Effects of Pesticides: A Review

Authors

  • Saira Batool Centre for Integrated Mountain Research (CIMR),Universityof the Punjab, Lahore
  • Areeba Amer Centre for Integrated Mountain Research (CIMR), University of the Punjab, Lahore
  • Qammar Shabbir Rana National Defense University Islamabad
  • Raja Rizwan Javed National Defense University Islamabad

Keywords:

Pesticide, Bacteria, Microbiotic activity

Abstract

There has been a rise in the application of pesticides in recent decades to combat plant diseases, weeds, and insects. Insects and other animals that aren't the intended targets of pesticides have been the subject of numerous scientific investigations. The purpose of this article is to summarise and review the literature on the subject of how pesticides affect animal microbiomes. Pesticides have the power to alter the microbiomes of a wide range of animals, including mammals and insects. Examples include the diversity of bacteria, the diversity of bacterial ratios, and the taxonomic composition of bacteria. Pesticide exposure changes an animal's microbiota, which decreases the animal's resistance to infection. If pesticides have unintended consequences, they could be a worldwide issue for pollinators. Pesticides may also have a lethal effect on insects by altering the composition of their gut microbiota, making insects more susceptible to infection from pathogenic microflora. Furthermore, pesticides can alter reproductive success, vitality, and offspring traits. The methods for improving the bees' microbiome are discussed.

References

I. Mahmood, S. R. Imadi, K. Shazadi, A. Gul, and K. R. Hakeem, “Effects of pesticides on environment,” Plant, Soil Microbes Vol. 1 Implic. Crop Sci., pp. 253–269, Jan. 2016, doi: 10.1007/978-3-319-27455-3_13/COVER.

E. Montesinos, “Development, registration and commercialization of microbial pesticides for plant protection,” Int. Microbiol., vol. 6, no. 4, pp. 245–252, Sep. 2003, doi: 10.1007/S10123-003-0144-X/METRICS.

J. E. A. Toxicol and F. Sánchez-bayo, “Insecticides Mode of Action in Relation to Their Toxicity to Non-Target Organisms,” J. Environ. Anal. Toxicol., vol. s4, 2012, doi: 10.4172/2161-0525.s4-002.

R. Lemus and A. Abdelghani, “Chlorpyrifos: An unwelcome pesticide in our homes,” Rev. Environ. Health, vol. 15, no. 4, pp. 421–433, Oct. 2000, doi: 10.1515/REVEH.2000.15.4.421/MACHINEREADABLECITATION/RIS.

D. Esser et al., “Functions of the Microbiota for the Physiology of Animal Metaorganisms,” J. Innate Immun., vol. 11, no. 5, pp. 393–404, Jul. 2019, doi: 10.1159/000495115.

S. Bahrndorff, T. Alemu, T. Alemneh, and J. Lund Nielsen, “The Microbiome of Animals: Implications for Conservation Biology,” Int. J. Genomics, vol. 2016, 2016, doi: 10.1155/2016/5304028.

P. Spanogiannopoulos, E. N. Bess, R. N. Carmody, and P. J. Turnbaugh, “The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism,” Nat. Rev. Microbiol. 2016 145, vol. 14, no. 5, pp. 273–287, Mar. 2016, doi: 10.1038/nrmicro.2016.17.

S. Romero, A. Nastasa, A. Chapman, W. K. Kwong, and L. J. Foster, “The honey bee gut microbiota: strategies for study and characterization,” Insect Mol. Biol., vol. 28, no. 4, pp. 455–472, Aug. 2019, doi: 10.1111/IMB.12567.

P. Dai et al., “The Herbicide Glyphosate Negatively Affects Midgut Bacterial Communities and Survival of Honey Bee during Larvae Reared in Vitro,” J. Agric. Food Chem., vol. 66, no. 29, pp. 7786–7793, Jul. 2018, doi: 10.1021/ACS.JAFC.8B02212/SUPPL_FILE/JF8B02212_SI_001.PDF.

T. Lu et al., “The fungicide azoxystrobin promotes freshwater cyanobacterial dominance through altering competition,” Microbiome, vol. 7, no. 1, pp. 1–13, Sep. 2019, doi: 10.1186/S40168-019-0744-0/FIGURES/5.

