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mong the many problems that cost growers money, plant stress is a major one. 
Applications of the traditional methods for identifying stressed plants are limited by 
the time and effort required to perform the identification. Effective, quick solutions 

are needed immediately. Changes in precision agriculture using deep learning and big data are 
being sparked by advancements in cutting-edge sensing and machine learning techniques. In 
this paper, we surveyed recent advances in deep learning techniques for use in analyzing images 
for the diagnosis of crop stress. We compiled recent sensor technology and deep learning 
principles used for plant stress phenotyping. Additionally, we surveyed several deep learning 
applications/functions that are intertwined with plant stress imaging, such as classification, 
object detection, and segmentation. Additionally, we summed up the issues plaguing plant 
phenotyping today and talked about potential future directions for improvement. 
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Introduction 
A significant drop in crop yield and quality can be attributed to plant stress [1]. Rapid 

and robust implementation of precision agriculture in crop measurement requires accurate 
detection and diagnosis of plant stress. Optical imaging methods for plant disease detection 
are currently the subject of extensive research. Optical imaging is more advanced than 
traditional methods using visual scoring because it can rapidly and non-contact measure 
changes in plant physiology due to abiotic or biotic stressors. Digital, fluorescence, 
thermographic, LIDAR, multispectral, and hyperspectral imaging methods have all been used 
for crop stress detection [2]. Depicts the most widely used optical sensors for detecting plant 
stress. 

To identify plant diseases, digital imaging sensors gather data in the visible spectrum, 
acquiring images in red, green, and blue (RGB) color space. These photographs reveal details 
about the plant's anatomy, including its canopy health, leaf color, leaf texture, leaf size, and 
leaf shape [3]. Differentiating between a healthy plant and one with symptoms can be difficult, 
but color and texture differences can help. RGB, LAB, YCBCR, and HSV color spaces are 
common ones [4]. Texture can also be described in terms of other image characteristics like 
contrast, homogeneity, dissimilarity, energy, and entropy [5]. Simply put, these pictures have 
been mined for quantitative diagnosis features that will help distinguish between sick and 
healthy plants. 

Images of infrared radiation between 8 and 12 m, obtained by thermal imaging sensors, 
are frequently used to make predictions about plant temperatures. The temperature of infected 
plant tissues changes in response to infection and is correlated with the effects of pathogens. 
Conversely, it appears that temperature variation has a counter-effect on the rate of 
transpiration [6]. In other words, as a result of the stress brought on by the infection, the 
stomata close, and the transpiration rate drops, leading to a rise in leaf temperature. 
Consequently, thermal imaging sensors could detect infectious diseases based on these 
changes. The thermal image displays the object's temperature as a false color for each pixel. 
[7]. Using a fluorescence image sensor and LED or laser light, the photosynthetic electron 
transform may compare the photosynthesis rates of stressed and healthy leaves. The optimum 
wavelength under normal conditions is 685 nm. The fluorescent wavelength at which 
photosystem II emits chlorophyll (PSII). Chlorophyll fluorescence emission patterns may shift 
in stressed plants, which can be seen in fluorescence imaging [8]. 

Multispectral imaging sensors are so-called because they capture data from a wide 
range of wavelengths using optical sensing technologies. Images from the visible to the near-
infrared range are typically extracted by multispectral imaging sensors [9]. A decrease in 
chlorophyll and the ability to absorb visible light is a common response of stressed plants, 
leading to an increase in visible reflectance. As a result of these alterations, the leaf's NIR 
reflectance will decrease [10]. Although these sensors can only detect diseases in a limited 
range of wavelengths and are sometimes unable to assess the severity of infected plants, drones 
equipped with multispectral image sensors have been routinely employed for remote plant 
disease detection. 

Supervised methods, which use training data to refine an algorithm, have emerged as 
a favorite among those used for analyzing images. Feature extraction, stress diagnostic 
classifiers, and shape segmentation are all examples of such techniques [3]. Convolutional 
neural networks (CNNs) use hundreds of interconnected layers to process images in batches 
of varying sizes using convolution filters [11]. Despite these early triumphs, advancements in 
core computing systems have shifted the spotlight to deep convolutional networks. When 
large datasets are used, deep learning exhibits acceptable performance in the agricultural sector, 
both in terms of accuracy and efficiency [12] [13]. The combination of deep learning and big 
data has been suggested as a viable future strategy for plant phenotyping. Disease identification 
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and fruit classification are only two examples of the kinds of field-based jobs where CNNs 
have proven to excel [14]. The promising results of using deep learning in phenotyping tasks 
like leaf morphological classification motivate more study in this area. The aims of this work 
are, in brief:  

1. explain how deep learning works in the context of an image-based app for 
diagnosing crop stress. 

