Optimizing Nitrogen Management in Maize Production: Insights from a Comprehensive Analysis in the US Corn Belt Under Diverse Climatic Conditions

Authors

  • Salman Anwar Kohat University of Science and Technology Kohat (KUST)

Keywords:

Corn Belt, Nitrogen Rates, Soil Health Indicators, Complexities of Climate

Abstract

This academic review delves into the intricate dynamics of nitrogen management in maize production, focusing on the US Corn Belt with an emphasis on cold climates. The study employs a comprehensive approach, utilizing empirical data from the MRTN database, SHAPE framework, and Bayesian regression modeling to analyze Economically Optimal Nitrogen Rates (EONRs) and maize yields. The Adapt-N tool and model simulations further contribute to the exploration of soil health indicators and nitrogen accessibility under varying climatic conditions. The research reveals a nuanced relationship between temperature, soil organic matter, and nitrogen availability, offering valuable insights for optimizing nitrogen utilization efficiency and minimizing environmental impacts in diverse agricultural settings. The findings underscore the need for adaptive strategies considering the complexities of climate, soil characteristics, and agronomic practices to enhance nitrogen management in maize cultivation.

References

H. van Es, “Cold Climate Factors in Nitrogen Management for Maize,” Agric. 2024, Vol. 14, Page 85, vol. 14, no. 1, p. 85, Dec. 2023, doi: 10.3390/AGRICULTURE14010085.

N. Risk, D. Snider, and C. Wagner-Riddle, “Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze-thaw cycles,” Can. J. Soil Sci., vol. 93, no. 4, pp. 401–414, Sep. 2013, doi: 10.4141/CJSS2012-071.

C. Wagner-Riddle, E. M. Baggs, T. J. Clough, K. Fuchs, and S. O. Petersen, “Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: managing hot spots and hot moments,” Curr. Opin. Environ. Sustain., vol. 47, pp. 46–53, Dec. 2020, doi: 10.1016/J.COSUST.2020.08.002.

K. C. Kersebaum, “Application of a simple management model to simulate water and nitrogen dynamics,” Ecol. Modell., vol. 81, no. 1–3, pp. 145–156, 1995, doi: 10.1016/0304-3800(94)00167-G.

A. F. Colaço and R. G. V. Bramley, “Do crop sensors promote improved nitrogen management in grain crops?,” F. Crop. Res., vol. 218, pp. 126–140, Apr. 2018, doi: 10.1016/J.FCR.2018.01.007.

P. M. Nkebiwe, M. Weinmann, A. Bar-Tal, and T. Müller, “Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis,” F. Crop. Res., vol. 196, pp. 389–401, Sep. 2016, doi: 10.1016/J.FCR.2016.07.018.

F. R. Magdoff, D. Ross, and J. Amadon, “A Soil Test for Nitrogen Availability to Corn,” Soil Sci. Soc. Am. J., vol. 48, no. 6, pp. 1301–1304, Nov. 1984, doi: 10.2136/SSSAJ1984.03615995004800060020X.

T. F. Morris et al., “Strengths and limitations of Nitrogen rate recommendations for corn and opportunities for improvement,” Agron. J., vol. 110, no. 1, pp. 1–37, Jan. 2018, doi: 10.2134/AGRONJ2017.02.0112.

S. Sela, P. B. Woodbury, R. Marjerison, and H. M. Van Es, “Towards applying N balance as a sustainability indicator for the US Corn Belt: Realistic achievable targets, spatiooral variability and policy implications,” Environ. Res. Lett., vol. 14, no. 6, Jun. 2019, doi: 10.1088/1748-9326/AB1219.

S. Sela, P. B. Woodbury, and H. M. Van Es, “Dynamic model-based N management reduces surplus nitrogen and improves the environmental performance of corn production,” Environ. Res. Lett., vol. 13, no. 5, May 2018, doi: 10.1088/1748-9326/AAB908.

D. Abalos, S. Jeffery, A. Sanz-Cobena, G. Guardia, and A. Vallejo, “Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency,” Agric. Ecosyst. Environ., vol. 189, pp. 136–144, May 2014, doi: 10.1016/J.AGEE.2014.03.036.

N. Tremblay et al., “Corn response to nitrogen is influenced by soil texture and weather,” Agron. J., vol. 104, no. 6, pp. 1658–1671, Nov. 2012, doi: 10.2134/AGRONJ2012.0184.

M. R. Nunes et al., “The soil health assessment protocol and evaluation applied to soil organic carbon,” Soil Sci. Soc. Am. J., vol. 85, no. 4, pp. 1196–1213, Jul. 2021, doi: 10.1002/SAJ2.20244.