Q. Zhang et al., “The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus,” Environ. Int., vol. 131, p. 104965, Oct. 2019, doi: 10.1016/J.ENVINT.2019.104965.

M. Marinozzi et al., “The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community,” Environ. Sci. Pollut. Res., vol. 20, no. 4, pp. 2546–2555, Apr. 2013, doi: 10.1007/S11356-012-1165-9/METRICS.

N. Simon-Delso et al., “Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites,” Environ. Sci. Pollut. Res., vol. 22, no. 1, pp. 5–34, Jan. 2015, doi: 10.1007/S11356-014-3470-Y/TABLES/3.

W. Peng, S. S. Lam, and C. Sonne, “Support Austria’s glyphosate ban,” Science (80-. )., vol. 367, no. 6475, pp. 257–258, Jan. 2020, doi: 10.1126/SCIENCE.ABA5642/ASSET/CF375FDD-86AB-471D-B721-01541E06E81E/ASSETS/SCIENCE.ABA5642.FP.PNG.

M. T. Bartling, A. Vilcinskas, and K. Z. Lee, “Sub-Lethal Doses of Clothianidin Inhibit the Conditioning and Biosensory Abilities of the Western Honeybee Apis mellifera,” Insects 2019, Vol. 10, Page 340, vol. 10, no. 10, p. 340, Oct. 2019, doi: 10.3390/INSECTS10100340.

E. Powell, N. Ratnayeke, and N. A. Moran, “Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees,” Mol. Ecol., vol. 25, no. 18, pp. 4461–4471, Sep. 2016, doi: 10.1111/MEC.13787.

V. L. Lozano et al., “Sex-dependent impact of Roundup on the rat gut microbiome,” Toxicol. Reports, vol. 5, pp. 96–107, Jan. 2018, doi: 10.1016/J.TOXREP.2017.12.005.

D. Goulson, “REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides,” J. Appl. Ecol., vol. 50, no. 4, pp. 977–987, Aug. 2013, doi: 10.1111/1365-2664.12111.

C. I. Abramson et al., “Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli,” J. Insect Sci., vol. 10, no. 1, Jan. 2010, doi: 10.1673/031.010.12201/18184283/JIS10-0122.PDF.

C. J. Rhodes, “Pollinator Decline – An Ecological Calamity in the Making?,” https://doi.org/10.3184/003685018X15202512854527, vol. 101, no. 2, pp. 121–160, Jun. 2018, doi: 10.3184/003685018X15202512854527.

J. Stanley and G. Preetha, “Pesticide Toxicity to Arthropod Predators: Exposure, Toxicity and Risk Assessment Methodologies,” Pestic. Toxic. to Non-target Org., pp. 1–98, 2016, doi: 10.1007/978-94-017-7752-0_1.

M. M. Bredeson and J. G. Lundgren, “Neonicotinoid insecticidal seed-treatment on corn contaminates interseeded cover crops intended as habitat for beneficial insects,” Ecotoxicology, vol. 28, no. 2, pp. 222–228, Mar. 2019, doi: 10.1007/S10646-018-02015-9/METRICS.

A. Mendler et al., “Mucosal-associated invariant T-Cell (MAIT) activation is altered by chlorpyrifos- and glyphosate-treated commensal gut bacteria,” J. Immunotoxicol., vol. 17, no. 1, pp. 10–20, Jan. 2020, doi: 10.1080/1547691X.2019.1706672/SUPPL_FILE/IIMT_A_1706672_SM0424.ZIP.

V. J. McCracken, J. M. Simpson, R. I. Mackie, and H. R. Gaskins, “Molecular Ecological Analysis of Dietary and Antibiotic-Induced Alterations of the Mouse Intestinal Microbiota,” J. Nutr., vol. 131, no. 6, pp. 1862–1870, Jun. 2001, doi: 10.1093/JN/131.6.1862.

P. Roman, D. Cardona, L. Sempere, and F. Carvajal, “Microbiota and organophosphates,” Neurotoxicology, vol. 75, pp. 200–208, Dec. 2019, doi: 10.1016/J.NEURO.2019.09.013.

