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s the global population grows, ensuring food production, particularly of staple crops like 
maize, becomes crucial. Maize faces challenges from diseases impacting both yield and 
quality, threatening global food security. Traditional disease detection methods are 

inefficient, prompting a shift towards computer vision and machine learning. However, data 
scarcity hinders model training. This study explores few-shot learning to address this issue. In 
the context of maize in China, leaf diseases pose a significant threat, causing substantial 
economic losses. Current research focuses on single-leaf disorders, emphasizing the need for 
advanced detection algorithms, especially for complex diseases. Additionally, accurate plant 
counting during growth stages is vital for effective management, with computer vision-based 
approaches offering promising solutions, especially with Unmanned Aerial Vehicles (UAVs). 
Object detection technology, employing both one-stage and two-stage methods, plays a pivotal 
role in agricultural research. YOLOv5s emerges as an efficient model, demonstrating success in 
various applications, including disease detection and plant counting. The study introduces a 
comprehensive methodology involving dataset expansion, Cycle GAN for synthetic data, and 
the YOLOv5s-C3CBAM model for maize disease detection. Results indicate the superiority of 
the YOLOv5s-C3CBAM model, with improvements in mean average precision (mAP), recall, 
F1 score, and precision. The study delves into model comparisons, experimental parameters, 
and disease identification accuracy. The YOLOv5s-C3CBAM model achieves 83% mAP_0.5, 
outperforming other models. Limitations, such as focusing on three diseases, are acknowledged, 
and future directions involve building a more comprehensive dataset. The study introduces 
innovations in image generation using Cycle GAN and attention processes, addressing 
challenges in disease detection accuracy. Despite limitations, the YOLOv5s-C3CBAM model 
contributes to accurate crop disease diagnosis, serving as a reference for future agricultural 
research. 
Keywords: Staple Crops, Disease Detection, Single Leaf Disorders, Unmanned Aerial Vehicles, 
Growth Stages. 
Introduction: 

As the global population continues to grow, the significance of food production 
becomes increasingly pronounced. Maize, being one of the most widely cultivated and highest-
yielding food crops globally, plays a crucial role in the global food supply. However, challenges 
arising from diseases affecting maize production pose significant obstacles to agricultural 
productivity [1]. These diseases not only directly impact maize yields but also diminish maize 
quality, thereby affecting farmers' income and global food security. Traditional methods of maize 
disease detection rely heavily on manual observation and identification, which are not only 
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inefficient but also constrained by manual expertise and skills. In recent years, with the 
advancements in computer vision and machine learning technologies, there has been a growing 
trend in utilizing these technologies for disease detection. However, these methods often 
necessitate a substantial amount of labeled data to train the model, posing difficulties in practical 
applications, especially for specific tasks like agricultural disease detection [2]. 

In the domain of crop research utilizing traditional machine-learning techniques, several 
studies have been conducted. For instance, traditional machine learning methods like Linear 
Regression, Random Forest, and Support Vector Machine were employed to assess multispectral 
imagery, enabling the estimation of nitrogen content in maize canopies. Demonstrations of 
predictive performance for large-scale maize height mapping, utilizing radar data for crop height 
retrieval technology, were presented [3]. Combined features extracted from images were used 
alongside classifiers such as Linear Discriminant Analysis and SVM for classification training. 
Convolutional Neural Network (CNN) was incorporated into plant disease monitoring, 
optimizing its parameters to significantly enhance detection speed and accuracy. It is noteworthy 
that all these studies relied on datasets of substantial volume. In this context, few-shot learning 
emerges as a new solution. Few-shot learning, a machine learning method focused on 
understanding and recognizing new categories by learning from a small number of samples, 
offers a promising solution to the challenge of data scarcity in agricultural disease detection, 
thereby improving the efficiency and accuracy of disease detection [4].  

Maize holds a pivotal role in China, serving as the primary staple grain crucial for 
sustaining livestock, aquaculture, and supplying raw materials to various industries. Ensuring the 
productivity and quality of maize is essential. However, the crop faces a significant threat from 
leaf diseases throughout its growth stages. Failure to promptly address these diseases can 
negatively impact maize quality and overall productivity. The outbreak of northern leaf blight 
(NLB) from 2012 to 2015 alone resulted in substantial losses in maize production and the US 
economy. The prevalence of maize diseases in China poses a serious threat, causing an annual 
decline in agricultural output ranging from 6% to 10%, with a 30% probability of exceeding this 
range under exceptional conditions [5]. The maize sector encounters challenges, primarily from 
rust, grey leaf spot, and blight, with blight causing larger lesions despite similar hues. Compound 
sickness, involving multiple diseases on a single maize leaf, adds complexity to disease detection. 
Current research primarily focuses on single-leaf disorders, underscoring the need for advanced 
disease detection algorithms to accurately identify complex leaf diseases in maize. Maize, a 
globally cultivated crop with significant roles in food production, fodder, and biomass fuel, 
necessitates meticulous counting during various growth stages for effective management 
strategies. Plant counting is crucial for supplementary planting, pest management, and yield 
forecasting [6].  

