Impact Assessment of Climatic Variability on Agricultural Productivity

Authors

  • Ali Imam Mirza Govt College University Lahore
  • Abdul Baqi Government Boys Postgraduate College, Sariab Road Quetta

Keywords:

Farming Practices, Food Risk Management, Climatic Variability, Food Security

Abstract

In light of the latest research on climate change, a growing number of people are advocating for a worldwide shift to veganism to help lessen the impact of this impending ecological disaster. Animal agriculture has been criticized for allegedly being a major source of greenhouse gas emissions. However, other studies have found that livestock farming may contribute less to GHG emissions than previously estimated, suggesting that eliminating meat from the diet (i.e., moving to a vegan diet) can reduce global GHG emissions. Natural resources, biodiversity, and economies are all predicted to be directly impacted by a paradigm shift in agricultural production. However, relying solely on crop production and a vegan diet may cause serious issues with agricultural crop residues, land and water scarcity, and the loss of important plant and animal genetic materials. This "all eggs in one basket" strategy could affect international meat trade, alter the course of some economies, and put the nation's food supply at risk in the event of a widespread outbreak of pests or diseases. This review found that the integrity of future land and water resources may be threatened by crop-based ideology, but that this ideology would make a significant contribution to lowering GHG emissions. Food security, consumer preferences, environmental protection, and a fair income for farmers around the world all necessitate the development of appropriate instruments within agricultural policies. All agri-food industry players, from government officials to farmers, should work together on a unified plan to lower the carbon footprint of our food supply while also safeguarding the (agri)environment and ensuring stable incomes.

References

J. K. Coulter, “World Agriculture: Towards 2015/2030. An FAO Perspective. Edited by J. Bruinsma. Rome: FAO and London: Earthscan (2003), pp. 432, £35.00 Paperback. ISBN 92-5-104835-5,” Exp. Agric., vol. 40, no. 2, pp. 269–269, Apr. 2004, doi: 10.1017/S0014479704211796.

G. Ondrasek, “Water scarcity and water stress in agriculture,” Physiol. Mech. Adapt. Strateg. Plants Under Chang. Environ., vol. 1, pp. 75–96, Nov. 2014, doi: 10.1007/978-1-4614-8591-9_4/COVER.

D. Molden et al., “Water Availability and Its Use in Agriculture,” Treatise Water Sci., vol. 4, pp. 707–732, Jan. 2011, doi: 10.1016/B978-0-444-53199-5.00108-1.

P. C. West et al., “Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 46, pp. 19645–19648, Nov. 2010, doi: 10.1073/PNAS.1011078107/SUPPL_FILE/ST01.DOC.

J. de Boer, H. Schösler, and H. Aiking, “Towards a reduced meat diet: Mindset and motivation of young vegetarians, low, medium and high meat-eaters,” Appetite, vol. 113, pp. 387–397, Jun. 2017, doi: 10.1016/J.APPET.2017.03.007.

M. D. Tuti et al., “Sustainable Intensification of a Rice–Maize System through Conservation Agriculture to Enhance System Productivity in Southern India,” Plants 2022, Vol. 11, Page 1229, vol. 11, no. 9, p. 1229, May 2022, doi: 10.3390/PLANTS11091229.

H. Dagevos and J. Voordouw, “Sustainability and meat consumption: is reduction realistic?,” http://dx.doi.org/10.1080/15487733.2013.11908115, vol. 9, no. 2, pp. 60–69, 2017, doi: 10.1080/15487733.2013.11908115.

A. Santillán‐fernández, Y. Salinas‐moreno, J. R. Valdez‐lazalde, and S. Pereira‐lorenzo, “Spatial-Temporal Evolution of Scientific Production about Genetically Modified Maize,” Agric. 2021, Vol. 11, Page 246, vol. 11, no. 3, p. 246, Mar. 2021, doi: 10.3390/AGRICULTURE11030246.

