Agri-Health Assessment by their Thermal Responses


  • Asad Waseem Agriculture University Faisalabad
  • Aamer Amin Agriculture University Faisalabad
  • Jamal Hassan Agriculture University Faisalabad
  • Tahir Mahmood Agriculture University Faisalabad


Infrared Imagery, Plant Health, Spectral Responses


A tree stands as an abstract example of a basic form of life. It helps in greening cities and contributing to the preservation of natural resources and climate. It's a boon to the economy and creates jobs, too. When checking the health of a tree, most methods are either intrusive or even destructive. Non-destructive infrared thermography (IRT) has proven useful for inspecting trees and wood for damage and voids that could weaken the material's strength and longevity. In this paper, we summaries previous research on using IRT to assess tree health. It's set against the backdrop of the role trees play in maintaining ecological harmony and the various methods available for spotting signs of tree decline. These differences are highlighted, along with the main factors that have been shown to disrupt the trees' thermal pattern when applied to wood or trees. As with other non-destructive methods, the IRT does not differentiate between the various forms of damage or the agents responsible for them. However, it does allow for differentiation between normal and unhealthy tissue. As evidenced by its demonstrated effectiveness, rapidity, low cost, and longevity, the technology holds great promise.


M. Johnston and A. Hirons, “Urban trees,” Hortic. Plants People Places, vol. 2, pp. 693–711, Dec. 2014, doi: 10.1007/978-94-017-8581-5_5/COVER.

U. N. D. of E. and S. Affairs, “World Urbanization Prospects: The 2018 Revision,” World Urban. Prospect. 2018 Revis., Aug. 2019, doi: 10.18356/B9E995FE-EN.

W. C. Shortle and K. R. Dudzik, “Wood decay in living and dead trees: A pictorial overview,” 2012, doi: 10.2737/NRS-GTR-97.

C. Ballester, M. A. Jiménez-Bello, J. R. Castel, and D. S. Intrigliolo, “Usefulness of thermography for plant water stress detection in citrus and persimmon trees,” Agric. For. Meteorol., vol. 168, pp. 120–129, Jan. 2013, doi: 10.1016/J.AGRFORMET.2012.08.005.

J. L. Grossman, “Trestles anyone? a thermographic nightmare,”, vol. 6541, pp. 166–181, Apr. 2007, doi: 10.1117/12.721734.

A. Catena, “THERMOGRAPHY REVEALS HIDDEN TREE DECAY,”, vol. 27, no. 1, pp. 27–42, Jun. 2012, doi: 10.1080/03071375.2003.9747360.

P. E. Mix, “Thermal/Infrared Testing Method,” Introd. to Nondestruct. Test., pp. 407–456, Jan. 2005, doi: 10.1002/0471719145.CH10.

H. G. Jones et al., “Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field,” Funct. Plant Biol., vol. 36, no. 11, pp. 978–989, Nov. 2009, doi: 10.1071/FP09123.

M. Bellett-Travers and S. Morris, “THE RELATIONSHIP BETWEEN SURFACE TEMPERATURE AND RADIAL WOOD THICKNESS OF TWELVE TREES HARVESTED IN NOTTINGHAMSHIRE,”, vol. 33, no. 1, pp. 15–26, 2012, doi: 10.1080/03071375.2010.9747589.

J. Crisóstomo and R. Pitarma, “The Importance of Emissivity on Monitoring and Conservation of Wooden Structures Using Infrared Thermography,” Adv. Struct. Heal. Monit., Jan. 2019, doi: 10.5772/INTECHOPEN.82847.

X. P. Song, P. Y. Tan, P. Edwards, and D. Richards, “The economic benefits and costs of trees in urban forest stewardship: A systematic review,” Urban For. Urban Green., vol. 29, pp. 162–170, Jan. 2018, doi: 10.1016/J.UFUG.2017.11.017.

V. Nolan, T. Reader, F. Gilbert, and N. Atkinson, “The Ancient Tree Inventory: a summary of the results of a 15 year citizen science project recording ancient, veteran and notable trees across the UK,” Biodivers. Conserv., vol. 29, no. 11–12, pp. 3103–3129, Oct. 2020, doi: 10.1007/S10531-020-02033-2/TABLES/4.

C. L. Goh, R. Abdul Rahim, M. H. Fazalul Rahiman, M. T. Mohamad Talib, and Z. C. Tee, “Sensing wood decay in standing trees: A review,” Sensors Actuators A Phys., vol. 269, pp. 276–282, Jan. 2018, doi: 10.1016/J.SNA.2017.11.038.

M. E. Ferreira, A. C. André, and R. Pitarma, “Potentialities of Thermography in Ecocentric Education of Children: An Experience on Training of Future Primary Teachers,” Sustain. 2019, Vol. 11, Page 2668, vol. 11, no. 9, p. 2668, May 2019, doi: 10.3390/SU11092668.

