Assessment of Stress on Plants Through Neural Networks

Authors

  • Azeem Akhtar Quaid e Azam University Islamabad

Keywords:

Neural Network, Artificial Intelligence, Water Stress

Abstract

Among the many problems that cost growers money, plant stress is a major one. Applications of the traditional methods for identifying stressed plants are limited by the time and effort required to perform the identification. Effective, quick solutions are needed immediately. Changes in precision agriculture using deep learning and big data are being sparked by advancements in cutting-edge sensing and machine learning techniques. In this paper, we surveyed recent advances in deep learning techniques for use in analyzing images for the diagnosis of crop stress. We compiled recent sensor technology and deep learning principles used for plant stress phenotyping. Additionally, we surveyed several deep learning applications/functions that are intertwined with plant stress imaging, such as classification, object detection, and segmentation. Additionally, we summed up the issues plaguing plant phenotyping today and talked about potential future directions for improvement.

References

V. Sevetlidis, M. V. Giuffrida, and S. A. Tsaftaris, “Whole Image Synthesis Using a Deep Encoder-Decoder Network,” pp. 127–137, 2016, doi: 10.1007/978-3-319-46630-9_13.

M. Gerhards, G. Rock, M. Schlerf, and T. Udelhoven, “Water stress detection in potato plants using leaf temperature, emissivity, and reflectance,” Int. J. Appl. Earth Obs. Geoinf., vol. 53, pp. 27–39, Dec. 2016, doi: 10.1016/J.JAG.2016.08.004.

D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, and N. Batra, “PlantDoc: A dataset for visual plant disease detection,” ACM Int. Conf. Proceeding Ser., pp. 249–253, Jan. 2020, doi: 10.1145/3371158.3371196.

H. F. Pardede, E. Suryawati, R. Sustika, and V. Zilvan, “Unsupervised Convolutional Autoencoder-Based Feature Learning for Automatic Detection of Plant Diseases,” 2018 Int. Conf. Comput. Control. Informatics its Appl. Recent Challenges Mach. Learn. Comput. Appl. IC3INA 2018 - Proceeding, pp. 158–162, Jan. 2019, doi: 10.1109/IC3INA.2018.8629518.

X. Nie, L. Wang, H. Ding, and M. Xu, “Strawberry Verticillium Wilt Detection Network Based on Multi-Task Learning and Attention,” IEEE Access, vol. 7, pp. 170003–170011, 2019, doi: 10.1109/ACCESS.2019.2954845.

A. Qayyum et al., “Scene classification for aerial images based on CNN using sparse coding technique,” https://doi.org/10.1080/01431161.2017.1296206, vol. 38, no. 8–10, pp. 2662–2685, May 2017, doi: 10.1080/01431161.2017.1296206.

P. K. Sethy, N. K. Barpanda, A. K. Rath, and S. K. Behera, “Rice false smut detection based on faster R-CNN,” Indones. J. Electr. Eng. Comput. Sci., vol. 19, no. 3, pp. 1590–1595, Sep. 2020, doi: 10.11591/IJEECS.V19.I3.PP1590-1595.

D. Oppenheim and G. Shani, “Potato Disease Classification Using Convolution Neural Networks,” 2017, doi: 10.1017/S2040470017001376.

Z. Gao, Y. Shao, G. Xuan, Y. Wang, Y. Liu, and X. Han, “Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning,” Artif. Intell. Agric., vol. 4, pp. 31–38, Jan. 2020, doi: 10.1016/J.AIIA.2020.04.003.

E. L. Stewart et al., “Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning,” Remote Sens. 2019, Vol. 11, Page 2209, vol. 11, no. 19, p. 2209, Sep. 2019, doi: 10.3390/RS11192209.

A.-K. Mahlein, “Plant Disease Detection by Imaging Sensors – Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping,” https://doi.org/10.1094/PDIS-03-15-0340-FE, vol. 100, no. 2, pp. 241–251, Jan. 2016, doi: 10.1094/PDIS-03-15-0340-FE.