Traditionally, manual counting methods are employed, leading to uncertainty and time 
inefficiency due to spatial variability. To address these challenges, a computer vision-based 
approach for automatic plant counting in the field is imperative. Recent advancements in 
computer vision and artificial intelligence have facilitated accurate object detection and counting 
methods. While field robots integrated with plant detection models have shown promise, they 
are limited to low-growing crops. Unmanned Aerial Vehicles (UAVs), on the other hand, offer 
a preferred solution for taller crops like maize, providing high-resolution images and overcoming 
cloud occlusion [7]. Classical COMPUTER VISION algorithms based on concrete features 
often face challenges in complex field environments, leading to high error rates. Abstract-
feature-based methods, particularly those employing deep learning techniques like 
Convolutional Neural Networks (CNNs) and the You Only Look Once (YOLO) series, have 
demonstrated superior performance in detecting plants in intricate field conditions. The 
YOLOv5s model, known for its real-time performance and lightweight characteristics, emerges 



                            International Journal of Agriculture & Sustainable Development 

Sep 2022|Vol 4|Issue3                                                                              Page |168 

as a promising candidate for efficient plant detection, especially in UAV applications, where 
accuracy, speed, and lightweight models are crucial considerations [8]. 

Object detection technology has become increasingly integral in agricultural research, 
employing two main approaches: one-stage and two-stage methods, each differing in their speed 
and level of detail in object identification. Models like R-CNN and Faster R-CNN follow a two-
stage approach, whereas the YOLO series exemplifies one-stage object detection. For instance, 
Faster R-CNN has been enhanced for accurate diagnosis of apple leaf diseases, incorporating 
features such as the feature pyramid network (FPN) and a cascaded method, resulting in an 
average accuracy gain of 8.7%. Meanwhile, YOLOv5s has been employed to improve the 
identification of small objects, addressing issues like false negatives in apple fruit classification 
[9]. The Soft-NMS algorithm, DFP module, and RFA module were enhanced, leading to 
improvements in mean average precision, recall, and precision by 3.6%, 6.8%, and 6.1%, 
respectively. Another application involved using YOLOv5s for precise counting of red jujubes 
in orchards, achieving advancements in precision, recall, F1-score, average precision, frames per 
second, and precision metrics. Similarly, YOLOv5s was utilized for real-time detection of apple 
peel diseases, demonstrating an average precision rate of 87.2%. These examples showcase the 
successful application of object detection technology in agriculture, particularly emphasizing the 
efficiency of models like YOLOv5 in detecting crop diseases. The attention mechanism, 
incorporated into YOLOv5, enhances computer comprehension of visuals by mimicking the 
human visual system. This involves an encoder and decoder, where the decoder assigns weights 
to feature representations using an "attention map," guiding the model to focus on salient 
regions and ignore irrelevant ones [10].  
Literature Review: 

[11] introduced the PD-Net model, a comprehensive system for the precise classification 
of diseases and pests, effectively addressing challenges associated with a wide range of diseases 
and pests. PD-Net employs a convolutional block attention model, enhancing the conventional 
network model by integrating a hybrid cross-channel and spatial domain attention mechanism. 
The model utilizes a cross-layer nonlocal module to enhance multi-scale characteristic 
integration. Empirical results demonstrate PD-Net's superior performance in large-scale 
multiclass tasks for accurately identifying diseases and pests. [12] focused on improving the 
efficiency and speed of plant leaf disease identification, particularly in the context of apple leaf 
diseases. They integrated the SE attention mechanism into the Res Net network design, resulting 
in a substantial reduction in the detection error rate to 1.52%. 

In [13], the goal was to enhance the accuracy of agricultural pest and disease 
identification. They proposed the use of I_CBAM, an improved CBAM attention module that 
simultaneously merges channel attention and spatial attention. The hybrid attention module 
outperformed several convolutional neural network models in reliably and precisely classifying 
illnesses and pests. Another study by [13]. aimed at accurately identifying pests and Guangfu 
Hand disease in challenging environmental settings. They improved the YOLOv5 network 
model by incorporating the CBAM hybrid attention mechanism. This modification significantly 
increased the model's recognition accuracy, averaging 93.06%. These studies collectively suggest 
that incorporating attention mechanisms into object identification algorithms can lead to 
enhanced overall performance, particularly in disease and pest identification in agricultural 
contexts. 

To address the challenges of insufficient data for training deep learning models in the 
context of maize grey leaf spot disease, [14] proposed a technique using a cycle-consistent 
adversarial network (Cycle GAN) to create synthetic images. The generated dataset was then 
utilized to train a model for accurate disease identification. [15] employed picture synthesis 
techniques to mitigate the impact of limited data on the accuracy of digital plant disease 
phenotyping. They used a generative adversarial network (GAN), specifically a DC-GAN, to 
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create artificial training data for bacterial spot disease. The results demonstrated that the third 
training dataset generated by DC-GAN outperformed the original dataset, emphasizing the 
potential of generative adversarial networks in enhancing object recognition model training with 
limited data. 

