Weed Management Under Variable Crops grown in Diverse Environments

Authors

  • Abdul Baqi Government Boys Postgraduate College, Sariab Road Quetta
  • Noor ul ain Government Boys Postgraduate College, Sariab Road Quetta

Keywords:

Climate change, Variable Climate, Sustainability, Rotation of Crops, Crop Cover

Abstract

Weeds are a significant problem for the efficiency and profitability of crop production systems worldwide. Since the introduction of herbicide-resistant crops, the use of herbicides as a weed control method has risen steeply because they are among the most effective among available methods. Weeds that are resistant to herbicides and other negative consequences for human and environmental health are a direct result of overusing herbicides. Sustainable weed management in major crop production systems can be aided by crop diversification. It provides a framework for integrating scientific discoveries and ecological understanding into weed management strategies for the long term. In order to increase the reliability and efficiency of ecosystem services, "diversified cropping" refers to the deliberate use of functional biodiversity at the temporal and/or spatial levels. Reduced weed density can be achieved through crop diversification's inhibitory effect on weed seed germination and weed growth. Furthermore, diversified farming systems are more resistant to climate change and produce higher crop yields than monoculture systems. The adoption of a diversified cropping system, however, faces a number of obstacles. These include, but are not limited to, changes in technology, government policies, farm-level decisions, climate, and market conditions. This review looks at the ways in which crop diversification helps with weed management, the difficulties that come along with it, and the prospects for weed control in light of the diversification idea.

References

J. F. Egan and D. A. Mortensen, “Quantifying vapor drift of dicamba herbicides applied to soybean,” Environ. Toxicol. Chem., vol. 31, no. 5, pp. 1023–1031, May 2012, doi: 10.1002/ETC.1778.

E. V. Perrino and G. Calabrese, “Endangered segetal species in southern Italy: distribution, conservation status, trends, actions and ethnobotanical notes,” Genet. Resour. Crop Evol., vol. 65, no. 8, pp. 2107–2134, Dec. 2018, doi: 10.1007/S10722-018-0678-6/METRICS.

S. Shrestha, G. Sharma, N. R. Burgos, and T. M. Tseng, “Response of weedy rice (Oryza spp.) germplasm from Arkansas to glyphosate, glufosinate, and flumioxazin,” Weed Sci., vol. 67, no. 3, pp. 303–310, May 2019, doi: 10.1017/WSC.2018.92.

Q. Yu, A. Cairns, and S. Powles, “Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype,” Planta, vol. 225, no. 2, pp. 499–513, Jan. 2007, doi: 10.1007/S00425-006-0364-3/METRICS.

M. J. Owen et al., “Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations,” Aust. J. Agric. Res., vol. 58, no. 7, pp. 711–718, Jul. 2007, doi: 10.1071/AR06283.

T. M. Tseng, S. Shrestha, J. D. McCurdy, E. Wilson, and G. Sharma, “Target-site Mutation and Fitness Cost of Acetolactate Synthase Inhibitor-resistant Annual Bluegrass,” HortScience, vol. 54, no. 4, pp. 701–705, Apr. 2019, doi: 10.21273/HORTSCI13512-18.

J. S. Yuan, P. J. Tranel, and C. N. Stewart, “Non-target-site herbicide resistance: a family business,” Trends Plant Sci., vol. 12, no. 1, pp. 6–13, Jan. 2007, doi: 10.1016/j.tplants.2006.11.001.

S. O. Duke, “Why have no new herbicide modes of action appeared in recent years?,” Pest Manag. Sci., vol. 68, no. 4, pp. 505–512, Apr. 2012, doi: 10.1002/PS.2333.

J. R. Harlan and J. M. J. de Wet, “Some thoughts about weeds,” Econ. Bot., vol. 19, no. 1, pp. 16–24, Jan. 1965, doi: 10.1007/BF02971181/METRICS.

R. COUSENS, “A simple model relating yield loss to weed density,” Ann. Appl. Biol., vol. 107, no. 2, pp. 239–252, Oct. 1985, doi: 10.1111/J.1744-7348.1985.TB01567.X.

S. Fahad et al., “Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times,” Crop Prot., vol. 71, pp. 101–108, May 2015, doi: 10.1016/J.CROPRO.2015.02.005.

N. Soltani et al., “Perspectives on Potential Soybean Yield Losses from Weeds in North America,” Weed Technol., vol. 31, no. 1, pp. 148–154, Jan. 2017, doi: 10.1017/WET.2016.2.

