Evaluating Spatio-Temporal Decline to Agriculture through Satellite Imagery from 2010-2022


  • Ali Iqtadar Mirza Government College University Lahore
  • Raja Rizwan Javed National Defense University Islamabad
  • Shakir Mahmood Mayo University of Engineering and Technology Lahore
  • Noor ul Ain Lahore College for Women University Lahore.


Satellite imagery, Spatiotemporal, Decline to Agriculture


The failure of Pakistani cities to adopt a vertical expansion strategy has led to the encroachment of urban areas onto farmland and pastures. Agricultural land is constantly being lost as cities expand, putting stress on farmers and lowering agricultural productivity. The agricultural industry of Pakistan is vital to the country's economy. It employs 42.3% of the working population and contributes 18.9% to GDP. In addition to bringing in much-needed foreign currency, it helps other areas of the economy flourish as well. Mapping of LULC change is an essential strategy for assessing, managing, and protecting a region's natural resources, and information on present land use is one of the most critical prerequisites for supporting better use of terrain. The examination of LULC variations at all scales—watershed, catchment, and basin—can benefit greatly from the use of remote sensing and Geographical Information system (GIS). The synoptic view and multi-temporal LULC data that can be gathered with remote sensing are valuable. This research determines the spatial and temporal dynamics of change in the Jehlum watershed, an area that has seen significant shifts in its LULC as a result of human and environmental activity. During the course of time, from 2010 to 2022, the study region saw significant changes in the spatial extent of forest cover (8640.239 to 6756.592 ha), horticulture (6891.458 to 8519.483 ha), built-up (858.91 to 2830.438 ha), and agricultural (19483.05 to 18060.83 ha). Changes in LULC over time in the watershed have been linked to deforestation, population growth, and urbanization.


I. Showqi, I. Rashid, and S. A. Romshoo, “Land use land cover dynamics as a function of changing demography and hydrology,” GeoJournal, vol. 79, no. 3, pp. 297–307, Aug. 2014, doi: 10.1007/S10708-013-9494-X/METRICS.

W. J. Kombe and V. Kreibich, “Reconciling informal and formal land management:: an agenda for improving tenure security and urban governance in poor countries,” Habitat Int., vol. 24, no. 2, pp. 231–240, Jun. 2000, doi: 10.1016/S0197-3975(99)00041-7.

C. Kamusoko and M. Aniya, “Land use/cover change and landscape fragmentation analysis in the Bindura District, Zimbabwe,” L. Degrad. Dev., vol. 18, no. 2, pp. 221–233, Mar. 2007, doi: 10.1002/LDR.761.

S. A. Romshoo and I. Rashid, “Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas,” Arab. J. Geosci., vol. 7, no. 1, pp. 143–160, Jan. 2014, doi: 10.1007/S12517-012-0761-9/METRICS.

S. Fazal, A. Amin, S. Fazal, and A. Amin, “Impact of Urban Land Transformation on Water Bodies in Srinagar City, India,” J. Environ. Prot. (Irvine,. Calif)., vol. 2, no. 2, pp. 142–153, Mar. 2011, doi: 10.4236/JEP.2011.22016.

B. Wiatkowska, J. Słodczyk, and A. Stokowska, “Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland,” Geosci. 2021, Vol. 11, Page 312, vol. 11, no. 8, p. 312, Jul. 2021, doi: 10.3390/GEOSCIENCES11080312.

M. K. Tiwari and A. Saxena, “Change Detection of Land Use/ Landcover Pattern in an Around Mandideep and Obedullaganj Area, Using Remote Sensing and GIS,” Int. J. Technol. Eng. Syst., vol. 2, no. 3, pp. 342–350, 2011.

A. Kavian and Z. Jafarian Jeloudar, “Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques,” Arab. J. Geosci., vol. 4, no. 3–4, pp. 401–411, Aug. 2011, doi: 10.1007/S12517-009-0078-5.

P. Singh and S. Singh, “Landuse Pattern Analysis Using Remote Sensing: A Case Study of Mau District, India,” Arch. Appl. Sci. Res., vol. 3, no. 5, pp. 10–16, 2011, Accessed: Mar. 12, 2023. [Online]. Available: www.scholarsresearchlibrary.com

C. Baker, R. L. Lawrence, C. Montagne, and D. Patten, “Change detection of wetland ecosystems using Landsat imagery and change vector analysis,” Wetlands, vol. 27, no. 3, pp. 610–619, 2007, doi: 10.1672/0277-5212(2007)27[610:CDOWEU]2.0.CO;2.

S. Ray, “Impact of Population Growth on Environmental Degradation : Case of India,” J. Econ. Sustain. Dev., vol. 2, no. 8, pp. 72–78, 2011.