 
Figure 1: Illustration of different disease lesions on maize leaves [16]. 

The [8] utilized the "Plant Village" dataset to illustrate four bacterial infections, two viral 
diseases, two mold diseases, and one mite-related ailment, along with images of unaffected leaves 
across 12 crop species. Various machine learning (ML) approaches such as Support Vector 
Machines (SVMs), grey-level co-occurrence matrices (GLCMs), and Convolutional Neural 
Networks (CNNs) were employed for prediction models. The study also incorporated a K-
Means Clustering (KMC) operation on real-time leaf images, achieving an overall accuracy of 
99% and 98% for rice trees and apples, respectively. Multi-class classification metrics, including 
precision, recall, and F-measure, were employed to evaluate the study's precision in a single 
symptom pool for each class. 

In [9], the authors proposed an enhanced CNN technique for rice disease detection, 
demonstrating the efficacy of deep neural networks (DNNs) in plant disease detection through 
image classification. A comparative analysis showed accuracy rates of 80%, 85%, 90%, and 95% 
for Transfer Learning (TL), CNN with TL, Artificial Neural Network (ANN), and Enhanced 
CNN with Genetic Algorithm (ECNN+GA) techniques, respectively [17]. The study in [18] 
highlighted limitations in identifying rice leaf disease due to image backgrounds and acquisition 
conditions. Evaluation of Transfer Learning (TL) models for rice leaf disease detection, 
including frozen layers and fine-tuning methods, revealed exceptional testing accuracy for 
DenseNet169 (99.66%) and Xception (99.99%). 

In [19], the authors introduced Ant Colony Optimization with Convolutional Neural 
Network (ACO-CNN), a novel DL technique for disease detection. ACO assessed disease 
diagnostics, and the CNN classifier enhanced feature extraction, outperforming C-GAN, CNN, 
and SGD models in terms of accuracy, precision, recall, and F1 score. The study by [20] 
presented the PPLCNet, a DL model with dilated convolution, a multi-level attention 
mechanism, and Global Average Pooling (GAP) layers. The model achieved recognition 
accuracy and F1-score of 99.702% and 98.442%, respectively, using novel weather data 
augmentation and a lightweight CBAM attention mechanism. In [21], an effective CNN model 
was proposed for categorizing tomato leaf diseases, achieving an accuracy of 96%. The 2DCNN 
model with 2-Max Assembling covers and fully connected layers outperformed SVM, VGG16, 
Inception V3, and Mobile Net CNN models. [22] employed Model Engineering (ME) to 
enhance feature discrimination and processing speed. SVM models, including dilated learning, 
outperformed the traditional ResNet-18 design, achieving an average accuracy of 98.5% for leaf 
disease recognition models. 

The ensemble classifiers in [23] achieved a top ensemble classifier accuracy of 96%, 
surpassing recent state-of-the-art DL techniques. [24] proposed a hybrid DL approach for the 
early detection and classification of tomato plant leaf diseases, combining CNN, Convolutional 
Attention Module (CBAM), and SVM, outperforming other DL approaches. In [25], the authors 
obtained mAP and accuracy values of 98.10% and 99.97%, respectively, for plant leaf disease 
detection using the publicly available Plant Village Kaggle dataset. [26] proposed an aggregated 
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loss function combining triplet and cross-entropy loss with MobileNetV2, achieving improved 
accuracy in plant disease classification. [27] introduced a DL approach for ginger disease 
detection, achieving a test accuracy of 95.2%, providing a fast and deployable solution for early 
disease detection. 

[28] developed a DL model using convolutional networks for classifying plant diseases, 
achieving an accuracy of 99.5% and a mAP, precision, and recall of 65%, 59%, and 65%, 
respectively. [29] presented a DL-based CNN solution for classifying and distinguishing cotton 
leaf diseases, achieving training and testing accuracy of 100% and 90%, respectively. [30] 
detected various diseases using hybrid image processing and decision tree techniques, achieving 
an overall accuracy of 94.5%. [12] used a mixture of RGB and blending images for plant disease 
classification, achieving a Genuine Acceptance Rate (GAR) of 96.7%. [15] proposed a DL-based 
method for automated tomato disease detection using image segmentation, achieving an 
accuracy of 98.12%. [31] developed an autonomous DL method for detecting and classifying 
coffee plant diseases, comparing training from scratch and TL strategies, and achieving high 
accuracy rates. [32] proposed a DL-based system for tomato plant disease detection, utilizing 
Inception Net and Modified U-Net, achieving high accuracy and outperforming existing 
methods. 
Methodology: 
Data Collection: 

The initial dataset was obtained from publicly available sources, including Paddle, Open 
Data Lab, and Kaggle, resulting in 2107 authentic photographs. The dataset included images 
depicting various maize leaf diseases such as blight, rust disease, grey leaf spot disease, and 
compound diseases, along with samples of healthy leaves. 
Dataset Expansion Using Cycle GAN: 