T.-L. Lin, H.-Y. Chang, and K.-H. Chen, “Pest and Disease Identification in the Growth of Sweet Peppers using Faster R-CNN,” 2019 IEEE Int. Conf. Consum. Electron. - Taiwan, pp. 1–2, May 2019, doi: 10.1109/ICCE-TW46550.2019.8991893.

Z. Gao, Y. Zhao, L. R. Khot, G.-A. Hoheisel, and Q. Zhang, “Optical sensing for early spring freeze related blueberry bud damage detection: Hyperspectral imaging for salient spectral wavelengths identification,” Comput. Electron. Agric., vol. 167, p. 105025, Dec. 2019, doi: 10.1016/J.COMPAG.2019.105025.

L. Zhang, H. Zhang, Y. Niu, and W. Han, “Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing,” Remote Sens. 2019, Vol. 11, Page 605, vol. 11, no. 6, p. 605, Mar. 2019, doi: 10.3390/RS11060605.

A. Muhammad Sajid, Muhammad Mohsin, Tabasam Jamal, Muhammad Mobeen and A. R. Rehman, “Impact of Land-use Change on Agricultural Production & Accuracy Assessment through Confusion Matrix,” Int. J. Innov. Sci. Technol., vol. 4, no. 1, pp. 233–245, 2022.

M. Fahad, T. Javid, and H. Beenish, “Service oriented Architecture for Agriculture System Integration with Ontology,” Int. J. Innov. Sci. Technol., vol. 4, no. 3, pp. 880–890, 2022, doi: 10.33411/ijist/2022040318.

D. Wang et al., “Early Detection of Tomato Spotted Wilt Virus by Hyperspectral Imaging and Outlier Removal Auxiliary Classifier Generative Adversarial Nets (OR-AC-GAN),” Sci. Reports 2019 91, vol. 9, no. 1, pp. 1–14, Mar. 2019, doi: 10.1038/s41598-019-40066-y.

S. Huang, W. Liu, F. Qi, and K. Yang, “Development and Validation of a Deep Learning Algorithm for the Recognition of Plant Disease,” 2019 IEEE 21st Int. Conf. High Perform. Comput. Commun. IEEE 17th Int. Conf. Smart City; IEEE 5th Int. Conf. Data Sci. Syst., pp. 1951–1957, Aug. 2019, doi: 10.1109/HPCC/SMARTCITY/DSS.2019.00269.

A. Elazab, R. A. Ordóñez, R. Savin, G. A. Slafer, and J. L. Araus, “Detecting interactive effects of N fertilization and heat stress on maize productivity by remote sensing techniques,” Eur. J. Agron., vol. 73, pp. 11–24, Feb. 2016, doi: 10.1016/J.EJA.2015.11.010.

C. Peng, Y. Li, L. Jiao, Y. Chen, and R. Shang, “Densely Based Multi-Scale and Multi-Modal Fully Convolutional Networks for High-Resolution Remote-Sensing Image Semantic Segmentation,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12, no. 8, pp. 2612–2626, Aug. 2019, doi: 10.1109/JSTARS.2019.2906387.

M. Hasan, B. Tanawala, and K. J. Patel, “Deep Learning Precision Farming: Tomato Leaf Disease Detection by Transfer Learning,” SSRN Electron. J., Mar. 2019, doi: 10.2139/SSRN.3349597.

M. Brahimi, S. Mahmoudi, K. Boukhalfa, and A. Moussaoui, “Deep interpretable architecture for plant diseases classification,” 2019 Signal Process. Algorithms, Archit. Arrange. Appl., pp. 111–116, Sep. 2019, doi: 10.23919/SPA.2019.8936759.

A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Comput. Electron. Agric., vol. 147, pp. 70–90, Apr. 2018, doi: 10.1016/J.COMPAG.2018.02.016.

S. Zhang, S. Zhang, C. Zhang, X. Wang, and Y. Shi, “Cucumber leaf disease identification with global pooling dilated convolutional neural network,” Comput. Electron. Agric., vol. 162, pp. 422–430, Jul. 2019, doi: 10.1016/J.COMPAG.2019.03.012.