N. Soltani et al., “Potential Corn Yield Losses from Weeds in North America,” Weed Technol., vol. 30, no. 4, pp. 979–984, Dec. 2016, doi: 10.1614/WT-D-16-00046.1.

Y. Gharde, P. K. Singh, R. P. Dubey, and P. K. Gupta, “Assessment of yield and economic losses in agriculture due to weeds in India,” Crop Prot., vol. 107, pp. 12–18, May 2018, doi: 10.1016/J.CROPRO.2018.01.007.

ákos Mesterházy, J. Oláh, and J. Popp, “Losses in the Grain Supply Chain: Causes and Solutions,” Sustain. 2020, Vol. 12, Page 2342, vol. 12, no. 6, p. 2342, Mar. 2020, doi: 10.3390/SU12062342.

K. Ramesh, A. Matloob, F. Aslam, S. K. Florentine, and B. S. Chauhan, “Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management,” Front. Plant Sci., vol. 8, p. 95, Feb. 2017, doi: 10.3389/FPLS.2017.00095/BIBTEX.

L. P. Gianessi, “The increasing importance of herbicides in worldwide crop production,” Pest Manag. Sci., vol. 69, no. 10, pp. 1099–1105, Oct. 2013, doi: 10.1002/PS.3598.

S. Asghar et al., “Management of Weeds &Sustainable Technique,” Int. J. Agric. Sustain. Dev., vol. 4, no. 2, pp. 1–6, 2022.

A. M. De Oca, L. Arreola, A. Flores, J. Sanchez, and G. Flores, “Low-cost multispectral imaging system for crop monitoring,” 2018 Int. Conf. Unmanned Aircr. Syst. ICUAS 2018, pp. 443–451, Aug. 2018, doi: 10.1109/ICUAS.2018.8453426.

D. N. Burrows, A. Wolszczan, and A. M. Moore, “The WSPC Handbook of Astronomical Instrumentation,” vol. 3, Jul. 2021, doi: 10.1142/9446.

J. M. Meynard et al., “Socio-technical lock-in hinders crop diversification in France,” Agron. Sustain. Dev., vol. 38, no. 5, pp. 1–13, Oct. 2018, doi: 10.1007/S13593-018-0535-1/TABLES/3.

C. Blaix et al., “Quantification of regulating ecosystem services provided by weeds in annual cropping systems using a systematic map approach,” Weed Res., vol. 58, no. 3, pp. 151–164, Jun. 2018, doi: 10.1111/WRE.12303.

C. Kremen and A. Miles, “Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs,” Ecol. Soc. Publ. online Dec 18, 2012 | doi10.5751/ES-05035-170440, vol. 17, no. 4, Dec. 2012, doi: 10.5751/ES-05035-170440.

R. J. Gilliom, “Pesticides in U.S. streams and groundwater,” Environ. Sci. Technol., vol. 41, no. 10, pp. 3409–3414, May 2007, doi: 10.1021/ES072531U/ASSET/ES072531U.FP.PNG_V03.

R. Bommarco, D. Kleijn, and S. G. Potts, “Ecological intensification: harnessing ecosystem services for food security,” Trends Ecol. Evol., vol. 28, no. 4, pp. 230–238, Apr. 2013, doi: 10.1016/J.TREE.2012.10.012.

M. Liebman and E. Dyck, “Crop Rotation and Intercropping Strategies for Weed Management,” Ecol. Appl., vol. 3, no. 1, pp. 92–122, Feb. 1993, doi: 10.2307/1941795.

M. Liebman and C. P. Staver, “Crop diversification for weed management,” Ecol. Manag. Agric. Weeds, pp. 322–374, Dec. 2001, doi: 10.1017/CBO9780511541810.008.

T. D. Sterling and A. V. Arundel, “Health effects of phenoxy herbicides. A review.,” Scand. J. Work. Environ. Health, vol. 12, no. 3, pp. 161–173, 1986, doi: 10.5271/sjweh.2160.

A. H. C. Van Bruggen et al., “Environmental and health effects of the herbicide glyphosate,” Sci. Total Environ., vol. 616–617, pp. 255–268, Mar. 2018, doi: 10.1016/J.SCITOTENV.2017.10.309.