The Cycle GAN approach was employed to address the challenge of inadequate data on 
compound illnesses affecting maize leaves. Synthetic data was generated using Cycle GAN, 
focusing on healthy leaves and three different types of images representing specific diseases, 
thus enhancing the variety of the training set. 
Cycle GAN Architecture and Training: 

The architecture and training process of Cycle GAN was detailed, emphasizing its ability 
to reliably map connections between different domains without paired data. The training process 
included four stages: output selection, training of the generator model, image generation, and 
data processing. 
YOLOv5s-C3CBAM Model Introduction: 

The YOLOv5s-C3CBAM maize leaf disease detection model with an attention 
mechanism was introduced, emphasizing its potential to accurately identify complex diseases in 
maize leaves. 
Training the YOLOv5s-C3CBAM Model: 

The model underwent training using the expanded dataset, consisting of authentic and 
synthetic images, to improve resilience and accuracy. The study highlighted the significance of 
the generated dataset in improving disease diagnosis accuracy, addressing challenges like missed 
identifications, and reducing false alarms. 
Challenges in Generating Images: 

Specific challenges were observed in generating images for grey leaf spot disease due to 
small lesions and lacking noticeable color features. The model underwent specialized training 
for 130 epochs with a batch size of 4 to address these challenges and enhance the final photos. 
Iterative Training for Image Quality: 

The training strategy involved isolating specific traits and increasing the number of 
training epochs to improve image quality, especially for intricate and challenging features. 
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Selection of Images Meeting Standards: 
A total of 150 blight images, 150 rust disease images, and 200 grey leaf spot disease 

images were selected after a detailed analysis of maize leaf disease photos generated by Cycle 
GAN. 
Composite Disease Image Generation: 

Four sets of experiments were conducted to generate visual representations of 
composite diseases, including the transition from healthy to sick leaves. Training sets A and B 
were created, with the latter aiming to enhance picture quality, especially for limited composite 
disease data. 
Testing Phase for Composite Diseases: 

The model underwent testing for 150 epochs with a batch size of 4, utilizing an evolving 
training set A and a consistent training set B. The group that utilized images of healthy leaves to 
construct composite diseases yielded the most favorable outcomes during the testing phase. This 
methodology outlines the comprehensive process of dataset expansion, model training, and 
testing for the identification of complex maize leaf diseases, combining authentic and synthetic 
data to enhance the model's accuracy and resilience. 
Results and Discussion: 

The observed phenomena may be attributed to the distinctive qualities of undamaged 
foliage, the extensive number of model iterations, and minimal disturbance during the 
conversion of the composite sick dataset into images of healthy leaves. The transformation and 
generation approach yielded superior outcomes, especially considering the unique characteristics 
of large spot and rust diseases, which facilitated effectiveness in studying the progression from 
blight and rust disease to composite illnesses. The study aimed to generate composite illnesses 
of grey leaf spots using low-resolution images, a challenge due to the relatively inconspicuous 
signs of grey leaf spot disease compared to other illnesses. Consequently, substandard composite 
images of grey leaf spots, blight, and rust were generated. During the training phase, weights 
yielding optimal results in image production were used to create the final image. After a thorough 
assessment, 150 excellently crafted photographs depicting illnesses were selected for training the 
model. Previous experiments harnessed the picture-generating capacity of Cycle GAN to 
produce images of both healthy and damaged maize leaves, along with various combinations of 
defects. A total of 100 top-notch images of robust maize leaves were successfully gathered, 
meeting all specified criteria. Figure 1 showcases a variety of leaf photographs from several 
categories, contributing to the dataset for the analysis and research of diseases affecting maize 
leaves. 

In addition to generating images of maize leaves, Cycle GAN combines statistical data 
from the original photos used to train the detection model. Three adaptive attention 
mechanisms, namely the SE (squeeze and excitement) attention mechanism, the coordinate 
attention (CA) mechanism, and the Convolutional block attention module (CBAM) mechanism, 
were employed to improve the model's performance. These mechanisms enhance the weighting 
of data from different channels and spatial dimensions, emphasizing important qualities in 
feature maps. The network design of YOLOv5s was optimized by incorporating attention 
mechanisms. Method 1 introduced an attention mechanism module into the YOLOv5 backbone 
network before the last SPPF layer, aiming to enhance the extraction of high-level 
characteristics. Method 2 integrated an attention mechanism module following the C3 module 
in the YOLOv5 backbone network to improve overall efficiency in detecting complex diseases 
affecting maize leaves.  