C.-F. Chen, G. G. Lee, V. Sritapan, and C.-Y. Lin, “Deep Convolutional Neural Network on iOS Mobile Devices,” 2016 IEEE Int. Work. Signal Process. Syst., pp. 130–135, Oct. 2016, doi: 10.1109/SIPS.2016.31.

J. L. Araus and J. E. Cairns, “Field high-throughput phenotyping: The new crop breeding frontier,” Trends Plant Sci., vol. 19, no. 1, pp. 52–61, Jan. 2014, doi: 10.1016/j.tplants.2013.09.008.

J. R. Ubbens and I. Stavness, “Corrigendum: Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks (Front. Plant Sci., (2017), 8, 10.3389/fpls.2017.01190),” Front. Plant Sci., vol. 8, p. 2245, Jan. 2018, doi: 10.3389/FPLS.2017.02245/BIBTEX.

J. Boulent, S. Foucher, J. Théau, and P.-L. St-Charles, “Convolutional Neural Networks for the Automatic Identification of Plant Diseases,” Front. Plant Sci., vol. 10, p. 941, Jul. 2019, doi: 10.3389/FPLS.2019.00941.

T. Zhao, Y. Yang, H. Niu, D. Wang, and Y. Chen, “Comparing U-Net convolutional network with mask R-CNN in the performances of pomegranate tree canopy segmentation,” https://doi.org/10.1117/12.2325570, vol. 10780, pp. 210–218, Oct. 2018, doi: 10.1117/12.2325570.

H. Yonaba, F. Anctil, and V. Fortin, “Comparing Sigmoid Transfer Functions for Neural Network Multistep Ahead Streamflow Forecasting,” J. Hydrol. Eng., vol. 15, no. 4, pp. 275–283, Mar. 2010, doi: 10.1061/(ASCE)HE.1943-5584.0000188.

P. Pawara, E. Okafor, O. Surinta, L. Schomaker, and M. Wiering, “Comparing Local Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for Plant Recognition,” Proc. 6th Int. Conf. Pattern Recognit. Appl. Methods, pp. 479–486, 2017, doi: 10.5220/0006196204790486.

Y. Kim, D. M. Glenn, J. Park, H. K. Ngugi, and B. L. Lehman, “Hyperspectral image analysis for water stress detection of apple trees,” Comput. Electron. Agric., vol. 77, no. 2, pp. 155–160, Jul. 2011, doi: 10.1016/J.COMPAG.2011.04.008.

H. Younis, M. A. Arshed, F. ul Hassan, M. Khurshid, and H. Ghassan, “Tomato Disease Classification using Fine-Tuned Convolutional Neural Network,” Int. J. Innov. Sci. Technol., vol. 4, no. 1, pp. 123–134, 2022, doi: 10.33411/ijist/2022040109.

C. F. Baumgartner, L. M. Koch, M. Pollefeys, and E. Konukoglu, “An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation,” pp. 111–119, 2018, doi: 10.1007/978-3-319-75541-0_12.

F. Yandun Narvaez, G. Reina, M. Torres-Torriti, G. Kantor, and F. A. Cheein, “A Survey of Ranging and Imaging Techniques for Precision Agriculture Phenotyping,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 6, pp. 2428–2439, Dec. 2017, doi: 10.1109/TMECH.2017.2760866.

N. Amruthnath and T. Gupta, “A research study on unsupervised machine learning algorithms for early fault detection in predictive maintenance,” 2018 5th Int. Conf. Ind. Eng. Appl., pp. 355–361, Apr. 2018, doi: 10.1109/IEA.2018.8387124.

Downloads

Published

2022-09-06

How to Cite

Azeem Akhtar. (2022). Assessment of Stress on Plants Through Neural Networks. International Journal of Agriculture and Sustainable Development, 4(3), 120–128. Retrieved from https://journal.50sea.com/index.php/IJASD/article/view/468

Issue

Section

Articles