K. Matsuda, M. Ihara, and D. B. Sattelle, “Neonicotinoid Insecticides: Molecular Targets, Resistance, and Toxicity,” https://doi.org/10.1146/annurev-pharmtox-010818-021747, vol. 60, pp. 241–255, Jan. 2020, doi: 10.1146/ANNUREV-PHARMTOX-010818-021747.

D. A. Hill et al., “Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis,” Mucosal Immunol., vol. 3, no. 2, pp. 148–158, Mar. 2010, doi: 10.1038/MI.2009.132/ATTACHMENT/0555049A-E938-4031-9041-F2F6E71AAFB8/MMC5.PPT.

A. Apprill, “Marine animal microbiomes: Toward understanding host-microbiome interactions in a changing ocean,” Front. Mar. Sci., vol. 4, no. JUL, p. 222, Jul. 2017, doi: 10.3389/FMARS.2017.00222/BIBTEX.

J. Praet, A. Parmentier, R. Schmid-Hempel, I. Meeus, G. Smagghe, and P. Vandamme, “Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition,” Environ. Microbiol., vol. 20, no. 1, pp. 214–227, Jan. 2018, doi: 10.1111/1462-2920.13973.

H. Connelly, K. Poveda, and G. Loeb, “Landscape simplification decreases wild bee pollination services to strawberry,” Agric. Ecosyst. Environ., vol. 211, pp. 51–56, Dec. 2015, doi: 10.1016/J.AGEE.2015.05.004.

L. Zhu, S. Qi, X. Xue, X. Niu, and L. Wu, “Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.),” Environ. Pollut., vol. 258, p. 113671, Mar. 2020, doi: 10.1016/J.ENVPOL.2019.113671.

C. Jin et al., “Insights Into a Possible Influence on Gut Microbiota and Intestinal Barrier Function During Chronic Exposure of Mice to Imazalil,” Toxicol. Sci., vol. 162, no. 1, pp. 113–123, Mar. 2018, doi: 10.1093/TOXSCI/KFX227.

A. Villalba, M. Maggi, P. M. Ondarza, N. Szawarski, and K. S. B. Miglioranza, “Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment,” Sci. Total Environ., vol. 713, p. 136554, Apr. 2020, doi: 10.1016/J.SCITOTENV.2020.136554.

Z. Meng et al., “Impacts of penconazole and its enantiomers exposure on gut microbiota and metabolic profiles in mice,” J. Agric. Food Chem., vol. 67, no. 30, pp. 8303–8311, Jul. 2019, doi: 10.1021/ACS.JAFC.9B02856/SUPPL_FILE/JF9B02856_SI_001.PDF.

V. Kavitha et al., “Impact of pesticide monocrotophos on microbial populations and histology of intestine in the Indian earthworm Lampito mauritii (Kinberg),” Microb. Pathog., vol. 139, p. 103893, Feb. 2020, doi: 10.1016/J.MICPATH.2019.103893.

X. Chang et al., “Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.),” Environ. Pollut., vol. 259, p. 113846, Apr. 2020, doi: 10.1016/J.ENVPOL.2019.113846.

R. S. Meena et al., “Impact of Agrochemicals on Soil Microbiota and Management: A Review,” L. 2020, Vol. 9, Page 34, vol. 9, no. 2, p. 34, Jan. 2020, doi: 10.3390/LAND9020034.

K. Näpflin and P. Schmid-Hempel, “Immune response and gut microbial community structure in bumblebees after microbiota transplants,” Proc. R. Soc. B Biol. Sci., vol. 283, no. 1831, May 2016, doi: 10.1098/RSPB.2016.0312.

Y. Liang et al., “Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota,” Microbiome, vol. 7, no. 1, pp. 1–15, Feb. 2019, doi: 10.1186/S40168-019-0635-4/FIGURES/8.

K. Raymann, E. V. S. Motta, C. Girard, I. M. Riddington, J. A. Dinser, and N. A. Moran, “Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome,” Appl. Environ. Microbiol., vol. 84, no. 13, Jul. 2018, doi: 10.1128/AEM.00545-18/SUPPL_FILE/ZAM013188579S1.PDF.