M. Clark, “Deforestation in Madagascar: Consequences of Population Growth and Unsustainable Agricultural Processes,” Glob. Major. E-Journal, vol. 3, no. 1, pp. 61–71, 2012.

I. Ismail et al., “Forest inventory and analysis in Gilgit-Baltistan: A contribution towards developing a forest inventory for all Pakistan,” Int. J. Clim. Chang. Strateg. Manag., vol. 10, no. 4, pp. 616–631, Jun. 2018, doi: 10.1108/IJCCSM-05-2017-0100/FULL/PDF.

S. K. Raut, P. Chaudhary, and L. Thapa, “Land Use/Land Cover Change Detection in Pokhara Metropolitan, Nepal Using Remote Sensing,” J. Geosci. Environ. Prot., vol. 08, no. 08, pp. 25–35, 2020, doi: 10.4236/GEP.2020.88003.

T. Xu, D. Zhou, and Y. Li, “Integrating ANNs and Cellular Automata–Markov Chain to Simulate Urban Expansion with Annual Land Use Data,” L. 2022, Vol. 11, Page 1074, vol. 11, no. 7, p. 1074, Jul. 2022, doi: 10.3390/LAND11071074.

S. Liu and S. Prieler, “Spatial Patterns and Dynamic Mechanisms of Urban Land Use Growth in China: Case Studies in Beijing and Shanghai,” 2002.

B. Zheng et al., “Study on the Delimitation of the Urban Development Boundary in a Special Economic Zone: A Case Study of the Central Urban Area of Doumen in Zhuhai, China,” Sustain. 2018, Vol. 10, Page 756, vol. 10, no. 3, p. 756, Mar. 2018, doi: 10.3390/SU10030756.

D. Feng, W. Bao, M. Fu, M. Zhang, and Y. Sun, “Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model,” L. 2021, Vol. 10, Page 286, vol. 10, no. 3, p. 286, Mar. 2021, doi: 10.3390/LAND10030286.

United Nations. Department of Economic and Social Affairs, “United Nations Demographic Yearbook 2009-2010,” Dec. 2011, doi: 10.18356/A841D582-EN-FR.

U. N. D. of E. and S. Affairs, “World Urbanization Prospects: The 2018 Revision,” World Urban. Prospect. 2018 Revis., Aug. 2019, doi: 10.18356/B9E995FE-EN.

M. Herold, N. C. Goldstein, and K. C. Clarke, “The spatiotemporal form of urban growth: measurement, analysis and modeling,” Remote Sens. Environ., vol. 86, no. 3, pp. 286–302, Aug. 2003, doi: 10.1016/S0034-4257(03)00075-0.

A. T. Han and M. H. Go, “Explaining the national variation of land use: A cross-national analysis of greenbelt policy in five countries,” Land use policy, vol. 81, pp. 644–656, Feb. 2019, doi: 10.1016/J.LANDUSEPOL.2018.11.035.

A. Tayyebi, B. C. Pijanowski, and A. H. Tayyebi, “An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran,” Landsc. Urban Plan., vol. 100, no. 1–2, pp. 35–44, Mar. 2011, doi: 10.1016/J.LANDURBPLAN.2010.10.007.

L. Gao, F. Tao, R. Liu, Z. Wang, H. Leng, and T. Zhou, “Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing,” Sustain. Cities Soc., vol. 85, p. 104055, Oct. 2022, doi: 10.1016/J.SCS.2022.104055.

S. Brown, P. Schroeder, and R. Birdsey, “Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development,” For. Ecol. Manage., vol. 96, no. 1–2, pp. 37–47, Aug. 1997, doi: 10.1016/S0378-1127(97)00044-3.

Y. Pan et al., “A large and persistent carbon sink in the world’s forests,” Science (80-. )., vol. 333, no. 6045, pp. 988–993, Aug. 2011, doi: 10.1126/SCIENCE.1201609/SUPPL_FILE/PAPV2.PDF.

R. K. Deo, M. B. Russell, G. M. Domke, H. E. Andersen, W. B. Cohen, and C. W. Woodall, “Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA,” Remote Sens. 2017, Vol. 9, Page 598, vol. 9, no. 6, p. 598, Jun. 2017, doi: 10.3390/RS9060598.

S. S. Saatchi et al., “Benchmark map of forest carbon stocks in tropical regions across three continents,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 24, pp. 9899–9904, Jun. 2011, doi: 10.1073/PNAS.1019576108/SUPPL_FILE/ST03.DOC.

K. Liu, J. Wang, W. Zeng, and J. Song, “Comparison and Evaluation of Three Methods for Estimating Forest above Ground Biomass Using TM and GLAS Data,” Remote Sens. 2017, Vol. 9, Page 341, vol. 9, no. 4, p. 341, Apr. 2017, doi: 10.3390/RS9040341.

