Carbon Sequestration and Agro-forestry

Authors

  • Azam Sohail Arid Agriculture University Rawalpindi

Keywords:

Carbon Reserves, Organic Matter, Soil nutrients

Abstract

Degrading agroforestry systems have the potential to store large amounts of carbon if they are properly maintained. The most common C pool considered in studies of soil C status changes in these ecosystems is labile C. Alterations to land use and soil management influence the proportion of soil organic matter that is easily decomposed to that which is more stable (SOM). The effects of land use on soil C storage over the long term can only be understood by analyzing stable C pools. The SOM's subsequent interaction with minerals and incorporation into soil aggregates both contribute to the SOM's stability. Substituting stubborn compounds for the inert SOM fraction (like lignin and chitin). Macroaggregates reflect the influence of plant roots and coarse intra-aggregate particulate SOM (POM) more so than the effects of fine inter-aggregate POM, clay concentration, and humified SOM percentage. It is often the case that precipitable organic matter (POM) is more sensitive to alterations in soil management than total SOM. Mycorrhizal fungi produce a chitin-based protein called global in to shield their hyphae. Further study is needed before any conclusions can be reached about the impact of glomalin on C sequestration in agroforestry soils. Roots' CO2 output must be lowered, and stubborn root C must be fortified, to name only two of the many difficulties.

References

D. Feliciano, A. Ledo, J. Hillier, and D. R. Nayak, “Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions?,” Agric. Ecosyst. Environ., vol. 254, pp. 117–129, Feb. 2018, doi: 10.1016/J.AGEE.2017.11.032.

J. C. Neff, A. R. Townsend, G. Gleixner, S. J. Lehman, J. Turnbull, and W. D. Bowman, “Variable effects of nitrogen additions on the stability and turnover of soil carbon,” Nat. 2002 4196910, vol. 419, no. 6910, pp. 915–917, Oct. 2002, doi: 10.1038/nature01136.

M. M. Wander, M. G. Bidart, and S. Aref, “Tillage Impacts on Depth Distribution of Total and Particulate Organic Matter in Three Illinois Soils,” Soil Sci. Soc. Am. J., vol. 62, no. 6, pp. 1704–1711, Nov. 1998, doi: 10.2136/SSSAJ1998.03615995006200060031X.

M. G. A. Van Der Heijden et al., “The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland,” New Phytol., vol. 172, no. 4, pp. 739–752, Dec. 2006, doi: 10.1111/J.1469-8137.2006.01862.X.

J. F. Farrar and D. L. Jones, “The control of carbon acquisition by roots,” New Phytol., vol. 147, no. 1, pp. 43–53, Jul. 2000, doi: 10.1046/J.1469-8137.2000.00688.X.

J. Lehmann and M. Kleber, “The contentious nature of soil organic matter,” Nat. 2015 5287580, vol. 528, no. 7580, pp. 60–68, Nov. 2015, doi: 10.1038/nature16069.

C. Carranca, A. Oliveira, E. Pampulha, and M. O. Torres, “Temporal dynamics of soil nitrogen, carbon and microbial activity in conservative and disturbed fields amended with mature white lupine and oat residues,” Geoderma, vol. 151, no. 1–2, pp. 50–59, Jun. 2009, doi: 10.1016/J.GEODERMA.2009.03.012.

N. Simón, F. Montes, E. Díaz-Pinés, R. Benavides, S. Roig, and A. Rubio, “Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain,” Plant Soil, vol. 366, no. 1–2, pp. 537–549, May 2013, doi: 10.1007/S11104-012-1443-9/METRICS.

J. Six, R. T. Conant, E. A. Paul, and K. Paustian, “Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils,” Plant Soil, vol. 241, no. 2, pp. 155–176, 2002, doi: 10.1023/A:1016125726789/METRICS.

C. Bayer, J. Mielniczuk, L. Martin-Neto, and P. R. Ernani, “Stocks and humification degree of organic matter fractions as affected by no-tillage on a subtropical soil,” Plant Soil, vol. 238, no. 1, pp. 133–140, 2002, doi: 10.1023/A:1014284329618/METRICS.

H. M. Afzaal and S. Masood, “Role of Inter-Organizational Information Integration in successful E-Governance,” Int. J. Innov. Sci. Technol., vol. 1, no. 02, pp. 89–107, 2019, doi: 10.33411/ijist/2019010307.