R. Giuliani and J. A. Flore, “Potential use of infra-red thermometry for the detection of water stress in apple trees,” Acta Hortic., vol. 537, pp. 383–392, 2000, doi: 10.17660/ACTAHORTIC.2000.537.45.

D. C. Burcham, E. C. Leong, and Y. K. Fong, “Passive infrared camera measurements demonstrate modest effect of mechanically induced internal voids on Dracaena fragrans stem temperature,” Urban For. Urban Green., vol. 11, no. 2, pp. 169–178, Jan. 2012, doi: 10.1016/J.UFUG.2012.01.001.

A. Catena and G. Catena, “OVERVIEW OF THERMAL IMAGING FOR TREE ASSESSMENT,”, vol. 30, no. 4, pp. 259–270, 2012, doi: 10.1080/03071375.2008.9747505.

M. Bogosanovic, A. Al Anbuky, and G. W. Emms, “Overview and comparison of microwave noncontact wood measurement techniques,” J. Wood Sci., vol. 56, no. 5, pp. 357–365, Jul. 2010, doi: 10.1007/S10086-010-1119-0/METRICS.

P. E. Wiseman, S. D. Day, and J. R. Harris, “Organic amendment effects on soil carbon and microbial biomass in the root zone of three landscape tree species,” Arboric. Urban For., vol. 38, no. 6, pp. 262–276, Nov. 2012, doi: 10.48044/JAUF.2012.036.

C. Ibarra-Castanedo, J. R. Tarpani, and X. P. V. Maldague, “Nondestructive testing with thermography,” Eur. J. Phys., vol. 34, no. 6, p. S91, Oct. 2013, doi: 10.1088/0143-0807/34/6/S91.

R. Pitarma, J. Crisóstomo, and M. E. Ferreira, “LEARNING ABOUT TREES IN PRIMARY EDUCATION: POTENTIALITY OF IRT TECHNOLOGY IN SCIENCE TEACHING,” EDULEARN18 Proc., vol. 1, pp. 208–213, Jul. 2018, doi: 10.21125/EDULEARN.2018.0109.

R. J. Ross, R. F. Pellerin, N. Volny, W. W. Salsig, and R. H. Falk, “Inspection of timber bridges using stress wave timing nondestructive evaluation tools : a guide for use and interpretation,” (General Tech. Rep. FPL ; GTR-114)15 p. ill., map ; 28 C., vol. 114, 1999, doi: 10.2737/FPL-GTR-114.

M. Carosena, “Infrared thermography: Recent advances and future trends,” Infrared Thermogr. Recent Adv. Futur. Trends, 2012, doi: 10.2174/97816080514341120101.

M. Ferreira, J. Crisóstomo, and R. Pitarma, “INFRARED THERMOGRAPHY TECHNOLOGY TO SUPPORT SCIENCE TEACHING - MEANINGFUL LEARNING ABOUT TREES WITH UNIVERSITY STUDENTS,” INTED2019 Proc., vol. 1, pp. 1712–1716, Apr. 2019, doi: 10.21125/INTED.2019.0498.

M. J. M. Conde, C. R. Liñán, P. R. De Hita, and F. P. Gálvez, “Infrared Thermography Applied to Wood,”, vol. 23, no. 1, pp. 32–45, Jan. 2012, doi: 10.1080/09349847.2011.626142.

A. Kylili, P. A. Fokaides, P. Christou, and S. A. Kalogirou, “Infrared thermography (IRT) applications for building diagnostics: A review,” Appl. Energy, vol. 134, pp. 531–549, Dec. 2014, doi: 10.1016/J.APENERGY.2014.08.005.

A. Kandemir-Yucel, A. Tavukcuoglu, and E. N. Caner-Saltik, “In situ assessment of structural timber elements of a historic building by infrared thermography and ultrasonic velocity,” Infrared Phys. Technol., vol. 49, no. 3, pp. 243–248, Jan. 2007, doi: 10.1016/J.INFRARED.2006.06.012.

C. Mattheck, K. Bethge, and W. Albrecht, “HOW TO READ THE RESULTS OF RESISTOGRAPH M,”, vol. 21, no. 4, pp. 331–346, Nov. 2012, doi: 10.1080/03071375.1997.9747179.

C. Mattheck and H. Breloer, “FIELD GUIDE FOR VISUAL TREE ASSESSMENT (VTA),”, vol. 18, no. 1, pp. 1–23, 2012, doi: 10.1080/03071375.1994.9746995.

M. Baietto, A. D. Wilson, D. Bassi, and F. Ferrini, “Evaluation of Three Electronic Noses for Detecting Incipient Wood Decay,” Sensors 2010, Vol. 10, Pages 1062-1092, vol. 10, no. 2, pp. 1062–1092, Jan. 2010, doi: 10.3390/S100201062.

F. E. Kuo and W. C. Sullivan, “Environment and crime in the inner city does vegetation reduce crime?,” Environ. Behav., vol. 33, no. 3, pp. 343–367, 2001, doi: 10.1177/00139160121973025.