D. Triantakonstantis, G. Mountrakis, D. Triantakonstantis, and G. Mountrakis, “Urban Growth Prediction: A Review of Computational Models and Human Perceptions,” J. Geogr. Inf. Syst., vol. 4, no. 6, pp. 555–587, Dec. 2012, doi: 10.4236/JGIS.2012.46060.

A. Çağlıyan and D. Dağlı, “Monitoring Land Use Land Cover Changes and Modelling of Urban Growth Using a Future Land Use Simulation Model (FLUS) in Diyarbakır, Turkey,” Sustain. 2022, Vol. 14, Page 9180, vol. 14, no. 15, p. 9180, Jul. 2022, doi: 10.3390/SU14159180.

M. A. Cairns, S. Brown, E. H. Helmer, and G. A. Baumgardner, “Root biomass allocation in the world’s upland forests,” Oecologia, vol. 111, no. 1, pp. 1–11, Jun. 1997, doi: 10.1007/S004420050201/METRICS.

S. Hussain et al., “Assessment of land use/land cover changes and its effect on land surface temperature using remote sensing techniques in Southern Punjab, Pakistan,” Environ. Sci. Pollut. Res., pp. 1–17, Jun. 2022, doi: 10.1007/S11356-022-21650-8/METRICS.

S. Hussain, M. Mubeen, and S. Karuppannan, “Land use and land cover (LULC) change analysis using TM, ETM+ and OLI Landsat images in district of Okara, Punjab, Pakistan,” Phys. Chem. Earth, Parts A/B/C, vol. 126, p. 103117, Jun. 2022, doi: 10.1016/J.PCE.2022.103117.

S. M. H. Raza, S. A. Mahmood, A. A. Khan, and V. Liesenberg, “Delineation of Potential Sites for Rice Cultivation Through Multi-Criteria Evaluation (MCE) Using Remote Sensing and GIS,” Int. J. Plant Prod., vol. 12, no. 1, pp. 1–11, 2018, doi: 10.1007/s42106-017-0001-z.

J. A. Blackard et al., “Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information,” Remote Sens. Environ., vol. 112, no. 4, pp. 1658–1677, Apr. 2008, doi: 10.1016/J.RSE.2007.08.021.

Y. Lin and G. West, “Reflecting conifer phenology using mobile terrestrial LiDAR: A case study of Pinus sylvestris growing under the Mediterranean climate in Perth, Australia,” Ecol. Indic., vol. 70, pp. 1–9, Nov. 2016, doi: 10.1016/J.ECOLIND.2016.06.003.

L. Kumar, P. Sinha, S. Taylor, and A. F. Alqurashi, “Review of the use of remote sensing for biomass estimation to support renewable energy generation,” https://doi.org/10.1117/1.JRS.9.097696, vol. 9, no. 1, p. 097696, Jun. 2015, doi: 10.1117/1.JRS.9.097696.

P. Zhao et al., “Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data,” Int. J. Appl. Earth Obs. Geoinf., vol. 53, pp. 1–15, Dec. 2016, doi: 10.1016/J.JAG.2016.08.007.

R. E. McRoberts, E. Næsset, and T. Gobakken, “Inference for lidar-assisted estimation of forest growing stock volume,” Remote Sens. Environ., vol. 128, pp. 268–275, Jan. 2013, doi: 10.1016/J.RSE.2012.10.007.

D. Deb, J. P. Singh, S. Deb, D. Datta, A. Ghosh, and R. S. Chaurasia, “An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India,” Environ. Monit. Assess., vol. 189, no. 11, pp. 1–12, Nov. 2017, doi: 10.1007/S10661-017-6307-6/METRICS.

L. T. Ene, E. Næsset, T. Gobakken, T. G. Gregoire, G. Ståhl, and S. Holm, “A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys,” Remote Sens. Environ., vol. 133, pp. 210–224, Jun. 2013, doi: 10.1016/J.RSE.2013.02.002.

C. Wu et al., “Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery,” https://doi.org/10.1117/1.JRS.10.035010, vol. 10, no. 3, p. 035010, Aug. 2016, doi: 10.1117/1.JRS.10.035010.




How to Cite

Ali Iqtadar Mirza, Raja Rizwan Javed, Shakir Mahmood Mayo, & Noor ul Ain. (2022). Evaluating Spatio-Temporal Decline to Agriculture through Satellite Imagery from 2010-2022. International Journal of Agriculture and Sustainable Development, 4(4), 136–150. Retrieved from https://journal.50sea.com/index.php/IJASD/article/view/471




Most read articles by the same author(s)