2. Conduct research into the difficulties presented by deep learning for crop stress 
imaging. 

3. elucidate potential future avenues that may aid in overcoming obstacles in plant 
phenotyping tasks. 

There are two main differences between MLP and CNN. To begin, the weights of a 
CNN architecture are shared with a network when the architecture is used to execute 
convolutions on an input picture. Thus, it is not necessary to train each detector individually 
if the same object appears in many locations within the same image. This causes exactly as 
much inconsistency in the network's translation of input images. Therefore, there is less of a 
need to memorize parameters[15][16]. 

Two, the pooling layer is the primary differentiator between MLP and CNN. Layers 
that utilize a permutation invariant function in convolutional neural networks (CNN) 
supplement their input with pixels from their surrounding area [17] [18]. This could cause 
some rendering invariance to occur [19]. Depicts a common CNN architecture used for 
determining strawberry ripeness using hyperspectral images. 

Convolutional techniques on picture subsets yield feature connections [20].  
Classification, segmentation, object detection, etc. are just some of the many areas where the 
CNN architecture has been put to use [21].  
Related Studies 

The five convolutional layers in AlexNet make it one of the simplest pre-trained 
networks for image classification [22]. Hyperbolic tangent, the most popular choice in CNNs 
[23], is AlexNet's activation function. Deep pre-trained networks followed, with the 19-layer 
VGG19 emerging victorious in 2014's ImageNet competition.  The 2015 ImageNet 
competition was won by a network architecture constructed entirely using ResNet 
components. GoogLeNet is a 22-layer neural network created by a researcher (2016) that 
makes use of the inception blocks [24]. Using inception blocks has the potential to boost 
training efficiency while reducing the overall number of parameters [25]. After 2014, there was 
no further improvement in performance on ImageNet, and attributing this improvement to 
more complex architectures is erroneous [26]. However, with the deeper networks, plant stress 
detection is unnecessary, resulting in a smaller data set and less RAM usage. Hence, crop stress 
images can still be processed using AlexNet and other comparable simple approaches like 
VGG16. 

Analysis of images of crop stress often requires segmentation. Once the CNN has 
classified an image's pixel, it can present that pixel with patches extracted from surrounding 
pixels [27]. When this is done, the entire input image can be properly processed by the 
convolutional network [28]. 

The widespread development of GPUs may be responsible for the meteoric rise of 
deep learning applications [29]. The Graphics Processor Unit's (GPU) ability to do 
computations in parallel is a significant advantage over a standard central processing unit 
(CPU) (CPU). OpenCL is a framework for writing code that runs on graphics processing units 
(GPUs), which unifies the various implementations of the GPU's general computing 
application programming interface (API).processor-graphics processing unit heterogeneous 
platforms. When compared to the CPU, deep learning runs much more quickly on the GPU 
[30]. 
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It's worth noting that open-source software libraries contribute to the implementation 
and spread of deep learning as well. These applications allow users to exert high-level control 
over computing without having to sweat the efficiency of the underlying code. The most 
sought-after deals consist of: Caffé was created by UC Berkeley AI Research graduate students 
and has interfaces in both C++ and Python. 

The Google Brain team created TensorFlow, an open-source framework with C++ 
and Python interfaces. Theano, created by Montreal's MILA lab, is a Python interface for 
Theano. PyTorch was created by Facebook's AI Research team and offers a C++ and python 
interface. 

The dataset is smaller than those used in computer vision, with each diagnostic serving 
as a data point (thousands or millions of samples). This is why researchers should prioritize 
transfer learning for applications like these. Transfer learning makes advantage of already-
trained networks to overcome the difficulties of deep network training on large datasets. The 
extracted features can be easily integrated into preexisting image analysis pipelines, which is 
another advantage of the former approach over the latter. Still, it's not easy to zero in on the 
most effective approach [31]. This allowed the identification of multiple illnesses affecting the 
same leaf. In addition, the authors of this paper used deep learning to identify specific lesions 
and spots on 14 different plant species. The models in this research were trained with the help 
of a Google Net CNN that had already been pre-trained. Different needs required categorizing 
the images into two distinct sets [32]. The first set was designed for image classification, to 
pinpoint the cause of the symptom being observed, while the second set was dedicated to 
object detection, to single out diseased tissue in otherwise healthy tissue. The results showed 
a 12% improvement in precision over using the source photos alone. displays other research 
that has used deep learning to classify images of crop stress. 