M. X. Gómez-Rey, A. Garcês, and M. Madeira, “Soil organic-C accumulation and N availability under improved pastures established in Mediterranean oak woodlands,” Soil Use Manag., vol. 28, no. 4, pp. 497–507, Dec. 2012, doi: 10.1111/J.1475-2743.2012.00428.X.

G. Moreno, J. J. Obrador, E. Cubera, and C. Dupraz, “Fine root distribution in Dehesas of Central-Western Spain,” Plant Soil, vol. 277, no. 1–2, pp. 153–162, Dec. 2005, doi: 10.1007/S11104-005-6805-0/METRICS.

F. W. G. Baker, “First Session of WMO–UNEP Intergovernmental Panel on Climate Change (IPCC), held in Geneva, Switzerland, during 9–11 November 1988,” Environ. Conserv., vol. 16, no. 2, pp. 185–186, 1989, doi: 10.1017/S0376892900009127.

J. F. PONGE, “Humus: Dark side of life or intractable ‘aether’?,” Pedosphere, vol. 32, no. 4, pp. 660–664, Aug. 2022, doi: 10.1016/S1002-0160(21)60013-9.

K. A. Nichols, “Indirect contributions of AM fungi and soil aggregation to plant growth and protection,” Mycorrhizae Sustain. Agric. For., pp. 177–194, 2008, doi: 10.1007/978-1-4020-8770-7_7/COVER.

A. E. Strand, S. G. Pritchard, M. L. McCormack, M. A. Davis, and R. Oren, “Irreconcilable differences: Fine-root life spans and soil carbon persistence,” Science (80-. )., vol. 319, no. 5862, pp. 456–458, Jan. 2008, doi: 10.1126/SCIENCE.1151382/SUPPL_FILE/STRAND.SOM.PDF.

S. Covaleda et al., “Land-use effects on the distribution of soil organic carbon within particle-size fractions of volcanic soils in the Transmexican Volcanic Belt (Mexico),” Soil Use Manag., vol. 27, no. 2, pp. 186–194, Jun. 2011, doi: 10.1111/J.1475-2743.2011.00341.X.

M. C. Rillig, S. F. Wright, K. A. Nichols, W. F. Schmidt, and M. S. Torn, “Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils,” Plant Soil, vol. 233, no. 2, pp. 167–177, 2001, doi: 10.1023/A:1010364221169/METRICS.

A. J. Franzluebbers and M. A. Arshad, “Particulate Organic Carbon Content and Potential Mineralization as Affected by Tillage and Texture,” Soil Sci. Soc. Am. J., vol. 61, no. 5, pp. 1382–1386, Sep. 1997, doi: 10.2136/SSSAJ1997.03615995006100050014X.

K. Dairaku and K. Dairaku, “Potential Changes in Hydrologic Hazards Under Global Climate Change,” Glob. Warm., Sep. 2010, doi: 10.5772/10285.

M. F. Cotrufo et al., “Formation of soil organic matter via biochemical and physical pathways of litter mass loss,” Nat. Geosci. 2015 810, vol. 8, no. 10, pp. 776–779, Sep. 2015, doi: 10.1038/ngeo2520.

R. A. Gill and R. B. Jackson, “Global patterns of root turnover for terrestrial ecosystems,” New Phytol., vol. 147, no. 1, pp. 13–31, Jul. 2000, doi: 10.1046/J.1469-8137.2000.00681.X.

M. C. Rillig, P. W. Ramsey, S. Morris, and E. A. Paul, “Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change,” Plant Soil, vol. 253, no. 2, pp. 293–299, Jun. 2003, doi: 10.1023/A:1024807820579/METRICS.

M. Saifullah et al., “Appraisal of Urban Sprawl in Mega Cities of Punjab Pakistan in context of Socio-Political Issues using RS/GIS,” Int. J. Innov. Sci. Technol., vol. 1, no. 3, pp. 108–119, 2019, doi: 10.33411/ijist/20190103088.

S. S. Hassan et al., “Additions of Tropospheric Ozone (O3) in Regional Climates (A case study: Saudi Arabia),” Int. J. Innov. Sci. Technol., vol. 01, no. 01, Feb. 2019, doi: 10.33411/IJIST/2019010103.

