Strategies and Limitations to Control Ticks

Authors

  • Mamoona Midhat Kazmi Centre for Integrated Mountain Research (CIMR), University of the Punjab, Lahore
  • Sabeela Asghar Centre for Integrated Mountain Research (CIMR), University of the Punjab, Lahore
  • Amna Ali Centre for Integrated Mountain Research (CIMR), University of the Punjab, Lahore

Keywords:

Ticks, Livestock, Animals, Prevention, Pandemic

Abstract

In brief, ticks are a well-known parasite that has a negative impact on livestock output. Here, we take stock of what we know about ticks, how they spread, the harm they do to animals, and the obstacles that prevent us from controlling them effectively. The predicted climate trends clearly contribute to the spread of ticks in several regions. Rhipicephalus micro plus has been found to have expanded its range and colonized new areas across Africa as a result of the continent's warming temperatures. General climate change seems to be driving the reported elevation increase of this species in the mountain regions of Central and South America. However, this is not the only reason for tick proliferation. It's possible that the difficulty in implementing effective tick control measures is attributable to factors such as poor farm management, unrestricted movement of domestic animals, an abundance of wild animals, and a lack of an adequate framework to capture the ecological plasticity of certain ticks. In this paper, we take a look back at the many ways in which ticks interact with their natural surroundings, wild animal neighbors, and tick-on-tick warfare. Our goal is to provide a unified structure for studying tick ecology and its connection to animal production systems, so we will be emphasizing these interconnections.

References

M. Madder, S. Adehan, R. De Deken, R. Adehan, and R. Lokossou, “New foci of Rhipicephalus microplus in West Africa,” Exp. Appl. Acarol., vol. 56, no. 4, pp. 385–390, Apr. 2012, doi: 10.1007/S10493-012-9522-4/METRICS.

E. M. de Clercq, S. O. Vanwambeke, M. Sungirai, S. Adehan, R. Lokossou, and M. Madder, “Geographic distribution of the invasive cattle tick Rhipicephalus microplus, a country-wide survey in Benin,” Exp. Appl. Acarol., vol. 58, no. 4, pp. 441–452, Nov. 2012, doi: 10.1007/S10493-012-9587-0/TABLES/2.

R. González Herrera, “Estimación de las pérdidas económicas en las estructuras asociadas a peligro sísmico en Tuxtla Gutiérrez, Chiapas,” Estimación las pérdidas económicas en las estructuras Asoc. a peligro sísmico en Tuxtla Gutiérrez, Chiapas, 2013, doi: 10.22201/DGPYFE.9786070253669E.2013.

C. Krittanawong et al., “Deep learning for cardiovascular medicine: a practical primer,” Eur. Heart J., vol. 40, no. 25, pp. 2058-2069C, Jul. 2019, doi: 10.1093/EURHEARTJ/EHZ056.

R. A. I. Norval, R. W. Sutherst, J. Kurki, J. D. Gibson, and J. D. Kerr, “The effect of the brown ear-tick Rhipicephalus appendiculatus on the growth of Sanga and European Breed cattle,” Vet. Parasitol., vol. 30, no. 2, pp. 149–164, Dec. 1988, doi: 10.1016/0304-4017(88)90162-8.

U. R. Shazia Bokhari, Roheela Yasmeen, Aisha Waheed Qurashi, Samiya Habib, “Isolation of Keratinolytic from Chicken (Gallus gallus domesticus) Farms and Assessment of their Efficacy in Feathers Degradation,” Int. J. Innov. Sci. Technol., vol. 3, no. 4, pp. 142–151, 2021.

N. N. Jonsson, “The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses,” Vet. Parasitol., vol. 137, no. 1–2, pp. 1–10, Apr. 2006, doi: 10.1016/J.VETPAR.2006.01.010.

R. W. Sutherst, G. F. Maywald, J. D. Kerr, and D. A. Stegeman, “The effect of cattle tick (Boophilus microplus) on the growth of Bos indicus × B. taurus steers,” Aust. J. Agric. Res., vol. 34, no. 3, pp. 317–327, 1983, doi: 10.1071/AR9830317.

R. M. Seebeck, P. H. Springell, and J. C. O’kelly, “Alterations in Host Metabolism by the Specific and Anorectic Effects of the Cattle Tick (Boophilus Microplus) I. Food Intake and Body Weight Growth,” Aust. J. Biol. Sci., vol. 24, no. 2, pp. 373–380, 1971, doi: 10.1071/BI9710373.

A. S. Young, C. M. Groocock, and D. P. Kariuki, “Integrated control of ticks and tick-borne diseases of cattle in Africa,” Parasitology, vol. 96, no. 2, pp. 403–432, 1988, doi: 10.1017/S0031182000058388.