J. A. Foley et al., “Solutions for a cultivated planet,” Nat. 2011 4787369, vol. 478, no. 7369, pp. 337–342, Oct. 2011, doi: 10.1038/nature10452.

G. Ondrasek et al., “Salt Stress in Plants and Mitigation Approaches,” Plants 2022, Vol. 11, Page 717, vol. 11, no. 6, p. 717, Mar. 2022, doi: 10.3390/PLANTS11060717.

K. A. Corey, D. J. Barta, and D. L. Henninger, “Photosynthesis and respiration of a wheat stand at reduced atmospheric pressure and reduced oxygen,” Adv. Space Res., vol. 20, no. 10, pp. 1869–1877, 1997, doi: 10.1016/S0273-1177(97)00854-5.

B. M. Flohr, J. R. Hunt, J. A. Kirkegaard, and J. R. Evans, “Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia,” F. Crop. Res., vol. 209, pp. 108–119, Aug. 2017, doi: 10.1016/J.FCR.2017.04.012.

J. G. J. Olivier, A. F. Bouwman, K. W. Van Der Hoek, and J. J. M. Berdowski, “Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990,” Environ. Pollut., vol. 102, no. 1, pp. 135–148, Jan. 1998, doi: 10.1016/S0269-7491(98)80026-2.

M. Løyche and W. Senior, “Forestry Department Food and Agriculture Organization of the United Nations GLOBAL FOREST RESOURCES ASSESSMENT 2010 COUNTRY REPORTS A C K U 2 The Forest Resources Assessment Programme,” 2010, Accessed: Feb. 27, 2023. [Online]. Available: www.fao.org/forestry/fra

X. Xiao et al., “Mapping paddy rice agriculture in southern China using multi-temporal MODIS images,” Remote Sens. Environ., vol. 95, no. 4, pp. 480–492, Apr. 2005, doi: 10.1016/J.RSE.2004.12.009.

F. Akhtar, U. K. Awan, B. Tischbein, and U. W. Liaqat, “A phenology based geo-informatics approach to map land use and land cover (2003–2013) by spatial segregation of large heterogenic river basins,” Appl. Geogr., vol. 88, pp. 48–61, Nov. 2017, doi: 10.1016/J.APGEOG.2017.09.003.

M. Gonzalez Ronquillo and J. C. Angeles Hernandez, “Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods,” Food Control, vol. 72, pp. 255–267, Feb. 2017, doi: 10.1016/J.FOODCONT.2016.03.001.

D. S. Powlson, C. M. Stirling, C. Thierfelder, R. P. White, and M. L. Jat, “Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?,” Agric. Ecosyst. Environ., vol. 220, pp. 164–174, Mar. 2016, doi: 10.1016/J.AGEE.2016.01.005.

A. T. Yazdani and N. Ali, “Seed policy in Pakistan: The impact of new laws on food sovereignty and sustainable development,” Lahore J. Policy Stud., vol. 7, no. 1, pp. 77–106, 2017, [Online]. Available: https://ecommons.aku.edu/pakistan_ied_pdck/294

W. K. Lauenroth, A. A. Wade, M. A. Williamson, B. E. Ross, S. Kumar, and D. P. Cariveau, “Uncertainty in calculations of net primary production for grasslands,” Ecosystems, vol. 9, no. 5, pp. 843–851, 2006, doi: 10.1007/s10021-005-0072-z.

S. Parvez, K. A. Malik, S. Ah Kang, and H. Y. Kim, “Probiotics and their fermented food products are beneficial for health,” J. Appl. Microbiol., vol. 100, no. 6, pp. 1171–1185, Jun. 2006, doi: 10.1111/J.1365-2672.2006.02963.X.

M. Baietto, A. D. Wilson, D. Bassi, and F. Ferrini, “Evaluation of Three Electronic Noses for Detecting Incipient Wood Decay,” Sensors 2010, Vol. 10, Pages 1062-1092, vol. 10, no. 2, pp. 1062–1092, Jan. 2010, doi: 10.3390/S100201062.