The image undergoes four passes through the C3 module of the backbone network 
before reaching the final SPPF layer. Each of the three Conv modules employs a 1x1 
convolution operation for dimensionality modification, and the remaining connections execute 
the two Conv modules constituting the bottleneck module. The initial 1x1 convolution 
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operation reduces the channel size by 48%, while the subsequent 3x3 convolution operation 
doubles the number of channels. To simplify the interpretation of feature data, dimensionality 
reduction is performed using convolutional kernels, and dimensionality expansion allows the 
extraction of more complex features. To address gradient vanishing, the bottleneck module 
utilizes residual connections, combining input and output to mitigate the issue. Enhancing the 
C3 module involves incorporating an attention mechanism that assigns attention weights at the 
beginning of the feature extraction process. Given its presence four times in the backbone 
network, the attention module can influence the system on four separate occasions. The 
attention weights are then used to modify the preceding attention feature maps after the C3 
module. An attention mechanism is applied after the C3 module to improve the extraction of 
feature maps at both shallow and deep levels. 

Setting up and evaluating experimental parameters involves adjusting the model and 
experimental platform parameters. The text does not provide specific details in this regard. A 
cloud server running Linux, PyTorch 1.9.1, and Python 3.7 were used for model construction, 
training, and testing. The testing employed a GeForce RTX 2080 Ti GPU with a memory 
capacity of 11,019 MiB. The training approach used a batch size of 16, resized training 
photographs to 256x256 pixels, and involved 300 iterations. The learning rate of the network 
model was adjusted using the cosine annealing decay approach, starting with an initial value of 
0.01. The system was trained to categorize objects into four distinct classes. 

Comparing the updated models to the YOLOv5s network model, each upgraded model 
exhibits varying degrees of improvement in detection accuracy. The CBAM module, integrated 
into the YOLOv5s-C3CBAM model after the C3 module, shows the highest mean average 
precision (mAP) of 83% at a threshold of 0.5, a 3.1 percentage point improvement over the 
preceding YOLOv5s network model. The CBAM mechanism, integrating both channel and 
spatial information, contributes to the enhancement. Incorporating the CBAM technique into 
the C3 module significantly boosts feature extraction performance. The YOLOv5s-C3CBAM 
model achieves higher detection accuracy compared to its predecessors. The YOLOv5s-C3CA 
model performs the best with a recall rate of 72%, indicating efficacy in detecting tiny objects 
and reducing false negatives. The CA mechanism module, considering links between different 
sites and precise positional data, enhances the model's memory capacity. 

Table 1: Model Training Details 

Parameter Value 

Training Platform Cloud server running Linux 
Framework PyTorch 1.9.1 
Python Version 3.7 
GPU GeForce RTX 2080 Ti (11,019 MiB memory) 
Batch Size 16 
Resized Training Photos 256x256 pixels 
Training Iterations 300 
Learning Rate Adjustment Method Cosine Annealing Decay 
Classes 4 (Objects to be categorized) 

The YOLOv5s-CBAM model achieves the highest F1 score, surpassing the baseline 
model by 0.98 percentage points. The YOLOv5s-C3CBAM and YOLOv5s-C3CA models 
closely follow. The YOLOv5s-CBAM model exhibits the highest precision, surpassing all other 
modified models. The trial findings suggest that the proposed enhancement models significantly 
improve the overall performance of the detection model. The main goal of the study is to 
increase the mean average precision (mAP_0.5) of the baseline model to enhance the detection 
of compound illnesses in maize leaves. The YOLOv5s-C3CBAM model achieves a mean 
average precision (mAP) of 79%, outperforming all other updated models and showing a 2.9 
percentage point improvement compared to the original model. The second-best model also 
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outperforms the original model in recall and F1 score, indicating that the YOLOv5s-C3CBAM 
model surpasses the performance of the other examined models. Table 1 illustrates the details 
of the training models. 
Precision Evaluation of Enhanced Models for Various Leaf Diseases: 

To assess the upgraded model's ability to accurately identify different diseases, we 
examined the confusion matrix of the YOLOv5s-C3CBAM model's classification predictions 
Healthy leaves demonstrate superior identification capability, achieving an accuracy rate of 96% 
and a recall rate of 93%. The accuracy rates for diagnosing blight, rust disease, and grey leaf spot 
disease were 59%, 74%, and 89%, respectively. Confusion in the matrix about blight and grey 
leaf spot disease can be attributed to the similarity in color between the lesions associated with 
these two ailments. Additionally, tiny lesions caused by grey leaf spot disease might impede the 
extraction of their contour properties, resulting in inaccurate categorization by the model. 
Therefore, efforts are needed to enhance the model's competency in classifying blight and grey 
leaf spot disease. The YOLOv5s-C3CBAM model was used to integrate three example 
compound maize leaf disease pictures, including blight and rust disease, blight and grey leaf spot 
disease, and blight, rust disease, and grey leaf spot disease. The results unequivocally demonstrate 
that YOLOv5s-C3CBAM possesses exceptional disease detection capabilities for grey leaf spots 
and blight. Diagnosing rust disease becomes challenging when the lesions are tiny and 
distributed sporadically. 