T. K. Udeigwe et al., “Implications of leading crop production practices on environmental quality and human health,” J. Environ. Manage., vol. 151, pp. 267–279, Mar. 2015, doi: 10.1016/J.JENVMAN.2014.11.024.

J. Zhang, Y. Huang, K. N. Reddy, and B. Wang, “Assessing crop damage from dicamba on non-dicamba-tolerant soybean by hyperspectral imaging through machine learning,” Pest Manag. Sci., vol. 75, no. 12, pp. 3260–3272, Dec. 2019, doi: 10.1002/PS.5448.

J. F. Egan, K. M. Barlow, and D. A. Mortensen, “A Meta-Analysis on the Effects of 2,4-D and Dicamba Drift on Soybean and Cotton,” Weed Sci., vol. 62, no. 1, pp. 193–206, Mar. 2014, doi: 10.1614/WS-D-13-00025.1.

J. S. Mishra, R. Kumar, R. Kumar, K. K. Rao, and B. P. Bhatt, “Weed density and species composition in rice-based cropping systems as affected by tillage and crop rotation,” Indian J. Weed Sci., vol. 51, no. 2, p. 116, 2019, doi: 10.5958/0974-8164.2019.00027.3.

M. S. Simić, V. Dragičević, D. Chachalis, Ž. Dolijanović, and M. Brankov, “Integrated weed management in long-term maize cultivation,” Zemdirbyste, vol. 107, no. 1, pp. 33–40, 2020, doi: 10.13080/Z-A.2020.107.005.

E. H. Satorre et al., “Crop rotation effects on weed communities of soybean (Glycine max L. Merr.) agricultural fields of the Flat Inland Pampa,” Crop Prot., vol. 130, p. 105068, Apr. 2020, doi: 10.1016/J.CROPRO.2019.105068.

M. Liebman et al., “Fates of Setaria faberi and Abutilon theophrasti seeds in three crop rotation systems,” Weed Res., vol. 54, no. 3, pp. 293–306, Jun. 2014, doi: 10.1111/WRE.12069.

R. L. Anderson, “Managing weeds with a dualistic approach of prevention and control. A review,” Agron. Sustain. Dev., vol. 27, no. 1, pp. 13–18, Jan. 2007, doi: 10.1051/AGRO:2006027/METRICS.

D. Weisberger, V. Nichols, and M. Liebman, “Does diversifying crop rotations suppress weeds? A meta-analysis,” PLoS One, vol. 14, no. 7, p. e0219847, Jul. 2019, doi: 10.1371/JOURNAL.PONE.0219847.

J. Zhao, Y. Yang, K. Zhang, J. Jeong, Z. Zeng, and H. Zang, “Does crop rotation yield more in China? A meta-analysis,” F. Crop. Res., vol. 245, p. 107659, Jan. 2020, doi: 10.1016/J.FCR.2019.107659.

T. M. Bowles et al., “Long-Term Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America,” One Earth, vol. 2, no. 3, pp. 284–293, Mar. 2020, doi: 10.1016/j.oneear.2020.02.007.

L. F. Amato-Lourenco, G. R. Ranieri, V. C. de Oliveira Souza, F. B. Junior, P. H. N. Saldiva, and T. Mauad, “Edible weeds: Are urban environments fit for foraging?,” Sci. Total Environ., vol. 698, p. 133967, Jan. 2020, doi: 10.1016/J.SCITOTENV.2019.133967.

O. G. Mouritsen, “Those tasty weeds,” J. Appl. Phycol., vol. 29, no. 5, pp. 2159–2164, Oct. 2017, doi: 10.1007/S10811-016-0986-1/METRICS.

B. M. Smith, N. J. Aebischer, J. Ewald, S. Moreby, C. Potter, and J. M. Holland, “The Potential of Arable Weeds to Reverse Invertebrate Declines and Associated Ecosystem Services in Cereal Crops,” Front. Sustain. Food Syst., vol. 3, p. 118, Jan. 2020, doi: 10.3389/FSUFS.2019.00118/BIBTEX.

V. Bretagnolle and S. Gaba, “Weeds for bees? A review,” Agron. Sustain. Dev., vol. 35, no. 3, pp. 891–909, Jul. 2015, doi: 10.1007/S13593-015-0302-5/FIGURES/2.

J. L. Capinera, “Relationships between insect pests and weeds: an evolutionary perspective,” Weed Sci., vol. 53, no. 6, pp. 892–901, Nov. 2005, doi: 10.1614/WS-04-049R.1.