M. S. Reed et al., “Reorienting land degradation towards sustainable land management: Linking sustainable livelihoods with ecosystem services in rangeland systems,” J. Environ. Manage., vol. 151, pp. 472–485, Mar. 2015, doi: 10.1016/J.JENVMAN.2014.11.010.

C. E. LaCanne and J. G. Lundgren, “Regenerative agriculture: merging farming and natural resource conservation profitably,” Dec. 2017, doi: 10.7287/PEERJ.PREPRINTS.3464V1.

J. Poore and T. Nemecek, “Reducing food’s environmental impacts through producers and consumers,” Science (80-. )., vol. 360, no. 6392, pp. 987–992, Jun. 2018, doi: 10.1126/SCIENCE.AAQ0216/SUPPL_FILE/AAQ0216_DATAS2.XLS.

G. Kuehne et al., “Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy,” Agric. Syst., vol. 156, no. October, pp. 115–125, 2017, doi: 10.1016/j.agsy.2017.06.007.

J. Weißmüller, “Pesticide Chemistry. (Reihe: Studies in Environmental Science, Vol. 32). Herausgegeben von Gy. Matolcsy, M. Nádasy und V. Andriska. Elsevier Science Publishers, Amsterdam 1988. 800 S., geb. HF1. 495.00. – ISBN 0-444-98903-X,” Angew. Chemie, vol. 102, no. 2, pp. 236–237, Feb. 1990, doi: 10.1002/ANGE.19901020238.

M. Westoby, B. Walker, and I. Noy-Meir, “Opportunistic management for rangelands not at equilibrium,” J. Range Manag., vol. 42, no. 4, pp. 266–274, 1989, doi: 10.2307/3899492.

“OECD-FAO Agricultural Outlook 2020-2029,” Jul. 2020, doi: 10.1787/1112C23B-EN.

R. Savic et al., “Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube,” Agric. 2022, Vol. 12, Page 935, vol. 12, no. 7, p. 935, Jun. 2022, doi: 10.3390/AGRICULTURE12070935.

J. Frank, “Meat as a bad habit: A case for positive feedback in consumption preferences leading to lock-in,” http://dx.doi.org/10.1080/00346760701635833, vol. 65, no. 3, pp. 319–348, Sep. 2007, doi: 10.1080/00346760701635833.

N. Guyennon, E. Romano, and I. Portoghese, “Long-term climate sensitivity of an integrated water supply system: The role of irrigation,” Sci. Total Environ., vol. 565, pp. 68–81, Sep. 2016, doi: 10.1016/J.SCITOTENV.2016.04.157.

A. Mottet, C. de Haan, A. Falcucci, G. Tempio, C. Opio, and P. Gerber, “Livestock: On our plates or eating at our table? A new analysis of the feed/food debate,” Glob. Food Sec., vol. 14, pp. 1–8, Sep. 2017, doi: 10.1016/J.GFS.2017.01.001.

“Livestock sector development for poverty reduction: an economic and policy perspective – Livestock’s many virtues. J. Otte, A. Costales, J. Dijkman, U. Pica-Ciamarra, T. Robinson, V. Ahuja, C. Ly and D. Roland-Holst. FAO. Published in 2102, pp. 161. ISBN 978-92-5-107242-4. Available at http://www.fao.org/docrep/015/i2744e/i2744e00.pdf,” Anim. Genet. Resour. génétiques Anim. genéticos Anim., vol. 51, pp. 157–157, Dec. 2012, doi: 10.1017/S2078633612000665.

D. Wolfenson and Z. Roth, “Impact of heat stress on cow reproduction and fertility,” Anim. Front., vol. 9, no. 1, pp. 32–38, Jan. 2019, doi: 10.1093/AF/VFY027.

M. Herrero et al., “Greenhouse gas mitigation potentials in the livestock sector,” Nat. Clim. Chang. 2016 65, vol. 6, no. 5, pp. 452–461, Mar. 2016, doi: 10.1038/nclimate2925.