M. N. Fanciotti, M. Tejerina, M. R. Benítez-Ahrendts, and M. C. Audisio, “Honey yield of different commercial apiaries treated with Lactobacillus salivarius A3iob, a new bee-probiotic strain,” https://doi.org/10.3920/BM2017.0089, vol. 9, no. 2, pp. 291–298, Dec. 2017, doi: 10.3920/BM2017.0089.

K. Näpflin and P. Schmid-Hempel, “High Gut Microbiota Diversity Provides Lower Resistance against Infection by an Intestinal Parasite in Bumblebees,” https://doi.org/10.1086/698013, vol. 192, no. 2, pp. 131–141, Aug. 2018, doi: 10.1086/698013.

B. Li, Y. Ma, and Y. H. Zhang, “Oxidative stress and hepatotoxicity in the frog, Rana chensinensis, when exposed to low doses of trichlorfon,” http://dx.doi.org/10.1080/03601234.2017.1303321, vol. 52, no. 7, pp. 476–482, Jul. 2017, doi: 10.1080/03601234.2017.1303321.

L. Bosmans et al., “Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris),” PLoS One, vol. 13, no. 10, p. e0204612, Oct. 2018, doi: 10.1371/JOURNAL.PONE.0204612.

L. Evariste, M. Barret, A. Mottier, F. Mouchet, L. Gauthier, and E. Pinelli, “Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies,” Environ. Pollut., vol. 248, pp. 989–999, May 2019, doi: 10.1016/J.ENVPOL.2019.02.101.

C. Hamdi et al., “Gut microbiome dysbiosis and honeybee health,” J. Appl. Entomol., vol. 135, no. 7, pp. 524–533, Aug. 2011, doi: 10.1111/J.1439-0418.2010.01609.X.

N. Blot, L. Veillat, R. Rouzé, and H. Delatte, “Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota,” PLoS One, vol. 14, no. 4, p. e0215466, Apr. 2019, doi: 10.1371/JOURNAL.PONE.0215466.

S. M. Bradberry, A. T. Proudfoot, and J. A. Vale, “Glyphosate poisoning,” Toxicol. Rev., vol. 23, no. 3, pp. 159–167, Aug. 2004, doi: 10.2165/00139709-200423030-00003/METRICS.

E. V. S. Motta, K. Raymann, and N. A. Moran, “Glyphosate perturbs the gut microbiota of honey bees,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 41, pp. 10305–10310, Oct. 2018, doi: 10.1073/PNAS.1803880115/SUPPL_FILE/PNAS.1803880115.SAPP.PDF.

W. Skeff, C. Neumann, and D. E. Schulz-Bull, “Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study,” Mar. Pollut. Bull., vol. 100, no. 1, pp. 577–585, Nov. 2015, doi: 10.1016/J.MARPOLBUL.2015.08.015.

S. G. Potts, J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W. E. Kunin, “Global pollinator declines: Trends, impacts and drivers,” Trends Ecol. Evol., vol. 25, no. 6, pp. 345–353, Jun. 2010, doi: 10.1016/j.tree.2010.01.007.

C. Defois et al., “Food Chemicals Disrupt Human Gut Microbiota Activity And Impact Intestinal Homeostasis As Revealed By In Vitro Systems,” Sci. Reports 2018 81, vol. 8, no. 1, pp. 1–12, Jul. 2018, doi: 10.1038/s41598-018-29376-9.

M. Thomann, E. Imbert, C. Devaux, and P. O. Cheptou, “Flowering plants under global pollinator decline,” Trends Plant Sci., vol. 18, no. 7, pp. 353–359, Jul. 2013, doi: 10.1016/j.tplants.2013.04.002.

D. Wintermantel et al., “Field-level clothianidin exposure affects bumblebees but generally not their pathogens,” Nat. Commun. 2018 91, vol. 9, no. 1, pp. 1–10, Dec. 2018, doi: 10.1038/s41467-018-07914-3.

S. Wu, C. Jin, Y. Wang, Z. Fu, and Y. Jin, “Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice,” Environ. Pollut., vol. 237, pp. 775–783, Jun. 2018, doi: 10.1016/J.ENVPOL.2017.10.129.

