Developments of Agriculture Practice in Eco-Friendly Region

Authors

  • Asad Waseem Agriculture University Faisalabad
  • Aamer Amin Agriculture University Faisalabad
  • Jamal Hassan Agriculture University Faisalabad
  • Tahir Mahmood Agriculture University Faisalabad

Keywords:

Climate and crops, Crop Water Requirement, Water Scarcity

Abstract

An in-depth familiarity with the plant-soil mycobiome is crucial for achieving the ecological and sustainable agriculture that is so desired. Both terrestrial and aquatic ecosystems can be impacted by commercial industrial agriculture due to the changes it makes to greenhouse gas emissions, the promotion of loss of plant and soil biodiversity, the increase in pollution caused by a rise in atmospheric CO2, and the release of pesticides. Reduce terrestrial greenhouse gas emissions and address global sustainability threats with diversified farming systems, such as perennial cultivated pastures. Soil microbes can be stimulated, and the soil can be managed, to affect soil interactions and the rates at which organic matter decomposes and gases are released. The extent to which biocontrol agents, bio fertilizers, and pesticide exposure affect agricultural soil microbial communities, which play a central role in ecosystem processes, remains unclear. Increased carbon fixation by plants, carbon transfer to the soil (especially via mycorrhizas), and altered interplant interactions are all benefits of intercropping different plant species. This article provides an overview of agroecosystems, highlighting recent developments in the plant-soil interface (the mycobiome) that contribute to environmentally sound food production.

References

D. S. Lundberg et al., “Defining the core Arabidopsis thaliana root microbiome,” Nat. 2012 4887409, vol. 488, no. 7409, pp. 86–90, Aug. 2012, doi: 10.1038/nature11237.

B. Lugtenberg, “Principles of plant-microbe interactions: Microbes for sustainable agriculture,” Princ. Plant-Microbe Interact. Microbes Sustain. Agric., pp. 1–448, Jan. 2015, doi: 10.1007/978-3-319-08575-3/COVER.

G. B. Martha, E. Alves, and E. Contini, “Dimensão econômica de sistemas de integração lavoura-pecuária,” Pesqui. Agropecuária Bras., vol. 46, no. 10, pp. 1117–1126, Oct. 2011, doi: 10.1590/S0100-204X2011001000002.

M. Davinic, J. Moore-Kucera, V. Acosta-Martínez, J. Zak, and V. Allen, “Soil fungal distribution and functionality as affected by grazing and vegetation components of integrated crop–livestock agroecosystems,” Appl. Soil Ecol., vol. 66, pp. 61–70, Apr. 2013, doi: 10.1016/J.APSOIL.2013.01.013.

T. W. Kuyper and R. G. M. De Goede, “Interactions Between Higher Plants and Soil-dwelling Organisms,” Veg. Ecol. Second Ed., pp. 260–284, Feb. 2013, doi: 10.1002/9781118452592.CH9.

B. Wang and Y. L. Qiu, “Phylogenetic distribution and evolution of mycorrhizas in land plants,” Mycorrhiza, vol. 16, no. 5, pp. 299–363, Jul. 2006, doi: 10.1007/S00572-005-0033-6/METRICS.

D. L. Smith, S. Subramanian, J. R. Lamont, and M. Bywater-Ekegàrd, “Signaling in the phytomicrobiome: Breadth and potential,” Front. Plant Sci., vol. 6, no. September, p. 709, Sep. 2015, doi: 10.3389/FPLS.2015.00709/BIBTEX.

S. Quijas, B. Schmid, and P. Balvanera, “Plant diversity enhances provision of ecosystem services: A new synthesis,” Basic Appl. Ecol., vol. 11, no. 7, pp. 582–593, Nov. 2010, doi: 10.1016/J.BAAE.2010.06.009.

T. H. Booth et al., “Native forests and climate change: Lessons from eucalypts,” For. Ecol. Manage., vol. 347, pp. 18–29, Jul. 2015, doi: 10.1016/J.FORECO.2015.03.002.

S. Federici, F. N. Tubiello, M. Salvatore, H. Jacobs, and J. Schmidhuber, “New estimates of CO2 forest emissions and removals: 1990–2015,” For. Ecol. Manage., vol. 352, pp. 89–98, Sep. 2015, doi: 10.1016/J.FORECO.2015.04.022.