J. J. De Castro et al., “Long-term studies on the economic impact of ticks on Sanga cattle in Zambia,” Exp. Appl. Acarol., vol. 21, no. 1, pp. 3–19, 1997, doi: 10.1023/A:1018450824854/METRICS.

I. of Medicine, “Vector-Borne Diseases: Understanding the Environmental, Human Health, and Ecological Connections: Workshop Summary,” Vector-Borne Dis., Mar. 2008, doi: 10.17226/11950.

A. A. Pérez de Leon et al., “Integrated strategy for sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change,” Front. Physiol., vol. 3 JUN, p. 195, Jun. 2012, doi: 10.3389/FPHYS.2012.00195/BIBTEX.

D. E. Sonenshine, K. M. Kocan, and J. de la Fuente, “Tick control: further thoughts on a research agenda,” Trends Parasitol., vol. 22, no. 12, pp. 550–551, Dec. 2006, doi: 10.1016/j.pt.2006.09.003.

R. W. Sutherst, “Global Change and Human Vulnerability to Vector-Borne Diseases,” Clin. Microbiol. Rev., vol. 17, no. 1, pp. 136–173, Jan. 2004, doi: 10.1128/CMR.17.1.136-173.2004/ASSET/9EDC95FA-FC85-4D3A-AEF1-21E56A7A6EF7/ASSETS/GRAPHIC/ZCM0010400890016.JPEG.

R. C. Russell, “Mosquito-borne arboviruses in Australia: the current scene and implications of climate change for human health,” Int. J. Parasitol., vol. 28, no. 6, pp. 955–969, Jun. 1998, doi: 10.1016/S0020-7519(98)00053-8.

P. Reitera et al., “Global warming and malaria: A call for accuracy,” Lancet Infect. Dis., vol. 4, no. 6, pp. 323–324, Jun. 2004, doi: 10.1016/S1473-3099(04)01038-2.

S. E. Randolph, “Perspectives on climate change impacts on infectious diseases,” Ecology, vol. 90, no. 4, pp. 927–931, Apr. 2009, doi: 10.1890/08-0506.1.

D. J. Gubler, P. Reiter, K. L. Ebi, W. Yap, R. Nasci, and J. A. Patz, “Climate variability and change in the United States: Potential impacts on vector- and Rodent-Borne diseases,” Environ. Health Perspect., vol. 109, no. SUPPL. 2, pp. 223–233, 2001, doi: 10.2307/3435012.

J. de la Fuente, C. Almazán, M. Canales, J. M. Pérez de la Lastra, K. M. Kocan, and P. Willadsen, “A ten-year review of commercial vaccine performance for control of tick infestations on cattle,” Anim. Heal. Res. Rev., vol. 8, no. 1, pp. 23–28, 2007, doi: 10.1017/S1466252307001193.

J. N. Sserugga, N. N. Jonsson, R. E. Bock, and S. J. More, “Serological evidence of exposure to tick fever organisms in young cattle on Queensland dairy farms,” Aust. Vet. J., vol. 81, no. 3, pp. 147–152, Mar. 2003, doi: 10.1111/J.1751-0813.2003.TB11077.X.

M. Kearney, W. P. Porter, C. Williams, S. Ritchie, and A. A. Hoffmann, “Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia,” Funct. Ecol., vol. 23, no. 3, pp. 528–538, Jun. 2009, doi: 10.1111/J.1365-2435.2008.01538.X.

W. J. Tabachnick, “Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world,” J. Exp. Biol., vol. 213, no. 6, pp. 946–954, Mar. 2010, doi: 10.1242/JEB.037564.

A. Estrada-Peña et al., “Association of environmental traits with the geographic ranges of ticks (Acari: Ixodidae) of medical and veterinary importance in the western Palearctic. A digital data set,” Exp. Appl. Acarol., vol. 59, no. 3, pp. 351–366, Mar. 2013, doi: 10.1007/S10493-012-9600-7/TABLES/3.

K. M. Kocan, J. De La Fuente, E. F. Blouin, and J. C. Garcia-Garcia, “Anaplasma marginale (Rickettsiales: Anaplasmataceae): recent advances in defining host–pathogen adaptations of a tick-borne rickettsia,” Parasitology, vol. 129, no. S1, pp. S285–S300, 2004, doi: 10.1017/S0031182003004700.

A. W. Mukhebi et al., “An assessment of the economic impact of heartwater (Cowdria ruminantium infection) and its control in Zimbabwe,” Prev. Vet. Med., vol. 39, no. 3, pp. 173–189, Apr. 1999, doi: 10.1016/S0167-5877(98)00143-3.

J. A. Lawrence and P. J. McCosker, “Economics of Theileriosis Control: Appraisal and Future Perspectives,” Adv. Control Theileriosis, pp. 419–422, 1981, doi: 10.1007/978-94-009-8346-5_72.