J. Hufnagel, M. Reckling, and F. Ewert, “Diverse approaches to crop diversification in agricultural research. A review,” Agron. Sustain. Dev., vol. 40, no. 2, pp. 1–17, Apr. 2020, doi: 10.1007/S13593-020-00617-4/FIGURES/9.

R. G. Smith and K. L. Gross, “Assembly of weed communities along a crop diversity gradient,” J. Appl. Ecol., vol. 44, no. 5, pp. 1046–1056, Oct. 2007, doi: 10.1111/J.1365-2664.2007.01335.X.

J. Dury, N. Schaller, F. Garcia, A. Reynaud, and J. E. Bergez, “Models to support cropping plan and crop rotation decisions. A review,” Agron. Sustain. Dev., vol. 32, no. 2, pp. 567–580, Apr. 2012, doi: 10.1007/S13593-011-0037-X/METRICS.

M. Schönhart, E. Schmid, and U. A. Schneider, “CropRota – A crop rotation model to support integrated land use assessments,” Eur. J. Agron., vol. 34, no. 4, pp. 263–277, May 2011, doi: 10.1016/J.EJA.2011.02.004.

S. Dogliotti, W. A. H. Rossing, and M. K. Van Ittersum, “rotat, a tool for systematically generating crop rotations,” Eur. J. Agron., vol. 19, no. 2, pp. 239–250, May 2003, doi: 10.1016/S1161-0301(02)00047-3.

N. Colbach, F. Colas, O. Pointurier, W. Queyrel, and J. Villerd, “A methodology for multi-objective cropping system design based on simulations. Application to weed management,” Eur. J. Agron., vol. 87, pp. 59–73, Jul. 2017, doi: 10.1016/J.EJA.2017.04.005.

M. Liebman and V. A. Nichols, “Cropping System Redesign for Improved Weed Management: A Modeling Approach Illustrated with Giant Ragweed (Ambrosia trifida),” Agron. 2020, Vol. 10, Page 262, vol. 10, no. 2, p. 262, Feb. 2020, doi: 10.3390/AGRONOMY10020262.

S. C. Haring and M. L. Flessner, “Improving soil seed bank management,” Pest Manag. Sci., vol. 74, no. 11, pp. 2412–2418, Nov. 2018, doi: 10.1002/PS.5068.

R. Anderson, “An ecological approach to strengthen weed management in the semiarid great plains,” Adv. Agron., vol. 80, pp. 33–62, Jan. 2003, doi: 10.1016/S0065-2113(03)80002-0.

R. L. ANDERSON, “Sequencing Crops to Minimize Selection Pressure for Weeds in the Central Great Plains1,” https://doi.org/10.1614/WT-03-090R, vol. 18, no. 1, pp. 157–164, Jan. 2004, doi: 10.1614/WT-03-090R.

A. Kumar, T. Choudhary, S. Das, and S. K. Meena, “Weed seed bank: Impacts and management for future crop production,” Agron. Crop. Vol. 2 Manag. Pract., pp. 207–223, Jan. 2019, doi: 10.1007/978-981-32-9783-8_12/COVER.

P. R. Westerman, M. Liebman, F. D. Menalled, A. H. Heggenstaller, R. G. Hartzler, and P. M. Dixon, “Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems,” Weed Sci., vol. 53, no. 3, pp. 382–392, May 2005, doi: 10.1614/WS-04-130R.

A. Oswald and J. K. Ransom, “Striga control and improved farm productivity using crop rotation,” Crop Prot., vol. 20, no. 2, pp. 113–120, Mar. 2001, doi: 10.1016/S0261-2194(00)00063-6.

O. Samaké, T. J. Stomph, M. J. Kropff, and E. M. A. Smaling, “Integrated pearl millet management in the Sahel: Effects of legume rotation and fallow management on productivity and Striga hermonthica infestation,” Plant Soil, vol. 286, no. 1–2, pp. 245–257, Aug. 2006, doi: 10.1007/S11104-006-9041-3/METRICS.

J. K. Norsworthy et al., “Reducing the Risks of Herbicide Resistance: Best Management Practices and Recommendations,” Weed Sci., vol. 60, no. SP1, pp. 31–62, 2012, doi: 10.1614/WS-D-11-00155.1.