M. Bahadori and H. Tofighi, “Investigation of soil organic carbon recovery by the walkley-black method under diverse vegetation systems,” Soil Sci., vol. 182, no. 3, pp. 101–106, 2017, doi: 10.1097/SS.0000000000000201.

A. K. and S. U. R. Khadija Waheed, “Estimation of Multidimensional Urban Poverty in South Asian Cities: A Case of Lahore Metropolitan Area,” Int. J. Innov. Sci. Technol., vol. 2, no. 4, pp. 162–180, 2020.

H. Bassirirad, “Kinetics of nutrient uptake by roots: responses to global change,” New Phytol., vol. 147, no. 1, pp. 155–169, Jul. 2000, doi: 10.1046/J.1469-8137.2000.00682.X.

L. Wang et al., “Litter chemical traits strongly drove the carbon fractions loss during decomposition across an alpine treeline ecotone,” Sci. Total Environ., vol. 753, p. 142287, Jan. 2021, doi: 10.1016/J.SCITOTENV.2020.142287.

K. Waheed and A. I. Mirza, “Estimation of Multidimensional Urban Poverty in South Asian Cities: A Case of Lahore Metropolitan Area,” Int. J. Innov. Sci. Technol., vol. 2, no. 3, pp. 61–79, 2020, [Online]. Available: https://ideas.repec.org/a/abq/ijist1/v2y2020i3p61-79.html

C. A. Cambardella and E. T. Elliott, “Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence,” Soil Sci. Soc. Am. J., vol. 56, no. 3, pp. 777–783, May 1992, doi: 10.2136/SSSAJ1992.03615995005600030017X.

G. Santoiemma, “Recent methodologies for studying the soil organic matter,” Appl. Soil Ecol., vol. 123, pp. 546–550, Feb. 2018, doi: 10.1016/J.APSOIL.2017.09.011.

P. Lavelle et al., “Soil aggregation, ecosystem engineers and the C cycle,” Acta Oecologica, vol. 105, p. 103561, May 2020, doi: 10.1016/J.ACTAO.2020.103561.

T. Chiti et al., “Soil organic carbon stock assessment for the different cropland land uses in Italy,” Biol. Fertil. Soils, vol. 48, no. 1, pp. 9–17, Jan. 2012, doi: 10.1007/S00374-011-0599-4/METRICS.

A. Cerdà, “Soil aggregate stability under different Mediterranean vegetation types,” CATENA, vol. 32, no. 2, pp. 73–86, May 1998, doi: 10.1016/S0341-8162(98)00041-1.

J. A. J. Dungait, D. W. Hopkins, A. S. Gregory, and A. P. Whitmore, “Soil organic matter turnover is governed by accessibility not recalcitrance,” Glob. Chang. Biol., vol. 18, no. 6, pp. 1781–1796, Jun. 2012, doi: 10.1111/J.1365-2486.2012.02665.X.

P. Fan and D. Guo, “Slow decomposition of lower order roots: A key mechanism of root carbon and nutrient retention in the soil,” Oecologia, vol. 163, no. 2, pp. 509–515, Jun. 2010, doi: 10.1007/S00442-009-1541-4/METRICS.

T. Sun, Z. Mao, and Y. Han, “Slow decomposition of very fine roots and some factors controlling the process: A 4-year experiment in four temperate tree species,” Plant Soil, vol. 372, no. 1–2, pp. 445–458, Nov. 2013, doi: 10.1007/S11104-013-1755-4/METRICS.

R. J. Norby and R. B. Jackson, “Root dynamics and global change: seeking an ecosystem perspective,” New Phytol., vol. 147, no. 1, pp. 3–12, Jul. 2000, doi: 10.1046/J.1469-8137.2000.00676.X.

Z. Huang, M. R. Davis, L. M. Condron, and P. W. Clinton, “Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species,” Soil Biol. Biochem., vol. 43, no. 6, pp. 1341–1349, Jun. 2011, doi: 10.1016/J.SOILBIO.2011.03.008.

D. S. Howlett, G. Moreno, M. R. Mosquera Losada, P. K. R. Nair, and V. D. Nair, “Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain,” J. Environ. Monit., vol. 13, no. 7, pp. 1897–1904, Jul. 2011, doi: 10.1039/C1EM10059A.