H. W. Nelson, T. B. Williamson, C. Macaulay, and C. Mahony, “Assessing the potential for forest management practitioner participation in climate change adaptation,” For. Ecol. Manage., vol. 360, pp. 388–399, Jan. 2016, doi: 10.1016/J.FORECO.2015.09.038.

V. Kumar, “Use of integrated nutrient management to enhance soil fertility and crop yield of hybrid cultivar of brinjal (Solanum melongena L.) under field conditions,” Adv. Plants Agric. Res., vol. Volume 4, no. Issue 2, Jul. 2016, doi: 10.15406/APAR.2016.04.00130.

G. Lemaire, A. Franzluebbers, P. C. de F. Carvalho, and B. Dedieu, “Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality,” Agric. Ecosyst. Environ., vol. 190, pp. 4–8, Jun. 2014, doi: 10.1016/J.AGEE.2013.08.009.

G. Imfeld and S. Vuilleumier, “Measuring the effects of pesticides on bacterial communities in soil: A critical review,” Eur. J. Soil Biol., vol. 49, pp. 22–30, Mar. 2012, doi: 10.1016/J.EJSOBI.2011.11.010.

A. S. F. Araújo, R. T. R. Monteiro, and R. B. Abarkeli, “Effect of glyphosate on the microbial activity of two Brazilian soils,” Chemosphere, vol. 52, no. 5, pp. 799–804, Aug. 2003, doi: 10.1016/S0045-6535(03)00266-2.

S. Haider and N. Ibrahim, “Ecological Significance of floristic structure and Biological Spectrum of alpine floral biodiversity of Khunjerab National Park Gilgit-Baltistan Pakistan,” Int. J. Innov. Sci. Technol., vol. 4, no. 2, pp. 564–577, 2022.

D. D. Douds, J. Lee, L. McKeever, C. Ziegler-Ulsh, and S. Ganser, “Utilization of inoculum of AM fungi produced on-farm increases the yield of Solanum lycopersicum: A summary of 7 years of field trials on a conventional vegetable farm with high soil phosphorus,” Sci. Hortic. (Amsterdam)., vol. 207, pp. 89–96, Aug. 2016, doi: 10.1016/J.SCIENTA.2016.05.013.

K. Ruiz-Hidalgo, J. S. Chin-Pampillo, M. Masís-Mora, E. Carazo-Rojas, and C. E. Rodríguez-Rodríguez, “Optimization of a Fungally Bioaugmented Biomixture for Carbofuran Removal in On-Farm Biopurification Systems,” Water. Air. Soil Pollut., vol. 227, no. 1, pp. 1–14, Jan. 2016, doi: 10.1007/S11270-015-2681-2/METRICS.

M. Unterseher, A. B. Siddique, A. Brachmann, and D. Peršoh, “Diversity and Composition of the Leaf Mycobiome of Beech (Fagus sylvatica) Are Affected by Local Habitat Conditions and Leaf Biochemistry,” PLoS One, vol. 11, no. 4, p. e0152878, Apr. 2016, doi: 10.1371/JOURNAL.PONE.0152878.

I. Piccoli et al., “Disentangling the effects of conservation agriculture practices on the vertical distribution of soil organic carbon. Evidence of poor carbon sequestration in North- Eastern Italy,” Agric. Ecosyst. Environ., vol. 230, pp. 68–78, Aug. 2016, doi: 10.1016/J.AGEE.2016.05.035.

L. Kredics et al., “Biodiversity of the Genus Hypocrea/Trichoderma in Different Habitats,” Biotechnol. Biol. Trichoderma, pp. 3–24, Jan. 2014, doi: 10.1016/B978-0-444-59576-8.00001-1.

F. Vinale, K. Sivasithamparam, E. L. Ghisalberti, R. Marra, S. L. Woo, and M. Lorito, “Trichoderma–plant–pathogen interactions,” Soil Biol. Biochem., vol. 40, no. 1, pp. 1–10, Jan. 2008, doi: 10.1016/J.SOILBIO.2007.07.002.

G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, and M. Lorito, “Trichoderma species — opportunistic, avirulent plant symbionts,” Nat. Rev. Microbiol. 2004 21, vol. 2, no. 1, pp. 43–56, Jan. 2004, doi: 10.1038/nrmicro797.

