infrastructural development, timber and 
woodworks, resettlement, unregulated grazing, and insufficient environmental 
considerations. Human actions have environmental, social, economic, biophysical, and 
institutional consequences, all of which contribute to LULCC. The principal impacts of 
LULCC experienced by the community are the decrease in agricultural productivity, the loss 
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of biodiversity and habitat, the poor and declining profitability of farmers, the degradation of 
land and soil, the depletion of water resources, and the prolonged aridity and drought. 
Important natural resources, such as dwindling forests, are in jeopardy due to the increasing 
cultivation of land on steep slopes and in flood-prone areas. Urgent action is needed to 
address these issues of land and soil degradation. What's more, natural resources 
management's longevity is crucial to the catchment's three reservoirs. This study's qualitative 
and quantitative analysis of the LULCC's motivations and impacts could aid decision-makers 
by providing data for integrated watershed management and planning. The catchment's 
natural resource is important and should be protected with the rehabilitation of the degraded 
lands. This helps mitigate some of the negative outcomes brought on by the catchment's 
complicated environmental dynamics. 
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