P. Neve, J. K. Norsworthy, K. L. Smith, and I. A. Zelaya, “Modeling Glyphosate Resistance Management Strategies for Palmer Amaranth (Amaranthus palmeri) in Cotton,” Weed Technol., vol. 25, no. 3, pp. 335–343, Sep. 2011, doi: 10.1614/WT-D-10-00171.1.

P. J. W. Lutman, S. R. Moss, S. Cook, and S. J. Welham, “A review of the effects of crop agronomy on the management of Alopecurus myosuroides,” Weed Res., vol. 53, no. 5, pp. 299–313, Oct. 2013, doi: 10.1111/WRE.12024.

L. Ulber and D. Rissel, “Farmers’ perspective on herbicide-resistant weeds and application of resistance management strategies: results from a German survey,” Pest Manag. Sci., vol. 74, no. 10, pp. 2335–2345, Oct. 2018, doi: 10.1002/PS.4793.

J. J. Goplen et al., “Seedbank Depletion and Emergence Patterns of Giant Ragweed (Ambrosia trifida) in Minnesota Cropping Systems,” Weed Sci., vol. 65, no. 1, pp. 52–60, Jan. 2017, doi: 10.1614/WS-D-16-00084.1.

H. J. Beckie and K. N. Harker, “Our top 10 herbicide-resistant weed management practices,” Pest Manag. Sci., vol. 73, no. 6, pp. 1045–1052, Jun. 2017, doi: 10.1002/PS.4543.

A. R. Ngwira, J. B. Aune, and S. Mkwinda, “On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi,” F. Crop. Res., vol. 132, pp. 149–157, Jun. 2012, doi: 10.1016/J.FCR.2011.12.014.

R. W. Brooker et al., “Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology,” New Phytol., vol. 206, no. 1, pp. 107–117, Apr. 2015, doi: 10.1111/NPH.13132.

R. J. Pakeman et al., “Increased crop diversity reduces the functional space available for weeds,” Weed Res., vol. 60, no. 2, pp. 121–131, Apr. 2020, doi: 10.1111/WRE.12393.

K. Ann Bybee-Finley, S. B. Mirsky, and M. R. Ryan, “Crop Biomass Not Species Richness Drives Weed Suppression in Warm-Season Annual Grass–Legume Intercrops in the Northeast,” Weed Sci., vol. 65, no. 5, pp. 669–680, Sep. 2017, doi: 10.1017/WSC.2017.25.

L. Stefan, N. Engbersen, and C. Schöb, “Crop–weed relationships are context-dependent and cannot fully explain the positive effects of intercropping on yield,” Ecol. Appl., vol. 31, no. 4, p. e02311, Jun. 2021, doi: 10.1002/EAP.2311.

J. Smith, B. D. Pearce, and M. S. Wolfe, “Reconciling productivity with protection of the environment: Is temperate agroforestry the answer?,” Renew. Agric. Food Syst., vol. 28, no. 1, pp. 80–92, Mar. 2013, doi: 10.1017/S1742170511000585.

J. J. Goplen et al., “Economic Performance of Crop Rotations in the Presence of Herbicide-Resistant Giant Ragweed,” Agron. J., vol. 110, no. 1, pp. 260–268, Jan. 2018, doi: 10.2134/AGRONJ2016.09.0536.

V. Verret, A. Gardarin, E. Pelzer, S. Médiène, D. Makowski, and M. Valantin-Morison, “Can legume companion plants control weeds without decreasing crop yield? A meta-analysis,” F. Crop. Res., vol. 204, pp. 158–168, Mar. 2017, doi: 10.1016/J.FCR.2017.01.010.

C. Rodriguez et al., “Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis,” Eur. J. Agron., vol. 118, p. 126077, Aug. 2020, doi: 10.1016/J.EJA.2020.126077.

G. Corre-Hellou et al., “The competitive ability of pea–barley intercrops against weeds and the interactions with crop productivity and soil N availability,” F. Crop. Res., vol. 122, no. 3, pp. 264–272, Jun. 2011, doi: 10.1016/J.FCR.2011.04.004.

H. Saucke and K. Ackermann, “Weed suppression in mixed cropped grain peas and false flax (Camelina sativa),” Weed Res., vol. 46, no. 6, pp. 453–461, Dec. 2006, doi: 10.1111/J.1365-3180.2006.00530.X.