M. L. Clawson and D. R. Benson, “Natural diversity of Frankia strains in actinorhizal root nodules from promiscuous hosts in the family Myricaceae,” Appl. Environ. Microbiol., vol. 65, no. 10, pp. 4521–4527, 1999, doi: 10.1128/AEM.65.10.4521-4527.1999/ASSET/C2C9291A-2090-444D-A57C-4C1811F79C62/ASSETS/GRAPHIC/AM1090800003.JPEG.

L. G. Wall, “The actinorhizal symbiosis,” J. Plant Growth Regul., vol. 19, no. 2, pp. 167–182, 2000, doi: 10.1007/S003440000027/METRICS.

B. S. Mirza, A. Welsh, and D. Hahn, “Saprophytic growth of inoculated Frankia sp. in soil microcosms,” FEMS Microbiol. Ecol., vol. 62, no. 3, pp. 280–289, Dec. 2007, doi: 10.1111/J.1574-6941.2007.00382.X.

B. Oakley, M. North, J. F. Franklin, B. P. Hedlund, and J. T. Staley, “Diversity and distribution of Frankia strains symbiotic with Ceanothus in California,” Appl. Environ. Microbiol., vol. 70, no. 11, pp. 6444–6452, Nov. 2004, doi: 10.1128/AEM.70.11.6444-6452.2004/ASSET/351B95B4-62D4-4DB5-9B16-08C705A307FC/ASSETS/GRAPHIC/ZAM0110449750005.JPEG.

T. R. Scheublin, I. R. Sanders, C. Keel, and J. R. Van Der Meer, “Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi,” ISME J. 2010 46, vol. 4, no. 6, pp. 752–763, Feb. 2010, doi: 10.1038/ismej.2010.5.

E. K. Barto, M. Hilker, F. Müller, B. K. Mohney, J. D. Weidenhamer, and M. C. Rillig, “The Fungal Fast Lane: Common Mycorrhizal Networks Extend Bioactive Zones of Allelochemicals in Soils,” PLoS One, vol. 6, no. 11, p. e27195, Nov. 2011, doi: 10.1371/JOURNAL.PONE.0027195.

J. Jansa, P. Bukovská, and M. Gryndler, “Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts - Or just soil free-riders?,” Front. Plant Sci., vol. 4, no. MAY, p. 134, May 2013, doi: 10.3389/FPLS.2013.00134/BIBTEX.

B. L. Dantas, O. B. Weber, J. P. M. Neto, A. G. Rossetti, and M. C. Pagano, “Diversidade de fungos micorrízicos arbusculares em pomar orgânico no semiárido cearense,” Ciência Rural, vol. 45, no. 8, pp. 1480–1486, Jul. 2015, doi: 10.1590/0103-8478CR20130097.

M. C. Pagano et al., “Mycorrhizas in Agroecosystems,” pp. 91–100, 2016, doi: 10.1007/978-3-319-24355-9_8.

J. Jansa and M. Gryndler, “Biotic environment of the arbuscular mycorrhizal fungi in soil,” Arbuscular Mycorrhizas Physiol. Funct., pp. 209–236, 2010, doi: 10.1007/978-90-481-9489-6_10/COVER.

R. Balestrini, E. Lumini, R. Borriello, and V. Bianciotto, “Plant-Soil Biota Interactions,” Soil Microbiol. Ecol. Biochem., pp. 311–338, Jan. 2015, doi: 10.1016/B978-0-12-415955-6.00011-6.

A. Specht et al., “Data management challenges in analysis and synthesis in the ecosystem sciences,” Sci. Total Environ., vol. 534, pp. 144–158, Nov. 2015, doi: 10.1016/J.SCITOTENV.2015.03.092.

J. M. Talbot et al., “Endemism and functional convergence across the North American soil mycobiome,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 17, pp. 6341–6346, Apr. 2014, doi: 10.1073/PNAS.1402584111/SUPPL_FILE/SD02.XLSX.

Downloads

Published

2022-03-14

How to Cite

Asad Waseem, Aamer Amin, Jamal Hassan, & Tahir Mahmood. (2022). Developments of Agriculture Practice in Eco-Friendly Region. International Journal of Agriculture and Sustainable Development, 4(1), 31–39. Retrieved from https://journal.50sea.com/index.php/IJASD/article/view/457

Issue

Section

Articles