R. F. M. Teixeira et al., “Soil organic matter dynamics in Portuguese natural and sown rainfed grasslands,” Ecol. Modell., vol. 222, no. 4, pp. 993–1001, Feb. 2011, doi: 10.1016/J.ECOLMODEL.2010.11.013.

M. E. Mcsherry and M. E. Ritchie, “Effects of grazing on grassland soil carbon: a global review,” Glob. Chang. Biol., vol. 19, no. 5, pp. 1347–1357, May 2013, doi: 10.1111/GCB.12144.

M. A. Gabarrón-Galeote, S. Trigalet, and B. van Wesemael, “Effect of land abandonment on soil organic carbon fractions along a Mediterranean precipitation gradient,” Geoderma, vol. 249–250, pp. 69–78, Jul. 2015, doi: 10.1016/J.GEODERMA.2015.03.007.

Y. Cao, Y. Li, G. Zhang, J. Zhang, and M. Chen, “Fine root C:N:P stoichiometry and its driving factors across forest ecosystems in northwestern China,” Sci. Total Environ., vol. 737, p. 140299, Oct. 2020, doi: 10.1016/J.SCITOTENV.2020.140299.

X. M. Yang, H. T. Xie, C. F. Drury, W. D. Reynolds, J. Y. Yang, and X. D. Zhang, “Determination of organic carbon and nitrogen in particulate organic matter and particle size fractions of Brookston clay loam soil using infrared spectroscopy,” Eur. J. Soil Sci., vol. 63, no. 2, pp. 177–188, Apr. 2012, doi: 10.1111/J.1365-2389.2011.01421.X.

“Decomposition and Temperature Sensitivity of Fine Root and Leaf Litter of 43 Mediterranean Species,” Feb. 2021, doi: 10.21203/RS.3.RS-237069/V1.

F. Pedra, C. Plaza, J. M. Fernández, J. C. García-Gil, and A. Polo, “Effects of municipal solid waste compost and sewage sludge on chemical and spectroscopic properties of humic acids from a sandy Haplic Podzol and a clay loam Calcic Vertisol in Portugal,” Waste Manag., vol. 28, no. 11, pp. 2183–2191, Nov. 2008, doi: 10.1016/J.WASMAN.2007.09.031.

A. Costa, M. Madeira, J. Lima Santos, and Â. Oliveira, “Change and dynamics in Mediterranean evergreen oak woodlands landscapes of Southwestern Iberian Peninsula,” Landsc. Urban Plan., vol. 102, no. 3, pp. 164–176, Sep. 2011, doi: 10.1016/J.LANDURBPLAN.2011.04.002.

R. Cardinael, V. Umulisa, A. Toudert, A. Olivier, L. Bockel, and M. Bernoux, “Corrigendum: Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems (2018 Environ. Res. Lett. 13 124020),” Environ. Res. Lett., vol. 15, no. 1, p. 019501, Jan. 2020, doi: 10.1088/1748-9326/AB562B.

B. Govaerts, N. Verhulst, A. Castellanos-Navarrete, K. D. Sayre, J. Dixon, and L. Dendooven, “Conservation Agriculture and Soil Carbon Sequestration: Between Myth and Farmer Reality,” https://doi.org/10.1080/07352680902776358, vol. 28, no. 3, pp. 97–122, May 2009, doi: 10.1080/07352680902776358.

S. F. Wright, J. L. Starr, and I. C. Paltineanu, “Changes in Aggregate Stability and Concentration of Glomalin during Tillage Management Transition,” Soil Sci. Soc. Am. J., vol. 63, no. 6, pp. 1825–1829, Nov. 1999, doi: 10.2136/SSSAJ1999.6361825X.

P. K. R. Nair, “Carbon sequestration studies in agroforestry systems: A reality-check,” Agrofor. Syst., vol. 86, no. 2, pp. 243–253, Oct. 2012, doi: 10.1007/S10457-011-9434-Z/METRICS.

“Assessment and Significance of Labile Organic C Pools in Forest Soils,” Assess. Methods Soil Carbon, pp. 185–200, Jul. 2020, doi: 10.1201/9781482278644-21/ASSESSMENT-SIGNIFICANCE-LABILE-ORGANIC-POOLS-FOREST-SOILS-JOHN-KIMBLE-RONALD-FOLLETT-STEWART.