B. D. Kay, A. A. Mahboubi, E. G. Beauchamp, and R. S. Dharmakeerthi, “Integrating Soil and Weather Data to Describe Variability in Plant Available Nitrogen,” Soil Sci. Soc. Am. J., vol. 70, no. 4, pp. 1210–1221, Jul. 2006, doi: 10.2136/SSSAJ2005.0039.

“View of Climate Change and Sustainable Development.” Accessed: Feb. 22, 2024. [Online]. Available: https://journal.50sea.com/index.php/IJASD/article/view/422/499

R. W. Pinder, P. J. Adams, and S. N. Pandis, “Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States,” Environ. Sci. Technol., vol. 41, no. 2, pp. 380–386, Jan. 2007, doi: 10.1021/ES060379A.

T. B. T. J. P. F. CS Snyder, “Review of greenhouse gas emissions from crop production systems and fertilizer management effects,” Agr Ecosyst Env., vol. 133, p. 247, 2009.

P. Rochette, D. A. Angers, M. H. Chantigny, J. D. MacDonald, N. Bissonnette, and N. Bertrand, “Ammonia volatilization following surface application of urea to tilled and no-till soils: A laboratory comparison,” Soil Tillage Res., vol. 103, no. 2, pp. 310–315, May 2009, doi: 10.1016/J.STILL.2008.10.028.

A. A. Correndo et al., “Unraveling uncertainty drivers of the maize yield response to nitrogen: A Bayesian and machine learning approach,” Agric. For. Meteorol., vol. 311, Dec. 2021, doi: 10.1016/J.AGRFORMET.2021.108668.

A. D. Halvorson, C. S. Snyder, A. D. Blaylock, and S. J. Del Grosso, “Enhanced-efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation,” Agron. J., vol. 106, no. 2, pp. 715–722, 2014, doi: 10.2134/AGRONJ2013.0081.

G. Stanford, “Rationale for Optimum Nitrogen Fertilization in Corn Production,” J. Environ. Qual., vol. 2, no. 2, pp. 159–166, Apr. 1973, doi: 10.2134/JEQ1973.00472425000200020001X.

J. P. Amsili, H. M. van Es, and R. R. Schindelbeck, “Cropping system and soil texture shape soil health outcomes and scoring functions,” Soil Secur., vol. 4, Sep. 2021, doi: 10.1016/J.SOISEC.2021.100012.

A. A. Correndo et al., “Assessing the uncertainty of maize yield without nitrogen fertilization,” F. Crop. Res., vol. 260, Jan. 2021, doi: 10.1016/J.FCR.2020.107985.

S. Sela, H. M. van Es, B. N. Moebius-Clune, R. Marjerison, and G. Kneubuhler, “Dynamic model-based recommendations increase the precision and sustainability of N fertilization in midwestern US maize production,” Comput. Electron. Agric., vol. 153, pp. 256–265, Oct. 2018, doi: 10.1016/J.COMPAG.2018.08.010.

W. J. Burke, T. S. Jayne, and S. S. Snapp, “Nitrogen efficiency by soil quality and management regimes on Malawi farms: Can fertilizer use remain profitable?,” World Dev., vol. 152, Apr. 2022, doi: 10.1016/j.worlddev.2021.105792.

S. A. Wood and M. Bowman, “Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators,” Nat. Food, vol. 2, no. 2, pp. 97–103, Feb. 2021, doi: 10.1038/S43016-021-00222-Y.

I. Christy, A. Moore, D. Myrold, and M. Kleber, “A mechanistic inquiry into the applicability of permanganate oxidizable carbon as a soil health indicator,” Soil Sci. Soc. Am. J., vol. 87, no. 5, pp. 1083–1095, Sep. 2023, doi: 10.1002/SAJ2.20569.

I. A. Ciampitti and T. J. Vyn, “Grain nitrogen source changes over time in maize: A review,” Crop Sci., vol. 53, no. 2, pp. 366–377, Mar. 2013, doi: 10.2135/CROPSCI2012.07.0439.

J. Melkonian, H. J. Poffenbarger, S. B. Mirsky, M. R. Ryan, and B. N. Moebius-Clune, “Estimating nitrogen mineralization from cover crop mixtures using the precision nitrogen management model,” Agron. J., vol. 109, no. 5, pp. 1944–1959, Sep. 2017, doi: 10.2134/AGRONJ2016.06.0330.

Downloads

Published

2023-12-02

How to Cite

Salman Anwar. (2023). Optimizing Nitrogen Management in Maize Production: Insights from a Comprehensive Analysis in the US Corn Belt Under Diverse Climatic Conditions. International Journal of Agriculture and Sustainable Development, 5(4), 186–196. Retrieved from https://journal.50sea.com/index.php/IJASD/article/view/703

Issue

Section

Articles