G. López, L. A. Basterra, G. Ramón-Cueto, and A. De Diego, “Detection of Singularities and Subsurface Defects in Wood by Infrared Thermography,”, vol. 8, no. 4, pp. 517–536, Jul. 2014, doi: 10.1080/15583058.2012.702369.

A. Habermehl and H. W. Ridder, “COMPUTERISED TOMOGRAPHIC INVESTIGATIONS OF STREET AND PARK TREES,”, vol. 19, no. 4, pp. 419–437, 2012, doi: 10.1080/03071375.1995.9747089.

A. L. Shigo, “Compartmentalization: A Conceptual Framework for Understanding How Trees Grow and Defend Themselves,”, vol. 22, no. 1, pp. 189–214, Nov. 2003, doi: 10.1146/ANNUREV.PY.22.090184.001201.

I. García-Tejero, V. H. Durán-Zuazo, J. Arriaga, A. Hernández, L. M. Vélez, and J. L. Muriel-Fernández, “Approach to assess infrared thermal imaging of almond trees under water-stress conditions,” Fruits, vol. 67, no. 6, pp. 463–474, 2012, doi: 10.1051/FRUITS/2012040.

G. Nicolotti, L. V. Socco, R. Martinis, A. Godio, and L. Sambuelli, “Application and comparison of three tomographic techiques for detection decay in trees,” J. Arboric., vol. 29, no. 2, pp. 66–78, Mar. 2003, doi: 10.48044/JAUF.2003.009.

R. Pitarma, J. Crisóstomo, and L. Jorge, “Analysis of materials emissivity based on image software,” Adv. Intell. Syst. Comput., vol. 444, pp. 749–757, 2016, doi: 10.1007/978-3-319-31232-3_70/COVER.

J. Oliva, C. Romeralo, and J. Stenlid, “Accuracy of the Rotfinder instrument in detecting decay on Norway spruce (Picea abies) trees,” For. Ecol. Manage., vol. 262, no. 8, pp. 1378–1386, Oct. 2011, doi: 10.1016/J.FORECO.2011.06.033.

S. Roy, J. Byrne, and C. Pickering, “A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones,” Urban For. Urban Green., vol. 11, no. 4, pp. 351–363, Jan. 2012, doi: 10.1016/J.UFUG.2012.06.006.

A. Wyckhuyse and X. Maldague, “A study of wood inspection by infrared thermography, part I: Wood pole inspection by infrared thermography,” Res. Nondestruct. Eval., vol. 13, no. 1, pp. 1–12, 2001, doi: 10.1080/09349840109409682.

M. Bellett-Travers, “A RISK ASSESSMENT METHODOLOGY FOR TREES IN PARKLAND BASED ON COMPARATIVE POPULATION ANALYSIS,”, vol. 33, no. 1, pp. 3–14, 2012, doi: 10.1080/03071375.2010.9747588.

M. Maimaitiyiming et al., “Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation,” ISPRS J. Photogramm. Remote Sens., vol. 89, no. February 2018, pp. 59–66, 2014, doi: 10.1016/j.isprsjprs.2013.12.010.

J. Anand, A. K. Gosain, and R. Khosa, “Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model,” Sci. Total Environ., vol. 644, pp. 503–519, Dec. 2018, doi: 10.1016/J.SCITOTENV.2018.07.017.

J. Zhang, L. He, M. Karkee, Q. Zhang, X. Zhang, and Z. Gao, “Branch detection for apple trees trained in fruiting wall architecture using depth features and Regions-Convolutional Neural Network (R-CNN),” Comput. Electron. Agric., vol. 155, pp. 386–393, Dec. 2018, doi: 10.1016/J.COMPAG.2018.10.029.

M. P. Bishop et al., “Climate Change and Mountain Topographic Evolution in the Central Karakoram, Pakistan,”, vol. 100, no. 4, pp. 772–793, 2010, doi: 10.1080/00045608.2010.500521.

N. A. Ibharim, M. A. Mustapha, T. Lihan, and A. G. Mazlan, “Mapping mangrove changes in the Matang Mangrove Forest using multi temporal satellite imageries,” Ocean Coast. Manag., vol. 114, pp. 64–76, Sep. 2015, doi: 10.1016/J.OCECOAMAN.2015.06.005.

M. Ahmed, N. Khan, M. Wahab, U. Zafar, and J. Palmer, “Climate/growth correlations of tree species in the indus basin of the karakorum range, North Pakistan,” IAWA J., vol. 33, no. 1, pp. 51–61, 2012, doi: 10.1163/22941932-90000079.

P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, “Random Forests for land cover classification,” Pattern Recognit. Lett., vol. 27, no. 4, pp. 294–300, Mar. 2006, doi: 10.1016/J.PATREC.2005.08.011.




How to Cite

Asad Waseem, Aamer Amin, Jamal Hassan, & Tahir Mahmood. (2023). Agri-Health Assessment by their Thermal Responses. International Journal of Agriculture and Sustainable Development, 5(1), 41–51. Retrieved from