A. Hernández-Esteban, M. L. López-Díaz, Y. Cáceres, and G. Moreno, “Are sown legume-rich pastures effective allies for the profitability and sustainability of Mediterranean dehesas?,” Agrofor. Syst., vol. 93, no. 6, pp. 2047–2065, Dec. 2019, doi: 10.1007/S10457-018-0307-6/FIGURES/9.

P. Wang, J. H. Liu, R. X. Xia, Q. S. Wu, M. Y. Wang, and T. Dong, “Arbuscular mycorrhizal development, glomalin-related soil protein (GRSP) content, and rhizospheric phosphatase activitiy in citrus orchards under different types of soil management,” J. Plant Nutr. Soil Sci., vol. 174, no. 1, pp. 65–72, Feb. 2011, doi: 10.1002/JPLN.200900204.

Â. Sil et al., “Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: insights for management and planning,” https://doi.org/10.1080/21513732.2017.1297331, vol. 13, no. 2, pp. 82–104, Nov. 2017, doi: 10.1080/21513732.2017.1297331.

S. A. Fatima and K. Imtiaz, “Assessment of Service Quality and Efficiency of Bus Rapid Transit System,” Int. J. Innov. Sci. Technol., vol. 2, no. 4, pp. 125–136, 2020, doi: 10.33411/ijist/2020020401.

P. K. R. Nair, B. M. Kumar, and V. D. Nair, “Agroforestry as a strategy for carbon sequestration,” J. Plant Nutr. Soil Sci., vol. 172, no. 1, pp. 10–23, Feb. 2009, doi: 10.1002/JPLN.200800030.

M. Torrús-Castillo, P. Domouso, J. M. Herrera-Rodríguez, J. Calero, and R. García-Ruiz, “Aboveground Carbon Fixation and Nutrient Retention in Temporary Spontaneous Cover Crops in Olive Groves of Andalusia,” Front. Environ. Sci., vol. 10, p. 686, Jun. 2022, doi: 10.3389/FENVS.2022.868410/BIBTEX.

S. A. Gillani et al., “Appraisal of Urban Heat Island over Gujranwala and its Environmental Impact Assessment using Satellite Imagery (1995-2016).,” Int. J. Innov. Sci. Technol., vol. 01, no. 01, 2019, doi: 10.33411/ijist/2019010101.

M. R. Nunes, D. L. Karlen, K. S. Veum, and T. B. Moorman, “A SMAF assessment of U.S. tillage and crop management strategies,” Environ. Sustain. Indic., vol. 8, p. 100072, Dec. 2020, doi: 10.1016/J.INDIC.2020.100072.

E. L. Birch, “A Review of ‘Climate Change 2014: Impacts, Adaptation, and Vulnerability’ and ‘Climate Change 2014: Mitigation of Climate Change,’” https://doi.org/10.1080/01944363.2014.954464, vol. 80, no. 2, pp. 184–185, Apr. 2014, doi: 10.1080/01944363.2014.954464.

J. Six, H. Bossuyt, S. Degryze, and K. Denef, “A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics,” Soil Tillage Res., vol. 79, no. 1, pp. 7–31, Sep. 2004, doi: 10.1016/J.STILL.2004.03.008.

J. Hassink and A. P. Whitmore, “A Model of the Physical Protection of Organic Matter in Soils,” Soil Sci. Soc. Am. J., vol. 61, no. 1, pp. 131–139, Jan. 1997, doi: 10.2136/SSSAJ1997.03615995006100010020X.

R. F. M. Teixeira, V. Proença, D. Crespo, T. Valada, and T. Domingos, “A conceptual framework for the analysis of engineered biodiverse pastures,” Ecol. Eng., vol. 77, pp. 85–97, Apr. 2015, doi: 10.1016/J.ECOLENG.2015.01.002.

Downloads

Published

2022-08-05

How to Cite

Azam Sohail. (2022). Carbon Sequestration and Agro-forestry. International Journal of Agriculture and Sustainable Development, 4(3), 105–119. Retrieved from https://journal.50sea.com/index.php/IJASD/article/view/467

Issue

Section

Articles