W. Laba and A. Rodziewicz, “Biodegradation of Hard Keratins by Two Bacillus Strains,” Jundishapur J. Microbiol., vol. 7, no. 2, p. 8896, Feb. 2014, doi: 10.5812/JJM.8896.

R. T. Ervin, F. M. Epplin, R. L. Byford, and J. A. Hair, “Estimation and Economic Implications of Lone Star Tick (Acari: Ixodidae) Infestation on Weight Gain of Cattle, Bos taurus and Bos taurus × Bos indicus,” J. Econ. Entomol., vol. 80, no. 2, pp. 443–445, Apr. 1987, doi: 10.1093/JEE/80.2.443.

A. R. Walker, “Eradication and control of livestock ticks: biological, economic and social perspectives,” Parasitology, vol. 138, no. 8, pp. 945–959, Jul. 2011, doi: 10.1017/S0031182011000709.

R. A. Norval and R. W. Sutherst, “Assortative Mating between Boophilus Decoloratus and Boophilus Microplus (Acari: Ixodidae),” J. Med. Entomol., vol. 23, no. 4, pp. 459–460, Jul. 1986, doi: 10.1093/JMEDENT/23.4.459.

M. H. Tønnesen, B. L. Penzhorn, N. R. Bryson, W. H. Stoltsz, and T. Masibigiri, “Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg region, Limpopo Province, South Africa,” Exp. Appl. Acarol., vol. 32, no. 3, pp. 199–208, 2004, doi: 10.1023/B:APPA.0000021789.44411.B5/METRICS.

A. Estrada-Peña et al., “Reinstatement of Rhipicephalus (Boophilus) australis (Acari: Ixodidae) With Redescription of the Adult and Larval Stages,” J. Med. Entomol., vol. 49, no. 4, pp. 794–802, Jul. 2012, doi: 10.1603/ME11223.

J. M. Pound, J. E. George, D. M. Kammlah, K. H. Lohmeyer, and R. B. Davey, “Evidence for Role of White-Tailed Deer (Artiodactyla: Cervidae) in Epizootiology of Cattle Ticks and Southern Cattle Ticks (Acari: Ixodidae) in Reinfestations Along the Texas/Mexico Border in South Texas: A Review and Update,” J. Econ. Entomol., vol. 103, no. 2, pp. 211–218, Apr. 2010, doi: 10.1603/EC09359.

O. H. Graham and J. L. Hourrigan, “Review Article: Eradication Programs for the Arthropod Parasites of Livestock,” J. Med. Entomol., vol. 13, no. 6, pp. 629–658, Jun. 1977, doi: 10.1093/JMEDENT/13.6.629.

A. Estrada-Peña, C. Sánchez Acedo, J. Quílez, and E. Del Cacho, “A retrospective study of climatic suitability for the tick Rhipicephalus (Boophilus)microplus in the Americas,” Glob. Ecol. Biogeogr., vol. 14, no. 6, pp. 565–573, Nov. 2005, doi: 10.1111/J.1466-822X.2005.00185.X.

R. A. Bram, J. E. George, R. E. Reichard, and W. J. Tabachnick, “Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States,” J. Med. Entomol., vol. 39, no. 3, pp. 405–416, May 2002, doi: 10.1603/0022-2585-39.3.405.

G. Uilenberg, N. Barre, E. Camus, M. J. Burridge, and G. I. Garris, “Heartwater in the Caribbean,” Prev. Vet. Med., vol. 2, no. 1–4, pp. 255–267, Mar. 1984, doi: 10.1016/0167-5877(84)90068-0.

M. Madder, E. Thys, D. Geysen, C. Baudoux, and I. Horak, “Boophilus microplus ticks found in West Africa,” Exp. Appl. Acarol., vol. 43, no. 3, pp. 233–234, Nov. 2007, doi: 10.1007/S10493-007-9110-1/METRICS.

L. R. Hilburn and R. B. Davey, “Test for Assortative Mating Between Boophilus microplus and Boophilus annulatus (Acari: Ixodidae),” J. Med. Entomol., vol. 29, no. 4, pp. 690–697, Jul. 1992, doi: 10.1093/JMEDENT/29.4.690.

P. Zeman and G. Lynen, “Conditions for stable parapatric coexistence between Boophilus decoloratus and B. microplus ticks: A simulation study using the competitive Lotka-Volterra model,” Exp. Appl. Acarol., vol. 52, no. 4, pp. 409–426, Dec. 2010, doi: 10.1007/S10493-010-9376-6/METRICS.

Downloads

Published

2022-03-14

How to Cite

Mamoona Midhat Kazmi, Sabeela Asghar, & Amna Ali. (2022). Strategies and Limitations to Control Ticks. International Journal of Agriculture and Sustainable Development, 4(1), 24–30. Retrieved from https://journal.50sea.com/index.php/IJASD/article/view/455

Issue

Section

Articles