 
Figure 2: Showing four categories of samples of maize. (A) H. (B) SCLB. (C) SR. (D) GLS 

[16]. 
Comparison of Model Performance: 

The study compares two modified iterations of the original YOLOv5 model, YOLOv5m 
and YOLOv7-tiny, and the commonly employed two-stage object detection model, Faster R-
CNN, with the recently developed YOLOv5s-C3CBAM mode. The YOLOv5s-C3CBAM 
model outperforms other models with the best performance of 83% on the mAP_0.5 evaluation 
metric. Faster R-CNN exhibits the poorest performance, attributed to difficulties in 
distinguishing tiny lesions from diseases like rust and grey leaf spots. YOLOv5m and YOLOv7-
tiny, lacking the attention mechanism module, also show lower performance compared to 
YOLOv5s-C3CBAM. 

The YOLOv5s-C3CBAM model achieves the highest recall rate of 73%, enhancing 
feature extraction capacity through the CBAM attention mechanism. YOLOv5m, YOLOv7-
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tiny, and Faster R-CNN have lower recall rates. With an F1 score of 82%, the YOLOv5s-
C3CBAM model attains the greatest accuracy assessment parameter. The YOLOv7-tiny version 
surpasses the previous three versions in terms of frames per second (FPS) due to its efficient 
network design. The YOLOv5s-C3CBAM model effectively balances detection speed and 
model size, resulting in a frame rate of 53 FPS. YOLOv5s-C3CBAM is selected as the optimal 
detection model for the experiment. 
Framework Selection and Conclusion 

Replacing YOLOv4 with YOLOv5 allows for smaller models, faster processing, and 
reduced memory consumption. YOLOv5s from the YOLOv5 series are recommended as the 
fundamental model for accurately detecting small-scale maize leaf diseases in real time on low-
resource portable devices. This model achieves a harmonious balance between rapid processing, 
accurate detection, and sufficient processing capability. 

Table 2: Model Comparison 

Model 
mAP_0.5 

(%) 
Recall 

Rate (%) 
F1 Score 

(%) 
Precision 

(%) FPS 

YOLOv5s-C3CBAM 83 73 82 85 53 
YOLOv5s 78 68 76 80 50 

YOLOv7-tiny 75 60 70 78 60 
Faster R-CNN 70 55 65 75 40 

Image Generation Experiment and New Concepts: 
In the image generation experiment, lesions did not follow expected patterns, such as 

blight appearing perpendicular to leaf texture rather than following veins. Training set 
photographs with significant rotation angles were removed, and a screening procedure 
compared generated images with real ones. Early attempts at grey spot disease produced lower-
quality images, which improved with more model iterations. The study introduces two 
innovations: using Cycle GAN to create compound sickness images and enhancing the model 
with attention processes to focus on specific lesion targets, improving disease detection 
accuracy. 

Table 3: Disease Identification by YOLOv5s-C3CBAM Model 

Disease Accuracy Rate (%) 

Healthy leaves 96 
Blight 59 

Rust disease 74 
Grey leaf spot 89 

Limitations and Future Directions: 
Limitations include a focus on three common maize leaf diseases, with the potential for 

more accurate classification in future studies. Extensive disease annotation and ongoing training 
are needed for model improvement. Future research aims to build a comprehensive dataset for 
in-depth examination of maize leaf diseases. 
Choosing Pixel Density: 

A 256x256 pixel resolution was chosen, balancing workload, training rates, and the 
model's learning capabilities. This size effectively captures detailed lesion information while 
considering the limitations of higher resolutions and lower pixel counts. The study's main 
objective is to identify diseases in individual maize leaves, including compound disorders, 
addressing challenges with deep learning and data availability by using Cycle GAN for synthetic 
data. The YOLOv5-C3CBAM model outperforms others, enhancing accuracy and 
generalization in real-world scenarios. The study contributes to accurate chemical diagnosis of 
crop diseases in agricultural settings and serves as a reference for future research. 
Image Generation Experiment and New Concepts: 
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In the image generation experiment, lesions did not follow expected patterns, such as 
blight appearing perpendicular to leaf texture rather than following veins. Training set 
photographs with significant rotation angles were removed, and a screening procedure 
compared generated images with real ones. Early attempts at grey spot disease produced lower-
quality images, which improved with more model iterations. The study introduces two 
innovations: using Cycle GAN to create compound sickness images and enhancing the model 
with attention processes to focus on specific lesion targets, improving disease detection 
accuracy. 
Limitations and Future Directions: 

Limitations include a focus on three common maize leaf diseases, with the potential for 
more accurate classification in future studies. Extensive disease annotation and ongoing training 
are needed for model improvement. Future research aims to build a comprehensive dataset for 
in-depth examination of maize leaf diseases. 
Choosing Pixel Density: 

A 256x256 pixel resolution was chosen, balancing workload, training rates, and the 
model's learning capabilities. This size effectively captures detailed lesion information while 
considering the limitations of higher resolutions and lower pixel counts. 
Conclusion: 

The study's main objective is to identify diseases in individual maize leaves, including 
compound disorders, addressing challenges with deep learning and data availability by using 
Cycle GAN for synthetic data. The YOLOv5-C3CBAM model outperforms others, enhancing 
accuracy and generalization in real-world scenarios. The study contributes to accurate chemical 
diagnosis of crop diseases in agricultural settings and serves as a reference for future research. 
References: 
[1] Y. Zhang, S. Wa, Y. Liu, X. Zhou, P. Sun, and Q. Ma, “High-accuracy detection of 

maize leaf diseases cnn based on multi-pathway activation function module,” Remote 
Sens., vol. 13, no. 21, Nov. 2021, doi: 10.3390/RS13214218. 