The U-Net and the Mask R-CNN are two popular CNN segmentation structures. 
Biomedical image segmentation was the original application area for the fully convolutional 
network U-Net (FCN). Hence, a segmentation mapping may be generated immediately by 
applying U-Net forward on the entire image. Yet, implementing such a network in practice 
was still challenging. In Table 2, we compile the many ways in which deep learning has been 
used to the problem of segmenting images of crop stress[33]. 

R-CNN integrates CNN features with rectangle region recommendations. Typically, 
R-CNN will use a two-stage detection procedure. First, the system finds potential object 
regions inside an image, and then it uses those regions to extract CNN features. Next, items 
from each area are separated into their category. On the other hand, the selective search 
algorithm is hardcoded, so there is no learning procedure during the preliminary search phase. 
This may cause some interesting candidate region suggestions to be made [34]. The automatic 
detection of objects has been a primary focus of computer vision research for some time now, 
with the hopes of increasing detection accuracy and decreasing manual labor. CNN is used for 
pixel categorization in deep learning-based object detection, followed by post-processing to 
obtain object candidates. However, there are still many open questions regarding how to best 
solve problems such as label imbalance, negative detection, and efficient processing of image 
pixels, among others [35]. To rephrase, the method offers a workable approach to identifying 
the specific illness and its location in tomato plants. Recent years have seen significant 
adoption of the YOLO technique for object detection due to its ability to use a single neural 
network to both forecast bounding boxes and identify them. The YOLO algorithm first 
creates an M by M grid out of the image and then extracts m (mM) bounding boxes from 
within each of those grids. Each box's class probability is calculated by the network [36]. If the 
bounding boxes' class probabilities are greater than some threshold value, we'd use them to 
pinpoint the image's subjects. The YOLO network sometimes fails to correctly identify little 
objects in photos. It provides a quick overview of some alternative object detection uses. 
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Results and Discussion  
Digital, thermal, multispectral, and hyperspectral imagery—collectively referred to as 

"modality imagery"—have all been used in modal operations, with each modality requiring a 
different number of spectral channels and sensors (anywhere from three to hundreds). These 
sensors might employ camera feeds from the outside world to monitor crop dimensions and 
health. The digital sensors could be used effectively even in daylight. However, the wind will 
cause the crops to shift locations. In the field, it is still difficult to acquire high-quality images. 
The crops' physiological properties also evolve as they mature. 

Particularly in the case of crops infected by fungi or viruses, which cause biotic stress, 
these organisms can have significant effects on the plants' physiological responses. Stress in 
its early stages will be difficult to detect using image analysis because there will be no outward 
signs of the condition. Additionally, there is a significant lack of datasets, which hinders the 
practical application of deep learning-assisted image analysis. The PlantVillage dataset provides 
the majority of the currently available open-source images. However, one major difficulty is 
the extremely time-consuming task of ground-truth labeling. Amazon SageMaker Ground 
Truth is a service that facilitates label management and features two distinct components. 
Annotation consolidation is one option, as it brings together annotated data from multiple 
users into a single, highly accurate label. The second option is machine learning-based 
automated data labeling. This method employs AI to automatically assign labels to data 
samples. 

However, this is oversimplifying things, as both of these categories can contain 
numerous subcategories. For example, almost all of the objects in the healthy group are in 
pristine condition, with only a tiny fraction displaying signs of early stress. This could result in 
classifiers that can properly filter out healthy samples but fail to recognize the rare ones. To 
this end, we intend to annotate every conceivable class in great detail in order to train a 
multiclass deep learning system. Bayesian optimization has been proposed, but until then, the 
optimal hyperparameter settings have to be determined empirically. 
Conclusion 

The majority of the publications we reviewed used 2D imagery, such as digital or 
grayscale photographs, to depict the clinical stages. Although 2D datasets, such as 
hyperspectral pictures, are better at detecting early-infected plants, they are not compatible 
with pre-trained transfer networks that employ deep learning architectures like Alexnet, VGG, 
and Google Net. Precision disease management requires early detection of plant illness, 
especially for diseases that cannot be treated with pesticides, and this is why future research 
should focus on constructing deep neural networks suitable for 3D pictures. While it is 
possible to outsource parts of the plant stress detection analysis process (such as classification), 
doing so may not always be the best course of action, especially if additional processing steps 
(such as segmentation) are required. As far as we can tell, generative adversarial networks 
(GANs) have been the go-to unsupervised method for identifying plant stress, while 
variational autoencoders (VAEs) have not been put to much use in this area. While deep 
learning has been used for other aims in agricultural imaging, such as crop load estimate and 
harvesting, image reconstruction remains a mostly new area, particularly for LiDAR point 
cloud data. In plant stress detection, deep learning has demonstrated promising results, which, 
if applied more broadly, might speed up the emergence of precision agriculture. 
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