S. J. Woo and J. K. Chung, “Effects of trichlorfon on oxidative stress, neurotoxicity, and cortisol levels in common carp, Cyprinus carpio L., at different temperatures,” Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., vol. 229, p. 108698, Mar. 2020, doi: 10.1016/J.CBPC.2019.108698.

Y. Yang, S. Ma, Z. Yan, F. Liu, Q. Diao, and P. Dai, “Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera,” Environ. Pollut., vol. 249, pp. 860–867, Jun. 2019, doi: 10.1016/J.ENVPOL.2019.03.077.

L. Tison et al., “Effects of sublethal doses of thiacloprid and its formulation Calypso® on the learning and memory performance of honey bees,” J. Exp. Biol., vol. 220, no. 20, pp. 3695–3705, Oct. 2017, doi: 10.1242/JEB.154518/258955/AM/EFFECTS-OF-SUBLETHAL-DOSES-OF-THIACLOPRID-AND-ITS.

F. Li et al., “Effects of phoxim exposure on gut microbial composition in the silkworm, Bombyx mori,” Ecotoxicol. Environ. Saf., vol. 189, p. 110011, Feb. 2020, doi: 10.1016/J.ECOENV.2019.110011.

R. P. Kittle, K. J. McDermid, L. Muehlstein, and G. H. Balazs, “Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus,” Mar. Pollut. Bull., vol. 127, pp. 170–174, Feb. 2018, doi: 10.1016/J.MARPOLBUL.2017.11.030.

J. P. Tauber, V. Nguyen, D. Lopez, and J. D. Evans, “Effects of a Resident Yeast from the Honeybee Gut on Immunity, Microbiota, and Nosema Disease,” Insects 2019, Vol. 10, Page 296, vol. 10, no. 9, p. 296, Sep. 2019, doi: 10.3390/INSECTS10090296.

A. Kalia and S. K. Gosal, “Effect of pesticide application on soil microorganisms,” http://dx.doi.org/10.1080/03650341003787582, vol. 57, no. 6, pp. 569–596, Sep. 2011, doi: 10.1080/03650341003787582.

Y. S. Wang, Y. J. Huang, W. C. Chen, and J. H. Yen, “Effect of carbendazim and pencycuron on soil bacterial community,” J. Hazard. Mater., vol. 172, no. 1, pp. 84–91, Dec. 2009, doi: 10.1016/J.JHAZMAT.2009.06.142.

G. Kairo et al., “Drone exposure to the systemic insecticide Fipronil indirectly impairs queen reproductive potential,” Sci. Reports 2016 61, vol. 6, no. 1, pp. 1–12, Aug. 2016, doi: 10.1038/srep31904.

A. T. Reese and R. R. Dunn, “Drivers of microbiome biodiversity: A review of general rules, feces, and ignorance,” MBio, vol. 9, no. 4, Jul. 2018, doi: 10.1128/MBIO.01294-18/ASSET/C3679B63-7501-424D-9D29-D2DD27A04CF3/ASSETS/GRAPHIC/MBO0041839980004.JPEG.

J. E. Pietri, C. Tiffany, and D. Liang, “Disruption of the microbiota affects physiological and evolutionary aspects of insecticide resistance in the German cockroach, an important urban pest,” PLoS One, vol. 13, no. 12, p. e0207985, Dec. 2018, doi: 10.1371/JOURNAL.PONE.0207985.

R. Eisler, R. Eisler, U. S. F. and W. Service, and P. W. R. Center., Dioxin hazards to fish, wildlife, and invertebrates a synoptic review, vol. 23. [Washington, D.C.?]: Fish and Wildlife Service, U.S. Dept. of Interior, 1986. doi: 10.5962/bhl.title.11339.

H. Itoh, K. Tago, M. Hayatsu, and Y. Kikuchi, “Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects,” Nat. Prod. Rep., vol. 35, no. 5, pp. 434–454, May 2018, doi: 10.1039/C7NP00051K.

D. Goulson, G. C. Lye, and B. Darvill, “Decline and Conservation of Bumble Bees,” https://doi.org/10.1146/annurev.ento.53.103106.093454, vol. 53, pp. 191–208, Dec. 2007, doi: 10.1146/ANNUREV.ENTO.53.103106.093454.