[2] Y. Zhang, H. Wang, R. Xu, X. Yang, Y. Wang, and Y. Liu, “High-Precision Seedling 
Detection Model Based on Multi-Activation Layer and Depth-Separable Convolution 
Using Images Acquired by Drones,” Drones, vol. 6, no. 6, Jun. 2022, doi: 
10.3390/DRONES6060152. 

[3] Z. Hui, J. Li, X. Wang, and X. Gao, “Image Fine-grained Inpainting,” Feb. 2020, 
Accessed: Oct. 01, 2023. [Online]. Available: https://arxiv.org/abs/2002.02609v2 

[4] W. Chen, B. Qi, X. Liu, H. Li, X. Hao, and Y. Peng, “Temperature-Robust Learned 
Image Recovery for Shallow-Designed Imaging Systems,” Adv. Intell. Syst., vol. 4, no. 
10, p. 2200149, Oct. 2022, doi: 10.1002/AISY.202200149. 

[5] “High-Accuracy Maize Disease Detection Based on Attention Generative Adversarial 
Network and Few-Shot Learning - PMC.” Accessed: Feb. 17, 2024. [Online]. Available: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490187/ 

[6] Q. Xie et al., “Crop height estimation of corn from multi-year radarsat-2 polarimetric 
observables using machine learning,” Remote Sens., vol. 13, no. 3, pp. 1–19, Feb. 2021, 
doi: 10.3390/RS13030392. 

[7] H. Lee, J. Wang, and B. Leblon, “Using linear regression, random forests, and support 
vector machine with unmanned aerial vehicle multispectral images to predict canopy 
nitrogen weight in corn,” Remote Sens., vol. 12, no. 13, Jul. 2020, doi: 
10.3390/RS12132071. 

[8] J. Yu, J. Wang, and B. Leblon, “Evaluation of soil properties, topographic metrics, plant 
height, and unmanned aerial vehicle multispectral imagery using machine learning 
methods to estimate canopy nitrogen weight in corn,” Remote Sens., vol. 13, no. 16, Aug. 
2021, doi: 10.3390/RS13163105. 



                            International Journal of Agriculture & Sustainable Development 

Sep 2022|Vol 4|Issue3                                                                              Page |176 

[9] Y. Zhang, S. Wa, L. Zhang, and C. Lv, “Automatic Plant Disease Detection Based on 
Tranvolution Detection Network With GAN Modules Using Leaf Images,” Front. Plant 
Sci., vol. 13, May 2022, doi: 10.3389/FPLS.2022.875693. 

[10] Y. Zhang, M. Li, X. Ma, X. Wu, and Y. Wang, “High-Precision Wheat Head Detection 
Model Based on One-Stage Network and GAN Model,” Front. Plant Sci., vol. 13, Jun. 
2022, doi: 10.3389/FPLS.2022.787852. 

[11] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A Review on Generative Adversarial 
Networks: Algorithms, Theory, and Applications,” IEEE Trans. Knowl. Data Eng., vol. 
35, no. 4, pp. 3313–3332, Apr. 2023, doi: 10.1109/TKDE.2021.3130191. 

[12] H. Guo et al., “Sample Expansion and Classification Model of Maize Leaf Diseases 
Based on the Self-Attention CycleGAN,” Sustain., vol. 15, no. 18, Sep. 2023, doi: 
10.3390/SU151813420. 

[13] Y. Wang, J. Wu, P. Lan, F. Li, C. Ge, and F. Sun, “Apple disease identification using 
improved Faster R-CNN,” J. For. Eng., vol. 7, no. 1, pp. 153–159, Jan. 2022, doi: 
10.13360/J.ISSN.2096-1359.202104028. 

[14] L. Huang, Z. Zhou, Y. Guo, and Y. Wang, “A stability-enhanced CycleGAN for 
effective domain transformation of unpaired ultrasound images,” Biomed. Signal Process. 
Control, vol. 77, Aug. 2022, doi: 10.1016/J.BSPC.2022.103831. 

[15] E. T. A. Albert, N. H. Bille, and N. M. E. Leonard, “Improvement of plant disease 
classification accuracy with generative model-synthesized training datasets,” Res. 
Biotechnol., pp. 1–11, Feb. 2023, doi: 10.25081/RIB.2023.V14.8214. 