J. Morrison, “Grasslands of the World.Food and Agriculture Organization of the United Nations, (2005), pp. 514, US$48.00 (paperback). ISBN 92-5-105337-5,” Exp. Agric., vol. 42, no. 2, pp. 254–255, Apr. 2006, doi: 10.1017/S0014479705303541.

M. Springmann et al., “Global and regional health effects of future food production under climate change: A modelling study,” Lancet, vol. 387, no. 10031, pp. 1937–1946, May 2016, doi: 10.1016/S0140-6736(15)01156-3.

D. Tilman and M. Clark, “Food, Agriculture & the Environment: Can We Feed the World & Save the Earth?,” Daedalus, vol. 144, no. 4, pp. 8–23, Sep. 2015, doi: 10.1162/DAED_A_00350.

P. Kubisz, G. Dalton, E. Majewski, and K. Pogodzińska, “Facts and Myths about GM Food—The Case of Poland,” Agric. 2021, Vol. 11, Page 791, vol. 11, no. 8, p. 791, Aug. 2021, doi: 10.3390/AGRICULTURE11080791.

L. Bouwman et al., “Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 52, pp. 20882–20887, Dec. 2013, doi: 10.1073/PNAS.1012878108/ASSET/5D03CF80-553D-4A42-8322-2C0363E885D0/ASSETS/GRAPHIC/PNAS.1012878108EQ1.JPEG.

D. W. Crowder and J. G. Illan, “Expansion of organic agriculture,” Nat. Food 2021 25, vol. 2, no. 5, pp. 324–325, May 2021, doi: 10.1038/s43016-021-00288-8.

S. Philander, “Encyclopedia of Global Warming and Climate Change,” Encycl. Glob. Warm. Clim. Chang., May 2012, doi: 10.4135/9781412963893.

F. Wang, J. Zheng, B. Yang, J. Jiang, Y. Fu, and D. Li, “Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials,” J. Am. Heart Assoc., vol. 4, no. 10, Oct. 2015, doi: 10.1161/JAHA.115.002408.

P. Alexander, M. D. A. Rounsevell, C. Dislich, J. R. Dodson, K. Engström, and D. Moran, “Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy,” Glob. Environ. Chang., vol. 35, pp. 138–147, Nov. 2015, doi: 10.1016/J.GLOENVCHA.2015.08.011.

S. Siebert, P. Döll, J. Hoogeveen, J. M. Faures, K. Frenken, and S. Feick, “Development and validation of the global map of irrigation areas,” Hydrol. Earth Syst. Sci., vol. 9, no. 5, pp. 535–547, Nov. 2005, doi: 10.5194/HESS-9-535-2005.

V. Nicaise, “Crop immunity against viruses: Outcomes and future challenges,” Front. Plant Sci., vol. 5, no. NOV, p. 660, Nov. 2014, doi: 10.3389/FPLS.2014.00660/BIBTEX.

F. Raihan, G. Ondrasek, M. S. Islam, J. M. Maina, and L. J. Beaumont, “Combined impacts of climate and land use changes on long-term streamflow in the upper halda basin, Bangladesh,” Sustain., vol. 13, no. 21, p. 12067, Nov. 2021, doi: 10.3390/SU132112067/S1.

N. Vuichard, P. Ciais, L. Belelli, P. Smith, and R. Valentini, “Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990,” Global Biogeochem. Cycles, vol. 22, no. 4, Dec. 2008, doi: 10.1029/2008GB003212.

R. Rötter and S. C. Van De Geijn, “Climate change effects on plant growth, crop yield and livestock,” Clim. Change, vol. 43, no. 4, pp. 651–681, 1999, doi: 10.1023/A:1005541132734/METRICS.