J. Bryden, R. J. Gill, R. A. A. Mitton, N. E. Raine, and V. A. A. Jansen, “Chronic sublethal stress causes bee colony failure,” Ecol. Lett., vol. 16, no. 12, pp. 1463–1469, Dec. 2013, doi: 10.1111/ELE.12188.

D. Alberoni, F. Gaggìa, L. Baffoni, and D. Di Gioia, “Beneficial microorganisms for honey bees: problems and progresses,” Appl. Microbiol. Biotechnol. 2016 10022, vol. 100, no. 22, pp. 9469–9482, Oct. 2016, doi: 10.1007/S00253-016-7870-4.

D. Goulson, E. Nicholls, C. Botías, and E. L. Rotheray, “Bee declines driven by combined Stress from parasites, pesticides, and lack of flowers,” Science (80-. )., vol. 347, no. 6229, Mar. 2015, doi: 10.1126/SCIENCE.1255957/ASSET/25ACDBB7-03E0-4D87-BEC1-0935B850C29F/ASSETS/GRAPHIC/347_1255957_FA.JPEG.

E. L. M. Figuerola et al., “Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production,” PLoS One, vol. 7, no. 11, p. e51075, Nov. 2012, doi: 10.1371/JOURNAL.PONE.0051075.

D. Shin and C. T. Smartt, “Assessment of esterase gene expression as a risk marker for insecticide resistance in Florida Culex nigripalpus (Diptera: Culicidae),” J. Vector Ecol., vol. 41, no. 1, pp. 63–71, Jun. 2016, doi: 10.1111/JVEC.12195.

J. Zhan et al., “Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota,” Microbiome, vol. 6, no. 1, pp. 1–13, Dec. 2018, doi: 10.1186/S40168-018-0602-5/FIGURES/7.

V. O. Ezenwa, N. M. Gerardo, D. W. Inouye, M. Medina, and J. B. Xavier, “Animal Behavior and the Microbiome,” Science (80-. )., vol. 338, no. 6104, pp. 198–199, Oct. 2012, doi: 10.1126/SCIENCE.1227412.

T. Diaz, E. del-Val, R. Ayala, and J. Larsen, “Alterations in honey bee gut microorganisms caused by Nosema spp. and pest control methods,” Pest Manag. Sci., vol. 75, no. 3, pp. 835–843, Mar. 2019, doi: 10.1002/PS.5188.

J. W. Li, B. Fang, G. F. Pang, M. Zhang, and F. Z. Ren, “Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats,” Pestic. Biochem. Physiol., vol. 159, pp. 68–79, Sep. 2019, doi: 10.1016/J.PESTBP.2019.05.018.

J. Ludvigsen, D. Porcellato, G. V. Amdam, and K. Rudi, “Addressing the diversity of the honeybee gut symbiont Gilliamella: Description of Gilliamella apis sp. nov., isolated from the gut of honeybees (Apis mellifera),” Int. J. Syst. Evol. Microbiol., vol. 68, no. 5, pp. 1762–1770, May 2018, doi: 10.1099/IJSEM.0.002749/CITE/REFWORKS.

A. Parmentier et al., “A prokaryotic–eukaryotic relation in the fat body of Bombus terrestris,” Environ. Microbiol. Rep., vol. 10, no. 6, pp. 644–650, Dec. 2018, doi: 10.1111/1758-2229.12673.

A. Parmentier, I. Meeus, F. Van Nieuwerburgh, D. Deforce, P. Vandamme, and G. Smagghe, “A different gut microbial community between larvae and adults of a wild bumblebee nest (Bombus pascuorum),” Insect Sci., vol. 25, no. 1, pp. 66–74, Feb. 2018, doi: 10.1111/1744-7917.12381.

Downloads

Published

2022-06-02

How to Cite

Saira Batool, Areeba Amer, Qammar Shabbir Rana, & Raja Rizwan Javed. (2022). Effects of Pesticides: A Review. International Journal of Agriculture and Sustainable Development, 4(2), 74–84. Retrieved from https://journal.50sea.com/index.php/IJASD/article/view/460

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>