[16] P. Dong, K. Li, M. Wang, F. Li, W. Guo, and H. Si, “Maize Leaf Compound Disease 
Recognition Based on Attention Mechanism,” Agric. 2024, Vol. 14, Page 74, vol. 14, no. 
1, p. 74, Dec. 2023, doi: 10.3390/AGRICULTURE14010074. 

[17] “View of Evaluating Spatio-Temporal Decline to Agriculture through Satellite Imagery 
from 2010-2022.” Accessed: Feb. 22, 2024. [Online]. Available: 
https://journal.50sea.com/index.php/IJASD/article/view/471/971 

[18] Y. Song et al., “High-Accuracy Maize Disease Detection Based on Attention Generative 
Adversarial Network and Few-Shot Learning,” Plants, vol. 12, no. 17, Sep. 2023, doi: 
10.3390/PLANTS12173105. 

[19] W. Xu, W. Li, L. Wang, and M. F. Pompelli, “Enhancing Corn Pest and Disease 
Recognition through Deep Learning: A Comprehensive Analysis,” Agronomy, vol. 13, 
no. 9, Sep. 2023, doi: 10.3390/AGRONOMY13092242. 

[20] D. Theckedath and R. R. Sedamkar, “Detecting Affect States Using VGG16, ResNet50 
and SE-ResNet50 Networks,” SN Comput. Sci., vol. 1, no. 2, Mar. 2020, doi: 
10.1007/S42979-020-0114-9. 

[21] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation Networks,” 
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8, pp. 2011–2023, Aug. 2020, doi: 
10.1109/TPAMI.2019.2913372. 

[22] F. Rajeena P. P, A. S. U, M. A. Moustafa, and M. A. S. Ali, “Detecting Plant Disease in 
Corn Leaf Using EfficientNet Architecture—An Analytical Approach,” Electron., vol. 
12, no. 8, Apr. 2023, doi: 10.3390/ELECTRONICS12081938. 

[23] W. Ding and L. Zhang, “Building Detection in Remote Sensing Image Based on 
Improved YOLOV5,” Proc. - 2021 17th Int. Conf. Comput. Intell. Secur. CIS 2021, pp. 133–
136, 2021, doi: 10.1109/CIS54983.2021.00036. 

[24] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “CBAM: Convolutional block attention 
module,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 
Bioinformatics), vol. 11211 LNCS, pp. 3–19, 2018, doi: 10.1007/978-3-030-01234-2_1. 

[25] H. Wang, J. Feng, and H. Yin, “Improved Method for Apple Fruit Target Detection 
Based on YOLOv5s,” Agric., vol. 13, no. 11, Nov. 2023, doi: 



                            International Journal of Agriculture & Sustainable Development 

Sep 2022|Vol 4|Issue3                                                                              Page |177 

10.3390/AGRICULTURE13112167. 
[26] “Agriculture | Free Full-Text | Maize Leaf Compound Disease Recognition Based on 

Attention Mechanism.” Accessed: Feb. 17, 2024. [Online]. Available: 
https://www.mdpi.com/2077-0472/14/1/74 

[27] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based 
plant disease detection,” Front. Plant Sci., vol. 7, no. September, p. 1419, Sep. 2016, doi: 
10.3389/FPLS.2016.01419/BIBTEX. 

[28] Y. Hu, G. Liu, Z. Chen, J. Liu, and J. Guo, “Lightweight One-Stage Maize Leaf Disease 
Detection Model with Knowledge Distillation,” Agric., vol. 13, no. 9, Sep. 2023, doi: 
10.3390/AGRICULTURE13091664. 

[29] W. Bao, X. Huang, G. Hu, and D. Liang, “Identification of maize leaf diseases using 
improved convolutional neural network,” Nongye Gongcheng Xuebao/Transactions Chinese 
Soc. Agric. Eng., vol. 37, no. 6, pp. 160–167, Mar. 2021, doi: 10.11975/J.ISSN.1002-
6819.2021.06.020. 

[30] Y. Qiao et al., “A Counting Method of Red Jujube Based on Improved YOLOv5s,” 
Agric., vol. 12, no. 12, Dec. 2022, doi: 10.3390/AGRICULTURE12122071. 

[31] S. Ghaffarian, J. Valente, M. Van Der Voort, and B. Tekinerdogan, “Effect of Attention 
Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic 
Literature Review,” Remote Sens. 2021, Vol. 13, Page 2965, vol. 13, no. 15, p. 2965, Jul. 
2021, doi: 10.3390/RS13152965. 

[32] Z. Li, W. Tao, J. Liu, F. Zhu, G. Du, and G. Ji, “Tomato Leaf Disease Recognition via 
Optimizing Deep Learning Methods Considering Global Pixel Value Distribution,” 
Horticulturae, vol. 9, no. 9, Sep. 2023, doi: 10.3390/HORTICULTURAE9091034. 

 

 

Copyright © by authors and 50Sea. This work is licensed under 
Creative Commons Attribution 4.0 International License.  

 