B. Coluccia, G. P. Agnusdei, F. De Leo, Y. Vecchio, C. M. La Fata, and P. P. Miglietta, “Assessing the carbon footprint across the supply chain: Cow milk vs soy drink,” Sci. Total Environ., vol. 806, p. 151200, Feb. 2022, doi: 10.1016/J.SCITOTENV.2021.151200.

J. Farifteh, A. Farshad, and R. J. George, “Assessing salt-affected soils using remote sensing, solute modelling, and geophysics,” Geoderma, vol. 130, no. 3–4, pp. 191–206, Feb. 2006, doi: 10.1016/J.GEODERMA.2005.02.003.

S. Mann and R. Necula, “Are vegetarianism and veganism just half the story? Empirical insights from Switzerland,” Br. Food J., vol. 122, no. 4, pp. 1056–1067, Mar. 2020, doi: 10.1108/BFJ-07-2019-0499/FULL/XML.

A. T. Adesogan, A. H. Havelaar, S. L. McKune, M. Eilittä, and G. E. Dahl, “Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters,” Glob. Food Sec., vol. 25, p. 100325, Jun. 2020, doi: 10.1016/J.GFS.2019.100325.

M. Springmann, H. C. J. Godfray, M. Rayner, and P. Scarborough, “Analysis and valuation of the health and climate change cobenefits of dietary change,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 15, pp. 4146–4151, Apr. 2016, doi: 10.1073/PNAS.1523119113/SUPPL_FILE/PNAS.1523119113.SAPP.PDF.

N. Bandumula, S. Rathod, G. Ondrasek, M. P. Pillai, and R. M. Sundaram, “An Economic Evaluation of Improved Rice Production Technology in Telangana State, India,” Agric. 2022, Vol. 12, Page 1387, vol. 12, no. 9, p. 1387, Sep. 2022, doi: 10.3390/AGRICULTURE12091387.

M. Afzal, S. S. Alghamdi, H. H. Migdadi, E. El-Harty, and S. A. Al-Faifi, “Agronomical and Physiological Responses of Faba Bean Genotypes to Salt Stress,” Agric., vol. 12, no. 2, p. 235, Feb. 2022, doi: 10.3390/AGRICULTURE12020235/S1.

C. Perrings and G. Halkos, “Agriculture and the threat to biodiversity in sub-saharan africa,” Environ. Res. Lett., vol. 10, no. 9, p. 095015, Sep. 2015, doi: 10.1088/1748-9326/10/9/095015.

E. L. Birch, “A Review of ‘Climate Change 2014: Impacts, Adaptation, and Vulnerability’ and ‘Climate Change 2014: Mitigation of Climate Change,’” https://doi.org/10.1080/01944363.2014.954464, vol. 80, no. 2, pp. 184–185, Apr. 2014, doi: 10.1080/01944363.2014.954464.

G. Ondrasek, H. Bakić Begić, D. Romić, Brkić, S. Husnjak, and M. Bubalo Kovačić, “A novel LUMNAqSoP approach for prioritising groundwater monitoring stations for implementation of the Nitrates Directive,” Environ. Sci. Eur., vol. 33, no. 1, pp. 1–16, Dec. 2021, doi: 10.1186/S12302-021-00467-1/FIGURES/5.

V. Messina, V. Melina, and A. R. Mangels, “A new food guide for North American vegetarians,” J. Am. Diet. Assoc., vol. 103, no. 6, pp. 771–775, Jun. 2003, doi: 10.1053/jada.2003.50141.

S. S. Lim et al., “A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010,” Lancet, vol. 380, no. 9859, pp. 2224–2260, 2012, doi: 10.1016/S0140-6736(12)61766-8.

Downloads

Published

2022-08-10

How to Cite

Ali Imam Mirza, & Abdul Baqi. (2022). Impact Assessment of Climatic Variability on Agricultural Productivity. International Journal of Agriculture and Sustainable Development, 4(3), 91–104. Retrieved from https://journal.50sea.com/index.php/IJASD/article/view/465

Issue

Section

Articles