R. K. Mathukia, P. R. Mathukia, and A. M. Polara, “ Intercropping and weed management in pearlmillet ( Pennisetum glaucum ) under rainfed condition ,” Agric. Sci. Dig. - A Res. J., vol. 35, no. 2, p. 138, 2015, doi: 10.5958/0976-0547.2015.00025.7.

T. Cheriere, M. Lorin, and G. Corre-Hellou, “Species choice and spatial arrangement in soybean-based intercropping: Levers that drive yield and weed control,” F. Crop. Res., vol. 256, p. 107923, Oct. 2020, doi: 10.1016/J.FCR.2020.107923.

K. Jamshidi, A. R. Yousefi, and M. Oveisi, “Effect of cowpea (Vigna unguiculata) intercropping on weed biomass and maize (Zea mays) yield,” https://doi.org/10.1080/01140671.2013.807853, vol. 41, no. 4, pp. 180–188, Dec. 2013, doi: 10.1080/01140671.2013.807853.

M. Farooq, K. Jabran, Z. A. Cheema, A. Wahid, and K. H. Siddique, “The role of allelopathy in agricultural pest management,” Pest Manag. Sci., vol. 67, no. 5, pp. 493–506, May 2011, doi: 10.1002/PS.2091.

F. Tesio and A. Ferrero, “Allelopathy, a chance for sustainable weed management,” http://dx.doi.org/10.1080/13504509.2010.507402, vol. 17, no. 5, pp. 377–389, Oct. 2010, doi: 10.1080/13504509.2010.507402.

J. H. J. R. Makoi and P. A. Ndakidemi, “Allelopathy as protectant, defence and growth stimulants in legume cereal mixed culture systems,” http://dx.doi.org/10.1080/01140671.2011.630737, vol. 40, no. 3, pp. 161–186, 2012, doi: 10.1080/01140671.2011.630737.

L. Głąb, J. Sowiński, R. Bough, and F. E. Dayan, “Allelopathic Potential of Sorghum (Sorghum bicolor (L.) Moench) in Weed Control: A Comprehensive Review,” Adv. Agron., vol. 145, pp. 43–95, Jan. 2017, doi: 10.1016/BS.AGRON.2017.05.001.

J. Sowiński, F. E. Dayan, L. Głąb, and K. Adamczewska-Sowińska, “Sorghum Allelopathy for Sustainable Weed Management,” pp. 263–288, 2020, doi: 10.1007/978-3-030-51034-3_11.

S. Arowosegbe and A. J. Afolayan, “Assessment of allelopathic properties of Aloe ferox Mill. on turnip, beetroot and carrot,” Biol. Res., vol. 45, no. 4, pp. 363–368, 2012, doi: 10.4067/S0716-97602012000400006.

A. Mahmood, Z. A. Cheema, M. N. Mushtaq, and M. Farooq, “Maize–sorghum intercropping systems for purple nutsedge management,” http://dx.doi.org/10.1080/03650340.2012.704547, vol. 59, no. 9, pp. 1279–1288, Sep. 2012, doi: 10.1080/03650340.2012.704547.

S. K. Dhungana, I. D. Kim, B. Adhikari, J. H. Kim, and D. H. Shin, “Reduced Germination and Seedling Vigor of Weeds with Root Extracts of Maize and Soybean, and the Mechanism Defined as Allelopathic,” J. Crop Sci. Biotechnol., vol. 22, no. 1, pp. 11–16, Mar. 2019, doi: 10.1007/S12892-018-0251-0/METRICS.

K. Jabran, “Sorghum Allelopathy for Weed Control,” pp. 65–75, 2017, doi: 10.1007/978-3-319-53186-1_8.

R. C. dos Santos, G. de M. G. Ferraz, M. B. de Albuquerque, L. M. de Lima, P. A. de Melo Filho, and A. de R. Ramos, “Temporal expression of the sor1 gene and inhibitory effects of Sorghum bicolor L. Moench on three weed species,” Acta Bot. Brasilica, vol. 28, no. 3, pp. 361–366, Jul. 2014, doi: 10.1590/0102-33062014ABB3238.

Downloads

Published

2023-01-27

How to Cite

Abdul Baqi, & Noor ul ain. (2023). Weed Management Under Variable Crops grown in Diverse Environments. International Journal of Agriculture and Sustainable Development, 5(1), 1–14. Retrieved from https://journal.50sea.com/index.php/IJASD/article/view/481

Issue

Section

Articles